
chemfp Documentation
Release 1.4

Andrew Dalke

Mar 19, 2018

Contents

1 Installing 3
1.1 Configuration options . 4

2 Working with the command-line tools 5
2.1 Generating fingerprint files from PubChem SD files . 5
2.2 k-nearest neighbor search . 6
2.3 Threshold search . 6
2.4 Combined k-nearest and threshold search . 7
2.5 NxN (self-similar) searches . 8
2.6 Using a toolkit to process the ChEBI dataset . 8
2.7 Alternate error handlers . 12
2.8 Alternate fingerprint file formats . 12
2.9 Convert formats with fpcat . 13
2.10 Merge multiple fingerprint files with fpcat . 13
2.11 chemfp’s two cross-toolkit substructure fingerprints . 15

3 Help for the command-line tools 17
3.1 ob2fps command-line options . 17
3.2 oe2fps command-line options . 18
3.3 rdkit2fps command-line options . 19
3.4 sdf2fps command-line options . 21
3.5 simsearch command-line options . 22
3.6 fpcat command-line options . 23

4 The chemfp Python library 25
4.1 Byte and hex fingerprints . 25
4.2 Fingerprint collections and metadata . 26
4.3 FingerprintArena . 27
4.4 How to use query fingerprints to search for similar target fingerprints 29
4.5 How to search an FPS file . 31
4.6 FingerprintArena searches returning indices instead of ids . 32
4.7 Computing a distance matrix for clustering . 34
4.8 Convert SearchResults to a SciPy csr matrix . 35
4.9 Taylor-Butina clustering . 36
4.10 Reading structure fingerprints using a toolkit . 38
4.11 Select a random fingerprint sample . 39
4.12 Look up a fingerprint with a given id . 41

i

4.13 Sorting search results . 42
4.14 Working with raw scores and counts in a range . 43

5 chemfp API 49

6 chemfp top-level module 51
6.1 ChemFPError . 54
6.2 ParseError . 54
6.3 Metadata . 55
6.4 FingerprintReader . 56
6.5 FingerprintIterator . 57
6.6 Fingerprints . 57
6.7 FingerprintWriter . 58
6.8 ChemFPProblem . 58
6.9 Open Babel fingerprints . 64
6.10 OpenEye fingerprints . 64
6.11 RDKit fingerprints . 64

7 chemfp.arena module 67
7.1 FingerprintArena . 67

8 chemfp.search module 71
8.1 SearchResults . 78
8.2 SearchResult . 80

9 chemfp.bitops module 83

10 chemfp.encodings 85

11 chemfp.fps_io module 89
11.1 FPSReader . 89
11.2 FPSWriter . 92

12 chemfp.io module 93
12.1 Location . 93

13 License and advertisement 97

14 What’s new in 1.4 99
14.1 Bug fixes . 100

15 What’s new in 1.3 101
15.1 Toolkit changes . 101
15.2 Performance . 102
15.3 Command-line tools . 102
15.4 API . 102
15.5 Important bug fixes . 103
15.6 Configuration . 103

16 Future 105

17 Thanks 107

18 Indices and tables 109

Python Module Index 111

ii

chemfp Documentation, Release 1.4

chemfp is a set of tools for working with cheminformatics fingerprints in the FPS format.

This is the documentation for the no-cost version of chemfp. To see the documentation for the chemfp 3.2, the
commercial version of chemfp, go to http://chemfp.readthedocs.io/en/chemfp-3.2/.

Most people will use the command-line programs to generate and search fingerprint files. ob2fps, oe2fps, and rdkit2fps
use respectively the Open Babel, OpenEye, and RDKit chemistry toolkits to convert structure files into fingerprint files.
sdf2fps extracts fingerprints encoded in SD tags to make the fingerprint file. simsearch finds targets in a fingerprint file
which are sufficiently similar to the queries. fpcat can be used to merge fingerprint files.

The programs are built using the chemfp Python library API, which in turn uses a C extension for the performance
critical sections. The parts of the library API documented here are meant for public use, and include examples.

Remember: chemfp cannot generate fingerprints from a structure file without a third-party chemistry toolkit.

Chemfp 1.4 was released on 19 March 2018. It supports Python 2.7 and can be used with any recent version of
OEChem/OEGraphSim, Open Babel, or RDKit. Python 3 support is available in the commerical version of chemfp.
If you are interested in paying for a copy, send an email to sales@dalkescientific.com .

Contents 1

http://chemfp.com/
http://chemfp.readthedocs.io/en/chemfp-3.2/
http://openbabel.org/
http://www.eyesopen.com/
http://www.rdkit.org/
mailto:sales@dalkescientific.com

chemfp Documentation, Release 1.4

2 Contents

CHAPTER 1

Installing

Chemfp requires that Python and a C compiler be installed in your machines. Since chemfp doesn’t run on Microsoft
Windows (for tedious technical reasons), then your machine likely already has both Python and a C compiler installed.
In case you don’t have Python, or you want to install a newer version, you can download a copy of Python from
http://www.python.org/download/ . If you don’t have a C compiler, .. well, do I really need to give you a pointer for
that?

Chemfp 1.3 only supports Python 2.7. It might work under Python 2.6 but that configuration hasn’t been tested. It will
not work under Python 2.5.

The core chemfp functionality (e.g. similarity search) does not depend on a third-party library but you will need a
chemistry toolkit in order to generate new fingerprints from structure files. chemfp supports the free Open Babel and
RDKit toolkits and the proprietary OEChem toolkit. Make sure you install the Python libraries for the toolkit(s) you
select.

Chemfp 1.3 has been tested with Open Babel 2.4.1, RDKit 2013.03, RDKit 2016.09, RDKit 2017.03, RDKit 2017.09
(dev), OEChem/OEGraphSim 2014.07, OEChem/OEGraphSim 2016.10, and OEChem/OEGraphSim 2017.10 (beta).

The easiest way to install chemfp is with the pip installer. This comes with Python 2.7.9 or later so it may already be
installed. Chemfp 1.3 is available through PyPI (the Python Package Index) so you can install it over the web as:

pip install chemfp

To install the tar.gz file with pip:

pip install chemfp-1.3.tar.gz

Otherwise you can use Python’s standard “setup.py”. Read http://docs.python.org/install/index.html for details of how
to use it. The short version is to do the following:

tar xf chemfp-1.3.tar.gz
cd chemfp-1.3
python setup.py build
python setup.py install

3

http://www.python.org/download/
https://pip.pypa.io/
https://pypi.python.org/pypi/chemfp
http://docs.python.org/install/index.html

chemfp Documentation, Release 1.4

The last step may need a sudo if you otherwise cannot write to your Python site-package. Another option is to use a
virtual environment.

1.1 Configuration options

The setup.py file has several compile-time options which can be set either from the python setup.py build
command-line or through environment variables. The environment variable solution is the easiest way to change the
settings under pip.

--with-openmp, --without-openmp

Chemfp uses OpenMP to parallelize multi-query searches. The default is --with-openmp. If you have a very old
version of gcc, or an older version of clang, or are on a Mac where the clang version doesn’t support OpenMP, then
you will need to use --without-openmp to tell setup.py to compile without OpenMP:

python setup.py build --without-openmp

You can also set the environment variable CHEMFP_OPENMP to “1” to compile with OpenMP support, or to “0” to
compile without OpenMP support:

CHEMFP_OPENMP=0 pip install chemfp-1.3.tar.gz

Note: you can use the environment variable CC to change the C compiler. For example, the clang compiler on Mac
doesn’t support OpenMP so I installed gcc-7 and compile using:

CC=gcc-7 pip install chemfp-1.3.tar.gz

--with-ssse3, --without-ssse3

Chemfp by default compiles with SSSE3 support, which was first available in 2006 so almost certainly available on
your Intel-like processor. In case I’m wrong (are you compiling for ARM? If so, send my any compiler patches), you
can disable SSSE3 support using the --without-ssse3, or set the environment variable CHEMFP_SSSE3 to “0”.

Compiling with SSSE3 support has a very odd failure case. If you compile with the SSSE3 flag enabled, then take the
binary to a machine without SSSE3 support, then it will crash because all of the code will be compiled to expect the
SSSE3 instruction set even though only one file, popcount_SSSE3.c, should be compiledthat way.

The solution is to compile popcount_SSSE3.c with the SSSE3 flag enabled and all of the other files without that
flag. Unfortunately, Python’s setup.py doesn’t make that easy to do. If this is a problem for you, take a look at
filter_gcc in the chemfp distribution. It’s used like this:

CC=$PWD/filter_gcc python setup.py build

It’s a bit of a hack so contact me if you have problems.

4 Chapter 1. Installing

https://pypi.python.org/pypi/virtualenv

CHAPTER 2

Working with the command-line tools

The sections in this chapter describe examples of using the command-line tools to generate fingerprint files and to do
similarity searches of those files.

2.1 Generating fingerprint files from PubChem SD files

In this section you’ll learn how to create a fingerprint file from an SD file which contains pre-computed CACTVS
fingerprints. You do not need a chemistry toolkit for this section.

PubChem is a great resource of publically available chemistry information. The data is available for ftp download.
We’ll use some of their SD formatted files. Each record has a PubChem/CACTVS fingerprint field, which we’ll used.

Start by downloading the files Compound_027575001_027600000.sdf.gz (from ftp://ftp.ncbi.nlm.nih.
gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz) and Com-
pound_014550001_014575000.sdf.gz (from ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/
Compound_014550001_014575000.sdf.gz). At the time of writing they contain 213 and 5208 records, respectively.
(I chose smaller than average files so they would be easier to open and review.)

Next, convert the files into fingerprint files. On the command line do the following two commands:

sdf2fps --pubchem Compound_027575001_027600000.sdf.gz -o pubchem_queries.fps
sdf2fps --pubchem Compound_014550001_014575000.sdf.gz -o pubchem_targets.fps

Congratulations, that was it!

How does this work? Each PubChem record contains the precomputed CACTVS substructure keys in the PUB-
CHEM_CACTVS_SUBSKEYS tag. The --pubchem flag tells sdf2fps to get the value of that tag and decode it to
get the fingerprint. It also adds a few metadata fields to the fingerprint file header.

The order of the fingerprints are the same as the order of the corresponding record in the SDF, although unconvertable
records might be skipped, depending on the --errors flag.

If you store records in an SD file then you almost certainly don’t use the same fingerprint encoding as PubChem.
sdf2ps can decode from a number of encodings. Use --help to see the list of available decoders.

5

http://pubchem.ncbi.nlm.nih.gov/
ftp://ftp.ncbi.nlm.nih.gov
http://en.wikipedia.org/wiki/Structure_Data_File#SDF
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz

chemfp Documentation, Release 1.4

2.2 k-nearest neighbor search

In this section you’ll learn how to search a fingerprint file to find the k-nearest neighbors. You will need the fingerprint
files generated in Generating fingerprint files from PubChem SD files but you do not need a chemistry toolkit.

We’ll use the pubchem_queries.fps as the queries for a k=2 nearest neighor similarity search of the target file
puchem_targets.gps:

simsearch -k 2 -q pubchem_queries.fps pubchem_targets.fps

That’s all! You should get output which starts:

#Simsearch/1
#num_bits=881
#type=Tanimoto k=2 threshold=0.0
#software=chemfp/1.4
#queries=pubchem_queries.fps
#targets=pubchem_targets.fps
#query_sources=Compound_027575001_027600000.sdf.gz
#target_sources=Compound_014550001_014575000.sdf.gz
2 27575190 14555201 0.7236 14566941 0.7105
2 27575192 14555203 0.7158 14555201 0.7114
2 27575198 14555201 0.7286 14569555 0.7259
2 27575208 14555201 0.7701 14566941 0.7584

How do you interpret the output? The lines starting with ‘#’ are header lines. It contains metadata information
describing that this is a similarity search report. You can see the search parameters, the name of the tool which did the
search, and the filenames which went into the search.

After the ‘#’ header lines come the search results, with one result per line. There are in the same order as the query
fingerprints. Each result line contains tab-delimited columns. The first column is the number of hits. The second
column is the query identifier used. The remaining columns contain the hit data, with alternating target id and its
score.

For example, the first result line contains the 2 hits for the query 27575190. The first hit is the target id 1455201 with
score 0.7236 and the second hit is 14566941 with score 0.7105. Since this is a k-nearest neighor search, the hits are
sorted by score, starting with the highest score. Do be aware that ties are broken arbitrarily.

2.3 Threshold search

In this section you’ll learn how to search a fingerprint file to find all of the neighbors at or above a given threshold.
You will need the fingerprint files generated in Generating fingerprint files from PubChem SD files but you do not need
a chemistry toolkit.

Let’s do a threshold search and find all hits which are at least 0.738 similar to the queries:

simsearch --threshold 0.738 -q pubchem_queries.fps pubchem_targets.fps

The first 20 lines of output from this are:

#Simsearch/1
#num_bits=881
#type=Tanimoto k=all threshold=0.738
#software=chemfp/1.4
#queries=pubchem_queries.fps
#targets=pubchem_targets.fps

6 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 1.4

#query_sources=Compound_027575001_027600000.sdf.gz
#target_sources=Compound_014550001_014575000.sdf.gz
0 27575190
0 27575192
0 27575198
3 27575208 14566941 0.7584 14566938 0.7542 14555201 0.
→˓7701
0 27575240
0 27575250
1 27575257 14572463 0.7468
1 27575282 14555201 0.7656
0 27575284
0 27575295
0 27575318
0 27575419

Take a look at the fourth result line, which contains the 3 hits for the query id 27575208. As before, the hit information
alternates between the target ids and the target scores, but unlike the k-nearest search, the hits are not in a particular
order. You can see that here where the scores are 0.7584, 0.7542, and 0.7701 .

You might be wondering why I chose the 0.738 threshold. Query id 27575208 has 10 hits with a threshold of 0.7 or
higher. That requires 22 columns to show, which is a bit overwhelming.

2.4 Combined k-nearest and threshold search

In this section you’ll learn how to search a fingerprint file to find the k-nearest neighbors, where all of the hits must be
at or above given threshold. You will need the fingerprint files generated in Generating fingerprint files from PubChem
SD files but you do not need a chemistry toolkit.

You can combine the -k and --threshold queries to find the k-nearest neighbors which are all above a given
threshold:

simsearch -k 3 --threshold 0.7 -q pubchem_queries.fps pubchem_targets.fps

This find the nearest 3 structures, which all must be at least 0.7 similar to the query fingerprint. The output from the
above starts:

#Simsearch/1
#num_bits=881
#type=Tanimoto k=3 threshold=0.7
#software=chemfp/1.4
#queries=pubchem_queries.fps
#targets=pubchem_targets.fps
#query_sources=Compound_027575001_027600000.sdf.gz
#target_sources=Compound_014550001_014575000.sdf.gz
3 27575190 14555201 0.7236 14566941 0.7105 14566938 0.
→˓7068
2 27575192 14555203 0.7158 14555201 0.7114
3 27575198 14555201 0.7286 14569555 0.7259 14553070 0.
→˓7065
3 27575208 14555201 0.7701 14566941 0.7584 14566938 0.
→˓7542
2 27575240 14555201 0.7150 14566941 0.7016
2 27575250 14555203 0.7128 14555201 0.7085
3 27575257 14572463 0.7468 14563588 0.7250 14561245 0.
→˓7219

2.4. Combined k-nearest and threshold search 7

chemfp Documentation, Release 1.4

3 27575282 14555201 0.7656 14555198 0.7317 14566941 0.
→˓7166
0 27575284
0 27575295
0 27575318
3 27575419 14570951 0.7339 14570934 0.7265 14570935 0.
→˓7232

The output format is identical to the previous two search examples, and because this is a k-nearest search, the hits are
sorted from higest score to lowest.

2.5 NxN (self-similar) searches

Use the –NxN option if you want to use the same fingerprints as both the queries and targets:

simsearch -k 3 --threshold 0.7 --NxN pubchem_queries.fps

This is about twice as fast and uses half as much memory compared to:

simsearch -k 3 --threshold 0.7 -q pubchem_queries.fps pubchem_queries.fps

Plus, the –NxN option excludes matching a fingerprint to itself (the diagonal term).

2.6 Using a toolkit to process the ChEBI dataset

In this section you’ll learn how to create a fingerprint file from a structure file. The structure processing and fingerprint
generation are done with a third-party chemisty toolkit. chemfp supports Open Babel, OpenEye, and RDKit. (OpenEye
users please note that you will need an OEGraphSim license to use the OpenEye-specific fingerprinters.)

We’ll work with data from ChEBI http://www.ebi.ac.uk/chebi/ which contains “Chemical Entities of Biological Inter-
est”. They distribute their structures in several formats, including as an SD file. For this section, download the “lite”
version from ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz . It contains the same structure data as the
complete version but many fewer tag data fields. For ChEBI 155 this file contains 95,955 records and the compressed
file is 28MB.

Unlike the PubChem data set, the ChEBI data set does not contain fingerprints so we’ll need to generate them using a
toolkit.

2.6.1 ChEBI record titles don’t contain the id

Strangely, the ChEBI dataset does not use the title line of the SD file to store the record id. A simple examination
shows that 47,376 of the title lines are empty, 39,615 have the title “null”, 4,499 have the title ” “, 2,033 have the title
“ChEBI”, 45 of them are labeled “Structure #1”, and the others are usually compound names.

(I’ve asked ChEBI to fix this, to no success. Perhaps you have more influence?)

Instead, the id is stored as the value of the “ChEBI ID” tag, which in the SD file looks like:

> <ChEBI ID>
CHEBI:776

8 Chapter 2. Working with the command-line tools

http://www.ebi.ac.uk/chebi/
ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz

chemfp Documentation, Release 1.4

By default the toolkit-based fingerprint generation tools use the title as the identifier, and print a warning and skip the
record if the identifier is missing. Here’s an example with rdkit2fps:

ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 1, record #1.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 62, record #2.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 100, record #3.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 135, record #4.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 201, record #5.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 236, record #6.
→˓Skipping.
[22:53:43] S group MUL ignored on line 103

... skipping many lines ...
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 22392, record #343.
→˓Skipping.
#FPS1
#num_bits=2048
#type=RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1
#software=RDKit/2018.03.1.dev1 chemfp/1.4
#source=ChEBI_lite.sdf.gz
#date=2018-03-16T21:53:43
031087be231150242e714400920000a193c1080c02858a1116a68100a58806342840405253004080c8cc3c4811
4101b25081a10c025e634c08a1c00088102c0400121040a2080505188a9c0a150000028211219c1001000981c4
804417180aca0401408500180182210716db1580708a0b8a0802820532854411200c1101040404001118600d0a
518402385dc00011290602205a070480c148f240421000c321801922c7808740cd0b10ea4c40000403dc180121
94d8d120020150b3d00043a24370000201042881d15018c0e0901442881d68604c4a83808110c772a824051948
003c801360600221040010e20418381668404b0424ec130f05a090c94960e0 ChEBI
00008000000000000000002880000000000000000200000004008000000000000000200040000002000c000000
000000000080080000000200400100000000000000001000000400001000000000000000800000000000000100
00000801002000000001000000400004c000000000000000800004000000001102000000200004000000100300
08000000000000000000000000000000000820000404000000800000400000200c000008040000000000000000
200101008000000000000000000202000002008000000000000002000000000008000400000000000000000100
40000100020080000001000300280000002002000000000000000000000000 ChEBI
210809600d11180010010200820108302804406016040100a4019100001204a12800000c400202200286000491
800080c00019050000630a8222b4a10c10450170048100a0020600200093020522088a90050400281000008900
48004af130e280000445000526496044c2280413804030000062060804c520002200030064114f2001803401af
120100043248000c2002008092020c6a042925c0800008c140848448541a42205c0305584810788441610a0400
000c8100088c4064000105128a824284300648008900000100c00201c41027400c8a20908700440a0012012180
410291002200024002a1100b5038410206a0000900404400001150000a020a null

... and more ...

That output I showed contains only three fingerprint records, the first two with the id “ChEBI” and the last with the id
of ‘null’. The earlier records had no title or the title was a space character, so they were skipped, with a message sent
to stderr describing the problem and the location of the record containing the problem.

(If the first 100 records have no identifiers then the command-line tools will exit even if --errors is ignore. This is
a safety mechanism. Let me know if it’s a problem.)

Instead, use the --id-tag option to specify of the name of the data tag containing the id. For this data set you’ll
need to write it as:

--id-tag "ChEBI ID"

The quotes are important because of the space in the tag name.

2.6. Using a toolkit to process the ChEBI dataset 9

chemfp Documentation, Release 1.4

Here’s what the first few lines of that output looks like:

[22:58:35] S group MUL ignored on line 103
[22:58:35] Unhandled CTAB feature: S group SRU on line: 31. Molecule skipped.
#FPS1
#num_bits=2048
#type=RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1
#software=RDKit/2018.03.1.dev1 chemfp/1.4
#source=ChEBI_lite.sdf.gz
#date=2018-03-16T21:58:35
10208220141258c184490038b4124609db0030024a0765883c62c9e1288a1dc224de62f445743b8b
30ad542718468104d521a214227b29ba3822fbf20e15491802a051532cd10d902c39b02b51648981
9c87eb41142811026d510a890a711cb02f2090ddacd990c5240cc282090640103d0a0a8b460184f5
11114e2a8060200804529804532313bb03912d5e2857a6028960189e370100052c63474748a1c000
8079f49c484ca04c0d0bcb2c64b72401042a1f82002b097e852830e5898302021a1203e412064814
a598741c014e9210bc30ab180f0162029d4c446aa01c34850071e4ff037a60e732fd85014344f82a
344aa98398654481b003a84f201f518f CHEBI:90
00000000080200412008000008000004000010100022008000400002000020100020006000800001
01000100080001000010000002002200000200000008000000400002100000000080000004401000
80200020800200002000001400022064000004244810000000000080000a80012002020004198002
00080200020020120040203001000802010100024211000004400000000100200003000001000100
0100021000a200601080002a00002020048004030000884084000008000002040200010800000000
2000010022000800002000020001400020800100025040000000200a080244000060008000000802
8100c801108000000041c00200800002 CHEBI:165

In addition to “ChEBI ID” there’s also a “ChEBI Name” tag which includes data values like “tropic acid” and “(+)-
guaia-6,9-diene”. Every ChEBI record has a unique name so the names could also be used as the primary identifier.

The FPS fingerprint file format allows identifiers with a space, or comma, or anything other tab, newline, and a couple
of other special bytes, so it’s no problem using those names directly.

To use the ChEBI Name as the primary chemfp identifier, specify:

--id-tag "ChEBI Name"

2.6.2 Generating fingerprints with Open Babel

If you have the Open Babel Python library installed then you can use ob2fps to generate fingerprints:

ob2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fps

This takes just under 3 minutes on my 7 year old desktop to process all of the records.

The default uses the FP2 fingerprints, so the above is the same as:

ob2fps --FP2 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fps

ob2fps can generate several other types of fingerprints. (Use --help for a list.) For example, to generate the Open
Babel implementation of the MACCS definition use:

ob2fps --MACCS --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

2.6.3 Generating fingerprints with OpenEye

If you have the OEChem Python library installed, with licenses for OEChem and OEGraphSim, then you can use
oe2fps to generate fingerprints:

10 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 1.4

oe2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o oe_chebi.fps

This takes about 40 seconds on my desktop and generates a number of warnings like “Stereochemistry corrected on
atom number 17 of”, “Unsupported Sgroup information ignored”, and “Invalid stereochemistry specified for atom
number 9 of”. Normally the record title comes after the “. . . of”, but the title is blank for most of the records.

OEChem could not parse 7 of the 95,955 records. I looked at the failing records and noticed that all of them had 0
atoms and 0 bonds.

The default settings produce OEGraphSim path fingerprint with the values:

numbits=4096 minbonds=0 maxbonds=5
atype=Arom|AtmNum|Chiral|EqHalo|FCharge|HvyDeg|Hyb btype=Order|Chiral

Each of these can be changed through command-line options.

oe2fps can generate several other types of fingerprints. For example, to generate the OpenEye implementation of the
MACCS definition specify:

oe2fps --maccs166 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

Use --help for a list of available oe2fps fingerprints or to see more configuration details.

2.6.4 Generating fingerprints with RDKit

If you have the RDKit Python library installed then you can use rdkit2fps to generate fingerprints. Based on the
previous examples you probably guessed that the command-line is:

rdkit2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o rdkit_chebi.fps

This takes just under 6 minutes on my desktop, and RDKit did not generate fingerprints for 1,101 of the 95,955 records.

You can see some of the RDKit error messages in the output, like:

[00:47:02] Explicit valence for atom # 12 N, 4, is greater than permitted
[00:47:02] S group DAT ignored on line 102

These come from RDKit’s error log. RDKit is careful to check that structures make chemical sense, and in this case it
didn’t like the 4-valent nitrogen. It refuses to process this molecule.

The default generates RDKit’s path fingerprints with parameters:

minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1

(NOTE! In chemfp 1.1 the default nBitsPerHash was 4. The RDKit default nBitsPerHash is 2.)

Each of those can be changed through command-line options. See rdkit2fps --help for details, where you’ll also
see a list of the other available fingerprint types.

For example, to generate the RDKit implementation of the MACCS definition use:

rdkit2fps --maccs166 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

while the following generates the Morgan/circular fingerprint with radius 3:

rdkit2fps --morgan --radius 3 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz

2.6. Using a toolkit to process the ChEBI dataset 11

chemfp Documentation, Release 1.4

2.7 Alternate error handlers

In this section you’ll learn how to change the error handler for rdkit2fps using the --errors option.

By default the “<toolkit>2fps” programs “ignore” structures which could not be parsed into a molecule option. There
are two other options. They can “report” more information about the failure case and keep on processing, or they can
be “strict” and exit after reporting the error.

This is configured with the --errors option.

Here’s the rdkit2fps output using --errors report:

[00:52:39] S group MUL ignored on line 103
[00:52:39] Unhandled CTAB feature: S group SRU on line: 36. Molecule skipped.
ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 12036, record
→˓#179. Skipping.
[00:52:39] Explicit valence for atom # 12 N, 4, is greater than permitted
ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 16213, record
→˓#265. Skipping.

The first two lines come from RDKit. The third line is from chemfp, reporting which record could not be parsed. (The
record starts at line 12036 of the file and the SRU is on line 36 of the record, so the SRU is at line 12072.) The fourth
line is another RDKit error message, and the last line is another chemfp error message.

Here’s the rdkit2fps output using --errors strict:

[00:54:30] S group MUL ignored on line 103
[00:54:30] Unhandled CTAB feature: S group SRU on line: 36. Molecule skipped.
ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 12036, record
→˓#179. Exiting.

Because this is strict mode, processing exits at the first failure.

The ob2fps and oe2fps tools implement the --errors option, but they aren’t as useful as rdkit2fps because the
underlying APIs don’t give useful feedback to chemfp about which records failed. For example, the standard OEChem
file reader automatically skips records that it cannot parse. Chemfp can’t report anything when it doesn’t know there
was a failure.

The default error handler in chemfp 1.1 was “strict”. In practice this proved more annoying than useful because most
people want to skip the records which could not be processed. They would then contact me asking what was wrong,
or doing some pre-processing to remove the failure cases.

One of the few times when it is useful is for records which contain no identifier. When I changed the default from
“strict” to “ignore” and tried to process ChEBI, I was confused at first about why the output file was so small. Then
I realized that it’s because the many records without a title were skipped, and there was no feedback about skipping
those records.

I changed the code so missing identifiers are always reported, even if the error setting is “ignore”. Missing identifiers
will still stop processing if the error setting is “strict”.

2.8 Alternate fingerprint file formats

In this section you’ll learn about chemfp’s support for other fingerprint file formats.

Chemfp started as a way to promote the FPS file format for fingerprint exchange. Chemfp 2.0 added the FPB format,
which is a binary format designed around chemfp’s internal search data structure so it can be loaded quickly. (For FPB
support you will need to get a copy of the commercial version of chemfp.)

12 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 1.4

There are many other fingerprint formats. Perhaps the best known is the Open Babel FastSearch format. Two others
are Dave Cosgrove’s flush format, and OpenEye’s “fpbin” format.

The chemfp_converters package contains utilities to convert between the chemfp formats and these other formats.:

Convert from/to Dave Cosgrove Flush format
flush2fps drugs.flush
fps2flush drugs.fps -o drugs.flush

Convert from/to OpenEye's fpbin format
fpbin2fps drugs.fpbin --moldb drugs.sdf
fps2fpbin drugs_openeye_path.fps --moldb drugs.sdf -o drugs.fpbin

Convert from/to Open Babel's FastSearch format
fs2fps drugs.fs --datafile drugs.sdf
fps2fs drugs_openbabel_FP2.fps --datafile drugs.sdf -o drugs.fs

Of the three formats, the flush format is closest to the FPS data model. That is, it stores fingerprint records as an
identifier and the fingerprint bytes. By comparison, the FastSearch and fpbin formats store the fingerprint bytes and
an index into another file containing the structure and identifier. It’s impossible for chemfp to get the data it needs
without reading both files.

Chemfp has special support for the flush format. If chemfp_converters is installed, chemfp will use it to read and write
flush files nearly everywhere that it accepts FPS files. You can use it at the output to oe2fps, rdkit2fps, and ob2fps, and
as the input queries to simsearch. (You cannot use it as the simsearch targets because that code has been optimized for
FPS and FPB search, and I haven’t spent the time to optimize flush file support.)

This means that if chemfp_converters is installed then you can use fpcat (see also the next section) to convert between
FPS and flush file formats.

In addition, you can use it at the API level in chemfp.open(), chemfp.load_fingerprints(), chemfp.
open_fingerprint_writer(), and FingerprintArena.save().

Note that the flush format does not support the FPS metadata fields, like the fingerprint type, and it only support
fingerprints which are a multiple of 32 bits long.

2.9 Convert formats with fpcat

In this section you’ll learn how to use the command-line tool fpcat to convert between fingerprint file formats.

Chemfp 1.4 included a backport of fpcat from the commercial version of chemfp. In the commerical version, the fpcat
program is often used to convert from the text-based FPS files into the binary FPB format, and vice versa.

The no-cost version of chemfp does not include the FPB format, but it does include support for Dave Cosgrove’s flush
file format (see also the previous section). The fpcat program can be used to convert flush files to FPS format and
vice-versa:

fpcat drugs.flush -o drugs.fps
fpcat drugs.fps -o drugs.flush

For more control over the conversion, use flush2fps and fps2flush respectively, from the chemfp_converters package.

2.10 Merge multiple fingerprint files with fpcat

In this section you’ll learn how to merge multiple fingerprint files into one using the command-line tool fpcat, and how
to get slightly faster FPS arena load times by reordering the fingerprints.

2.9. Convert formats with fpcat 13

http://openbabel.org/wiki/FastSearch
https://github.com/OpenEye-Contrib/Flush
https://pypi.python.org/pypi/chemfp-converters/
https://pypi.python.org/pypi/chemfp-converters/

chemfp Documentation, Release 1.4

The previous section showed how use fpcat to convert from one fingerprint format to another.

You can also use the fpcat program to merge multiple fingerprint files. It’s based on the general idea of the Unix ‘cat’
program. In the following example, I’ll give it three filenames, and have it save the concatenated fingerprints to an
fps.gz file:

fpcat filename1.fps filename2.fps filename3.fps -o output.fps.gz

Note: fpcat uses the metadata from the first file to generate the metadata for the output. The output metadata does
not currently include the ‘sources’ metadata lines because that would require opening all of the files first to get that
information, then closing the files, and reopening them to get the fingerprint data. A future version of chemfp may
support this option, and/or some way to specify the source line(s) directly.

For example, if you generate fingerprints for a lot of structures, you might split them up into multiple files, process
them in parallel, and use fpcat to merge the results into a single file.

More concretely, I used RDKit to convert the ChEMBL 23 SD file into a SMILES file, which I want to process to get
the MACCS fingerprints. I’ll break it up into three parts, so lines 1, 4, 7, etc. go into one file, lines 2, 5, 8, etc. go into
another, and lines 3, 6, 9, etc. go into a third:

% awk 'NR % 3 == 0' chembl_23.rdkit.smi > subset0.smi
% awk 'NR % 3 == 1' chembl_23.rdkit.smi > subset1.smi
% awk 'NR % 3 == 2' chembl_23.rdkit.smi > subset2.smi

I’ll have rdkit2fps process each subset independently in the background (my laptop has more than 3 cores, so each job
will get its own core):

% rdkit2fps --maccs166 subset0.smi -o subset0.fps &
[1] 13935
% rdkit2fps --maccs166 subset1.smi -o subset1.fps &
[2] 13943
% rdkit2fps --maccs166 subset2.smi -o subset2.fps &
[3] 13952

You may want to use something like GNU parallel for a more automated solution.

Once those are done, I’ll merge them using fpcat:

% fpcat subset0.fps subset1.fps subset2.fps -o chembl_23.maccs.fps

By default the output fingerprints contain the fingerprints from the first file, in the order they appear in the file, followed
by the fingerprints from the second file, and so on.

Chemfp goes through several steps to load an FPS file into an arena. It loads the fingerprints into memory, it sorts
them by population count, so that fingerprints with 0 bits set come first, then those with 1 bit set, etc., and finally it
creates an index describing the offset to each of those popcount boundaries.

As an optimization, if the fingerprints are already ordered, then there’s no need to sort them, so it skips that step.
Here’s an example of the time needed to load the 1.7M ChEMBL 23 MACCS fingerprints:

% time python -c 'import chemfp; chemfp.load_fingerprints("chembl_23.maccs.fps")'
7.762u 0.251s 0:08.01 100.0% 0+0k 0+0io 0pf+0w

(This was the best of 3 times.)

I can ask fpcat to reorder the fingerprints by population count. This loads all of the fingerprints into memory, sorts
them, and then saves the fingerprints in sorted order.:

% fpcat subset0.fps subset1.fps subset2.fps -o chembl_23.maccs.fps --reorder

14 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 1.4

As a result, the load time decreases by about 10-15%:

% time python -c 'import chemfp; chemfp.load_fingerprints("chembl_23.maccs.fps")'
6.681u 0.246s 0:06.94 99.7% 0+0k 0+0io 0pf+0w

Of course, if you really want fast load performance, you should use the FPB format:

% time python -c 'import chemfp; print(len(chemfp.load_fingerprints("chembl_23.maccs.
→˓fpb")))'
1727081
0.078u 0.013s 0:00.09 88.8% 0+0k 0+0io 0pf+0w

About half of the 0.09 seconds is the startup overhead for Python itself.

2.11 chemfp’s two cross-toolkit substructure fingerprints

In this section you’ll learn how to generate the two substructure-based fingerprints which come as part of chemfp.
These are based on cross-toolkit SMARTS pattern definitions and can be used with Open Babel, OpenEye, and RDKit.
(For OpenEye users, these fingerprints use the base OEChem library and not the separately licensed OEGraphSim add-
on.)

Chemfp implements two platform-independent fingerprints where were originally designed for substructure filters but
which are also used for similarity searches. One is based on the 166-bit MACCS implementation in RDKit and the
other is derived from the 881-bit PubChem/CACTVS substructure fingerprints.

The chemfp MACCS definition is called “rdmaccs” because it closely derives from the MACCS SMARTS patterns
used in RDKit. (These pattern definitions are also used in Open Babel and the CDK, but are completely independent
from the OpenEye implementation.)

Here are example of the respective rdmaccs fingerprint for phenol using each of the toolkits.

Open Babel:

% echo "c1ccccc1O phenol" | ob2fps --in smi --rdmaccs
#FPS1
#num_bits=166
#type=RDMACCS-OpenBabel/2
#software=OpenBabel/2.4.1 chemfp/1.4
#date=2018-03-16T21:47:36
00000000000000000000000000000140004480101e phenol

OpenEye:

% echo "c1ccccc1O phenol" | oe2fps --in smi --rdmaccs
#FPS1
#num_bits=166
#type=RDMACCS-OpenEye/2
#software=OEChem/2.1.3.b.1_debug (20170816) chemfp/1.4
#date=2018-03-16T21:47:54
00000000000000000000000000000140004480101e phenol

RDKit:

% echo "c1ccccc1O phenol" | rdkit2fps --in smi --rdmaccs
#FPS1
#num_bits=166
#type=RDMACCS-RDKit/2

2.11. chemfp’s two cross-toolkit substructure fingerprints 15

chemfp Documentation, Release 1.4

#software=RDKit/2018.03.1.dev1 chemfp/1.4
#date=2018-03-16T21:48:12
00000000000000000000000000000140004480101e phenol

For more complex molecules it’s possible that different toolkits produce different fingerprint rdmaccs, even though the
toolkits use the same SMARTS definitions. Each toolkit has a different understanding of chemistry. The most notable
is the different definition of aromaticity, so the bit for “two or more aromatic rings” will be toolkit dependent.

2.11.1 substruct fingerprints

chemp also includes a “substruct” substructure fingerprint. This is an 881 bit fingerprint derived from the Pub-
Chem/CACTVS substructure keys. They do not match the CACTVS fingerprints exactly, in part due to differences in
ring perception. Some of the substruct bits will always be 0. With that caution in mind, if you want to try them out,
use the --substruct option.

The term “substruct” is a horribly generic name, but I couldn’t think of a better one. Until chemfp 3.0 I said these
fingerprints were “experimental”, in that I hadn’t fully validated them against PubChem/CACTVS and could not tell
you the error rate. I still haven’t done that.

What’s changed is that I’ve found out over the years that people are using the substruct fingerprints, even without full
validatation. That surprised me, but use is its own form of validation. I still would like to validate the fingerprints, but
it’s slow, tedious work which I am not really interested in doing. Nor does it earn me any money. Plus, if the validation
does lead to any changes, it’s easy to simply change the version number.

16 Chapter 2. Working with the command-line tools

CHAPTER 3

Help for the command-line tools

3.1 ob2fps command-line options

The following comes from ob2fps --help:

usage: ob2fps [-h]
[--FP2 | --FP3 | --FP4 | --MACCS | --substruct | --rdmaccs | --rdmaccs/

→˓1]
[--id-tag NAME] [--in FORMAT] [-o FILENAME] [--out FORMAT]
[--errors {strict,report,ignore}] [--version]
[filenames [filenames ...]]

Generate FPS fingerprints from a structure file using Open Babel

positional arguments:
filenames input structure files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--FP2 linear fragments up to 7 atoms
--FP3 SMARTS patterns specified in the file patterns.txt
--FP4 SMARTS patterns specified in the file

SMARTS_InteLigand.txt
--MACCS Open Babel's implementation of the MACCS 166 keys
--substruct generate ChemFP substructure fingerprints
--rdmaccs, --rdmaccs/2

166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs
--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default autodetects from the

filename extension)
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output structure format (default guesses from output

filename, or is 'fps')

17

chemfp Documentation, Release 1.4

--errors {strict,report,ignore}
how should structure parse errors be handled?
(default=ignore)

--version show program's version number and exit

3.2 oe2fps command-line options

The following comes from oe2fps --help:

usage: oe2fps [-h] [--path] [--circular] [--tree] [--numbits INT]
[--minbonds INT] [--maxbonds INT] [--minradius INT]
[--maxradius INT] [--atype ATYPE] [--btype BTYPE] [--maccs166]
[--substruct] [--rdmaccs] [--rdmaccs/1] [--aromaticity NAME]
[--id-tag NAME] [--in FORMAT] [-o FILENAME] [--out FORMAT]
[--errors {strict,report,ignore}] [--version]
[filenames [filenames ...]]

Generate FPS fingerprints from a structure file using OEChem

positional arguments:
filenames input structure files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--aromaticity NAME use the named aromaticity model
--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default guesses from filename)
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output structure format (default guesses from output

filename, or is 'fps')
--errors {strict,report,ignore}

how should structure parse errors be handled?
(default=ignore)

--version show program's version number and exit

path, circular, and tree fingerprints:
--path generate path fingerprints (default)
--circular generate circular fingerprints
--tree generate tree fingerprints
--numbits INT number of bits in the fingerprint (default=4096)
--minbonds INT minimum number of bonds in the path or tree

fingerprint (default=0)
--maxbonds INT maximum number of bonds in the path or tree

fingerprint (path default=5, tree default=4)
--minradius INT minimum radius for the circular fingerprint

(default=0)
--maxradius INT maximum radius for the circular fingerprint

(default=5)
--atype ATYPE atom type flags, described below (default=Default)
--btype BTYPE bond type flags, described below (default=Default)

166 bit MACCS substructure keys:
--maccs166 generate MACCS fingerprints

18 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 1.4

881 bit ChemFP substructure keys:
--substruct generate ChemFP substructure fingerprints

ChemFP version of the 166 bit RDKit/MACCS keys:
--rdmaccs, --rdmaccs/2

generate 166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs

ATYPE is one or more of the following, separated by the '|' character
Arom AtmNum Chiral EqArom EqHBAcc EqHBDon EqHalo FCharge HCount HvyDeg
Hyb InRing

The following shorthand terms and expansions are also available:
DefaultPathAtom = AtmNum|Arom|Chiral|FCharge|HvyDeg|Hyb|EqHalo
DefaultCircularAtom = AtmNum|Arom|Chiral|FCharge|HCount|EqHalo
DefaultTreeAtom = AtmNum|Arom|Chiral|FCharge|HvyDeg|Hyb

and 'Default' selects the correct value for the specified fingerprint.
Examples:

--atype Default
--atype Arom|AtmNum|FCharge|HCount

BTYPE is one or more of the following, separated by the '|' character
Chiral InRing Order

The following shorthand terms and expansions are also available:
DefaultPathBond = Order|Chiral
DefaultCircularBond = Order
DefaultTreeBond = Order

and 'Default' selects the correct value for the specified fingerprint.
Examples:

--btype Default
--btype Order|InRing

To simplify command-line use, a comma may be used instead of a '|' to
separate different fields. Example:

--atype AtmNum,HvyDegree

OEChem guesses the input structure format based on the filename
extension and assumes SMILES for structures read from stdin.
Use "--in FORMAT" to select an alternative, where FORMAT is one of:

File Type Valid FORMATs (use gz if compressed)
--------- ------------------------------------
SMILES smi, ism, usm, can, smi.gz, ism.gz, can.gz
SDF sdf, mol, sdf.gz, mol.gz
SKC skc, skc.gz
CDK cdk, cdk.gz
MOL2 mol2, mol2.gz
PDB pdb, ent, pdb.gz, ent.gz
MacroModel mmod, mmod.gz
OEBinary v2 oeb, oeb.gz

3.3 rdkit2fps command-line options

The following comes from rdkit2fps --help:

3.3. rdkit2fps command-line options 19

chemfp Documentation, Release 1.4

usage: rdkit2fps [-h] [--fpSize INT] [--RDK] [--minPath INT] [--maxPath INT]
[--nBitsPerHash INT] [--useHs 0|1] [--morgan] [--radius INT]
[--useFeatures 0|1] [--useChirality 0|1] [--useBondTypes 0|1]
[--torsions] [--targetSize INT] [--pairs] [--minLength INT]
[--maxLength INT] [--maccs166] [--avalon] [--isQuery 0|1]
[--bitFlags INT] [--pattern] [--substruct] [--rdmaccs]
[--rdmaccs/1] [--from-atoms INT,INT,...] [--id-tag NAME]
[--in FORMAT] [-o FILENAME] [--out FORMAT]
[--errors {strict,report,ignore}] [--version]
[filenames [filenames ...]]

Generate FPS fingerprints from a structure file using RDKit

positional arguments:
filenames input structure files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--fpSize INT number of bits in the fingerprint. Default of 2048 for

RDK, Morgan, topological torsion, atom pair, and
pattern fingerprints, and 512 for Avalon fingerprints

--from-atoms INT,INT,...
fingerprint generation must use these atom indices
(out of range indices are ignored)

--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default guesses from filename)
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output structure format (default guesses from output

filename, or is 'fps')
--errors {strict,report,ignore}

how should structure parse errors be handled?
(default=ignore)

--version show program's version number and exit

RDKit topological fingerprints:
--RDK generate RDK fingerprints (default)
--minPath INT minimum number of bonds to include in the subgraph

(default=1)
--maxPath INT maximum number of bonds to include in the subgraph

(default=7)
--nBitsPerHash INT number of bits to set per path (default=2)
--useHs 0|1 include information about the number of hydrogens on

each atom (default=1)

RDKit Morgan fingerprints:
--morgan generate Morgan fingerprints
--radius INT radius for the Morgan algorithm (default=2)
--useFeatures 0|1 use chemical-feature invariants (default=0)
--useChirality 0|1 include chirality information (default=0)
--useBondTypes 0|1 include bond type information (default=1)

RDKit Topological Torsion fingerprints:
--torsions generate Topological Torsion fingerprints
--targetSize INT number of bits in the fingerprint (default=4)

RDKit Atom Pair fingerprints:
--pairs generate Atom Pair fingerprints

20 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 1.4

--minLength INT minimum bond count for a pair (default=1)
--maxLength INT maximum bond count for a pair (default=30)

166 bit MACCS substructure keys:
--maccs166 generate MACCS fingerprints

Avalon fingerprints:
--avalon generate Avalon fingerprints
--isQuery 0|1 is the fingerprint for a query structure? (1 if yes, 0

if no) (default=0)
--bitFlags INT bit flags, SSSBits are 32767 and similarity bits are

15761407 (default=15761407)

RDKit Pattern fingerprints:
--pattern generate (substructure) pattern fingerprints

881 bit substructure keys:
--substruct generate ChemFP substructure fingerprints

ChemFP version of the 166 bit RDKit/MACCS keys:
--rdmaccs, --rdmaccs/2

generate 166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs

This program guesses the input structure format based on the filename
extension. If the data comes from stdin, or the extension name us
unknown, then use "--in" to change the default input format. The
supported format extensions are:

File Type Valid FORMATs (use gz if compressed)
--------- ------------------------------------
SMILES smi, ism, usm, can, smi.gz, ism.gz, usm.gz, can.gz
SDF sdf, mol, sd, mdl, sdf.gz, mol.gz, sd.gz, mdl.gz

3.4 sdf2fps command-line options

The following comes from sdf2fps --help:

usage: sdf2fps [-h] [--id-tag TAG] [--fp-tag TAG] [--in FORMAT]
[--num-bits INT] [--errors {strict,report,ignore}]
[-o FILENAME] [--out FORMAT] [--software TEXT] [--type TEXT]
[--version] [--binary] [--binary-msb] [--hex] [--hex-lsb]
[--hex-msb] [--base64] [--cactvs] [--daylight]
[--decoder DECODER] [--pubchem]
[filenames [filenames ...]]

Extract a fingerprint tag from an SD file and generate FPS fingerprints

positional arguments:
filenames input SD files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--id-tag TAG get the record id from TAG instead of the first line

of the record

3.4. sdf2fps command-line options 21

chemfp Documentation, Release 1.4

--fp-tag TAG get the fingerprint from tag TAG (required)
--in FORMAT Specify if the input SD file is uncompressed or gzip

compressed
--num-bits INT use the first INT bits of the input. Use only when the

last 1-7 bits of the last byte are not part of the
fingerprint. Unexpected errors will occur if these
bits are not all zero.

--errors {strict,report,ignore}
how should structure parse errors be handled?
(default=strict)

-o FILENAME, --output FILENAME
save the fingerprints to FILENAME (default=stdout)

--out FORMAT output structure format (default guesses from output
filename, or is 'fps')

--software TEXT use TEXT as the software description
--type TEXT use TEXT as the fingerprint type description
--version show program's version number and exit

Fingerprint decoding options:
--binary Encoded with the characters '0' and '1'. Bit #0 comes

first. Example: 00100000 encodes the value 4
--binary-msb Encoded with the characters '0' and '1'. Bit #0 comes

last. Example: 00000100 encodes the value 4
--hex Hex encoded. Bit #0 is the first bit (1<<0) of the

first byte. Example: 01f2 encodes the value \x01\xf2 =
498

--hex-lsb Hex encoded. Bit #0 is the eigth bit (1<<7) of the
first byte. Example: 804f encodes the value \x01\xf2 =
498

--hex-msb Hex encoded. Bit #0 is the first bit (1<<0) of the
last byte. Example: f201 encodes the value \x01\xf2 =
498

--base64 Base-64 encoded. Bit #0 is first bit (1<<0) of first
byte. Example: AfI= encodes value \x01\xf2 = 498

--cactvs CACTVS encoding, based on base64 and includes a
version and bit length

--daylight Daylight encoding, which is is base64 variant
--decoder DECODER import and use the DECODER function to decode the

fingerprint

shortcuts:
--pubchem decode CACTVS substructure keys used in PubChem. Same

as --software=CACTVS/unknown --type 'CACTVS-
E_SCREEN/1.0 extended=2' --fp-
tag=PUBCHEM_CACTVS_SUBSKEYS --cactvs

3.5 simsearch command-line options

The following comes from simsearch --help:

usage: simsearch [-h] [-k K_NEAREST] [-t THRESHOLD] [--queries QUERIES]
[--NxN] [--query QUERY] [--hex-query HEX_QUERY]
[--query-id QUERY_ID] [--query-format FORMAT]
[--target-format FORMAT] [-o FILENAME] [-c] [-b BATCH_SIZE]
[--scan] [--memory] [--times] [--version]

22 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 1.4

target_filename

Search an FPS or FPB file for similar fingerprints

positional arguments:
target_filename target filename

optional arguments:
-h, --help show this help message and exit
-k K_NEAREST, --k-nearest K_NEAREST

select the k nearest neighbors (use 'all' for all
neighbors)

-t THRESHOLD, --threshold THRESHOLD
minimum similarity score threshold

--queries QUERIES, -q QUERIES
filename containing the query fingerprints

--NxN use the targets as the queries, and exclude the self-
similarity term

--query QUERY query as a structure record (default format: 'smi')
--hex-query HEX_QUERY

query in hex
--query-id QUERY_ID id for the query or hex-query (default: 'Query1'
--query-format FORMAT, --in FORMAT

input query format (default uses the file extension,
else 'fps')

--target-format FORMAT
input target format (default uses the file extension,
else 'fps')

-o FILENAME, --output FILENAME
output filename (default is stdout)

-c, --count report counts
-b BATCH_SIZE, --batch-size BATCH_SIZE

batch size
--scan scan the file to find matches (low memory overhead)
--memory build and search an in-memory data structure (faster

for multiple queries)
--times report load and execution times to stderr
--version show program's version number and exit

3.6 fpcat command-line options

The following comes from fpcat --help:

usage: fpcat [-h] [--in FORMAT] [--merge] [-o FILENAME] [--out FORMAT]
[--reorder] [--preserve-order] [--show-progress] [--version]
[filename [filename ...]]

Combine multiple fingerprint files into a single file.

positional arguments:
filename input fingerprint filenames (default: use stdin)

optional arguments:
-h, --help show this help message and exit
--in FORMAT input fingerprint format. One of fps or fps.gz.

3.6. fpcat command-line options 23

chemfp Documentation, Release 1.4

(default guesses from filename or is fps)
--merge assume the input fingerprint files are in popcount

order and do a merge sort
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output fingerprint format. One of fps or fps.gz.

(default guesses from output filename, or is 'fps')
--reorder reorder the output fingerprints by popcount
--preserve-order save the output fingerprints in the same order as the

input (default for FPS output)
--show-progress show progress
--version show program's version number and exit

Examples:

fpcat can be used to merge multiple FPS files. For example, you might
have used GNU parallel to generate FPS files for each of the PubChem
files, which you want to merge into a single file.:

fpcat Compound_*.fps -o pubchem.fps

The --merge option is experimental. Use it if the input fingerprints
are in popcount order, because sorted output is a simple merge sort of
the individual sorted inputs. However, this option opens all input
files at the same time, which may exceed your resource limit on file
descriptors. The current implementation also requires a lot of disk
seeks so is slow for many files.

24 Chapter 3. Help for the command-line tools

CHAPTER 4

The chemfp Python library

The chemfp command-line programs use a Python library called chemfp. Portions of the API are in flux and subject
to change. The stable portions of the API which are open for general use are documented in chemfp API.

The API includes:

• low-level Tanimoto and popcount operations

• Tanimoto search algorithms based on threshold and/or k-nearest neighbors

• a cross-toolkit interface for reading fingerprints from a structure file

The following chapters give examples of how to use the API.

4.1 Byte and hex fingerprints

In this section you’ll learn how chemfp stores fingerprints and some of the low-level bit operations on those finger-
prints.

chemfp stores fingerprints as byte strings. Here are two 8 bit fingerprints:

>>> fp1 = "A"
>>> fp2 = "B"

The chemfp.bitops module contains functions which work on byte fingerprints. Here’s the Tanimoto of those two
fingerprints:

>>> from chemfp import bitops
>>> bitops.byte_tanimoto(fp1, fp2)
0.33333333333333331

To understand why, you have to know that ASCII character “A” has the value 65, and “B” has the value 66. The bit
representation is:

25

chemfp Documentation, Release 1.4

"A" = 01000001 and "B" = 01000010

so their intersection has 1 bit and the union has 3, giving a Tanimoto of 1/3 or 0.33333333333333331 when represented
as a 64 bit floating point number on the computer.

You can compute the Tanimoto between any two byte strings with the same length, as in:

>>> bitops.byte_tanimoto("apples&", "oranges")
0.58333333333333337

You’ll get a chemfp exception if they have different lengths.

Most fingerprints are not as easy to read as the English ones I showed above. They tend to look more like:

P1@\x84K\x1aN\x00\n\x01\xa6\x10\x98\\\x10\x11

which is hard to read. I usually show hex-encoded fingerprints. The above fingerprint in hex is:

503140844b1a4e000a01a610985c1011

which is simpler to read, though you still need to know your hex digits. There are two ways to hex-encode a byte
string. I suggest using chemfp’s hex_encode() function:

>>> bitops.hex_encode("P1@\x84K\x1aN\x00\n\x01\xa6\x10\x98\\\x10\x11")
'503140844b1a4e000a01a610985c1011'

Older versions of chemfp recommended using the s.encode() method of strings:

>>> "P1@\x84K\x1aN\x00\n\x01\xa6\x10\x98\\\x10\x11".encode("hex")
'503140844b1a4e000a01a610985c1011'

However, this will not work on Python 3. That version of Python distinguishes between text/Unicode strings and byte
strings. There is no “hex” encoding for text strings, and byte strings do not implement the “encode()” method.

Use chemfp’s hex_decode() function to decode a hex string to a fingerprint byte string.

The bitops module includes other low-level functions which work on byte fingerprints, as well as corresponding
functions which work on hex fingerprints. (Hex-encoded fingerprints are decidedly second-class citizens in chemfp,
but they are citizens.)

4.2 Fingerprint collections and metadata

In this section you’ll learn the basic operations on a fingerprint collection and the fingerprint metadata.

A fingerprint record is the fingerprint plus an identifier. In chemfp, a fingerprint collection is a object which contains
fingerprint records and which follows the common API providing access to those records.

That’s rather abstract, so let’s work with a few real examples. You’ll need to create a copy of the “pubchem_targets.fps”
file generated in Generating fingerprint files from PubChem SD files in order to follow along.

Here’s how to open an FPS file:

>>> import chemfp
>>> reader = chemfp.open("pubchem_targets.fps")

Every fingerprint collection has a metadata attribute with details about the fingerprints. It comes from the header of
the FPS file. You can view the metadata in Python repr format:

26 Chapter 4. The chemfp Python library

chemfp Documentation, Release 1.4

>>> reader.metadata
Metadata(num_bits=881, num_bytes=111, type=u'CACTVS-E_SCREEN/1.0 extend
ed=2', aromaticity=None, sources=[u'Compound_014550001_014575000.sdf.gz
'], software=u'CACTVS/unknown', date='2017-09-10T23:36:13')

but I think it’s easier to view it in string format, which matches the format of the FPS header:

>>> print reader.metadata
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_014550001_014575000.sdf.gz
#date=2017-09-10T23:36:13

All fingerprint collections support iteration. Each step of the iteration returns the fingerprint identifier and its score.
Since I know the 6th record has the id 14550045, I can write a simple loop which stops with that record:

>>> from chemfp.bitops import hex_encode
>>> for (id, fp) in reader:
... print id, "starts with", hex_encode(fp)[:20]
... if id == "14550045":
... break
...
14550001 starts with 034e1c00020000000000
14550002 starts with 034e0c00020000000000
14550003 starts with 034e0400020000000000
14550004 starts with 03c60000000000000000
14550005 starts with 010e1c00000600000000
14550010 starts with 034e1c40000000000000
14550011 starts with 030e1c10000000000000
14550044 starts with 0f3e1c00000000000000
14550045 starts with 071e8c03000000000000

Fingerprint collections also support iterating via arenas, and several support Tanimoto search functions.

4.3 FingerprintArena

In this section you’ll learn about the FingerprintArena fingerprint collection and how to iterate through arenas in a
collection.

The FPSReader reads through or searches a fingerprint file once. If you want to read the file again you have to reopen
it.

Reading from disk is slow, and the FPS format is designed for ease-of-use and not performance. If you want to do
many queries then it’s best to store everything in memory. The FingerprintArena is a fingerprint collection
which does that.

Here’s how to load fingerprints into an arena:

>>> import chemfp
>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> print arena.metadata
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown

4.3. FingerprintArena 27

chemfp Documentation, Release 1.4

#source=Compound_014550001_014575000.sdf.gz
#date=2017-09-10T23:36:13

This implements the fingerprint collection API, so you can do things like iterate over an arena and get the id/fingerprint
pairs.:

>>> from chemfp import bitops
>>> for id, fp in arena:
... print id, "with popcount", bitops.byte_popcount(fp)
... if id == "14550509":
... break
...
14550474 with popcount 2
14574228 with popcount 2
14574262 with popcount 2
14574264 with popcount 2
14574265 with popcount 2
14574267 with popcount 2
14574635 with popcount 2
14550409 with popcount 4
14574653 with popcount 4
14550416 with popcount 6
14574831 with popcount 6
14574551 with popcount 7
14550509 with popcount 8

If you look closely you’ll notice that the fingerprint record order has changed from the previous section, and that the
population counts are suspiciously non-decreasing. By default load_fingerprints() reorders the fingerprints
into a data structure which is faster to search, although you can disable that if you want the fingerprints to be the same
as the input order.

The FingerprintArena has new capabilities. You can ask it how many fingerprints it contains, get the list of
identifiers, and look up a fingerprint record given an index, as in:

>>> len(arena)
5208
>>> arena.ids[:5]
['14550474', '14574228', '14574262', '14574264', '14574265']
>>> id, fp = arena[6]
>>> id
'14574635'
>>> arena[-1][0]
'14564974'
>>> bitops.byte_popcount(arena[-1][1])
237

An arena supports iterating through subarenas. This is like having a long list and being able to iterate over sublists.
Here’s an example of iterating over the arena to get subarenas of size 1000 (the last subarea may have fewer elements),
and print information about each subarena.:

>>> for subarena in arena.iter_arenas(1000):
... print subarena.ids[0], len(subarena)
...
14550474 1000
14566892 1000
14557014 1000
14562813 1000
14551392 1000

28 Chapter 4. The chemfp Python library

chemfp Documentation, Release 1.4

14566324 208
>>> arena[0][0]
'14550474'
>>> arena[1000][0]
'14566892'

To help demonstrate what’s going on, I showed the first id of each record along with the main arena ids for records 0
and 1000, so you can verify that they are the same.

Arenas are a core part of chemfp. Processing one fingerprint at a time is slow, so the main search routines expect to
iterate over query arenas, rather than query fingerprints.

Thus, the FPSReaders – and all chemfp fingerprint collections – also support the iter_arenas() interface. Here’s
an example of reading the targets file 25 records at a time:

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for arena in queries.iter_arenas(25):
... print len(arena)
...
25
25
25
25
25
25
25
25
13

Those add up to 213, which you can verify is the number of structures in the original source file.

If you have a FingerprintArena instance then you can also use Python’s slice notation to make a subarena:

>>> queries = chemfp.load_fingerprints("pubchem_queries.fps")
>>> queries[10:15]
<chemfp.arena.FingerprintArena object at 0x552c10>
>>> queries[10:15].ids
['27599704', '27584176', '27584181', '27593039', '27575997']
>>> queries.ids[10:15]
['27599704', '27584176', '27584181', '27593039', '27575997']

The big restriction is that slices can only have a step size of 1. Slices like [10:20:2] and [::-1] aren’t supported. If you
want something like that then you’ll need to make a new arena instead of using a subarena slice.

In case you were wondering, yes, you can use iter_arenas or the other FingerprintArena methods on a subarena:

>>> queries[10:15][1:3].ids
['27599118', '27599120']
>>> queries.ids[11:13]
['27599118', '27599120']

4.4 How to use query fingerprints to search for similar target finger-
prints

In this section you’ll learn how to do a Tanimoto search using the previously created PubChem fingerprint files for the
queries and the targets.

4.4. How to use query fingerprints to search for similar target fingerprints 29

chemfp Documentation, Release 1.4

It’s faster to search an arena, so I’ll load the target fingerprints:

>>> import chemfp
>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> len(targets)
5208

and open the queries as an FPSReader.

>>> queries = chemfp.open("pubchem_queries.fps")

I’ll use threshold_tanimoto_search() to find, for each query, all hits which are at least 0.7 similar to the
query.

>>> for (query_id, hits) in chemfp.threshold_tanimoto_search(queries, targets,
→˓threshold=0.7):
... print query_id, len(hits), list(hits)[:2]
...
27575190 3 [(4278, 0.7105263157894737), (4310, 0.7068062827225131)]
27575192 2 [(4269, 0.7157894736842105), (4814, 0.7114427860696517)]
27575198 4 [(4286, 0.703125), (4718, 0.7258883248730964)]
27575208 10 [(3186, 0.7108433734939759), (3881, 0.7102272727272727)]
27575240 2 [(4278, 0.7015706806282722), (4814, 0.715)]

... many lines omitted ...

I’m only showing the first two hits for the sake of space. It seems rather pointless, after all, to show all 10 hits of query
id 27575198.

What you don’t see is that the implementation uses the iter_arenas() interface on the queries so that it processes only
a subarena at a time. There’s a tradeoff between a large arena, which is faster because it doesn’t often go back to
Python code, or a small arena, which uses less memory and is more responsive. You can change the tradeoff using the
arena_size parameter.

If all you care about is the count of the hits within a given threshold then use chemfp.count_tanimoto_hits():

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for (query_id, count) in chemfp.count_tanimoto_hits(queries, targets, threshold=0.
→˓7):
... print query_id, count
...
27575190 3
27575192 2
27575198 4
27575208 10
27575240 2
27575250 2
27575257 15
27575282 5

... many lines omitted ...

Or, if you only want the k=2 nearest neighbors to each target within that same threshold of 0.7 then use chemfp.
knearest_tanimoto_search():

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for (query_id, hits) in chemfp.knearest_tanimoto_search(queries, targets, k=2,
→˓threshold=0.7):
... print query_id, list(hits)
...
27575190 [(4814, 0.7236180904522613), (4278, 0.7105263157894737)]

30 Chapter 4. The chemfp Python library

chemfp Documentation, Release 1.4

27575192 [(4269, 0.7157894736842105), (4814, 0.7114427860696517)]
27575198 [(4814, 0.7286432160804021), (4718, 0.7258883248730964)]
27575208 [(4814, 0.7700534759358288), (4278, 0.7584269662921348)]
27575240 [(4814, 0.715), (4278, 0.7015706806282722)]
27575250 [(4269, 0.7127659574468085), (4814, 0.7085427135678392)]
27575257 [(3186, 0.7467532467532467), (3476, 0.725)]
27575282 [(4814, 0.765625), (5048, 0.7317073170731707)]

... many lines omitted ...

4.5 How to search an FPS file

In this section you’ll learn how to search an FPS file directly, without loading it into a FingerprintArena.

The previous example loaded the fingerprints into a FingerprintArena. That’s the fastest way to do multiple searches.
Sometimes though you only want to do one or a couple of queries. It seems rather excessive to read the entire targets
file into an in-memory data structure before doing the search when you could search will processing the file.

For that case, use an FPSReader as the target file. Here I’ll get the first two records from the queries file and use them
to search the targets file:

>>> query_arena = next(chemfp.open("pubchem_queries.fps").iter_arenas(2))

This line opens the file, iterates over its fingerprint records, and return the two as an arena. Perhaps a slightly less
confusing way to write the above is:

>>> for query_arena in chemfp.open("pubchem_queries.fps").iter_arenas(1):
... break

Here are the k=5 closest hits against the targets file:

>>> targets = chemfp.open("pubchem_targets.fps")
>>> for query_id, hits in chemfp.knearest_tanimoto_search(query_arena, targets, k=5,
→˓threshold=0.0):
... print "Hits for", query_id
... for hit in hits:
... print "", hit
...
Hits for 27575190
('14555201', 0.7236180904522613)
('14566941', 0.7105263157894737)
('14566938', 0.7068062827225131)
('14555198', 0.6933962264150944)
('14550456', 0.675531914893617)

Hits for 27575192
('14555203', 0.7157894736842105)
('14555201', 0.7114427860696517)
('14566941', 0.6979166666666666)
('14566938', 0.694300518134715)
('14560418', 0.6927083333333334)

Remember that the FPSReader is based on reading an FPS file. Once you’ve done a search, the file is read, and you
can’t do another search. You’ll need to reopen the file.

Each search processes arena_size query fingerprints at a time. You will need to increase that value if you want to search
more than that number of fingerprints with this method. The search performance tradeoff between a FPSReader search

4.5. How to search an FPS file 31

chemfp Documentation, Release 1.4

and loading the fingerprints into a FingerprintArena occurs with under 10 queries, so there should be little reason to
worry about this.

4.6 FingerprintArena searches returning indices instead of ids

In this section you’ll learn how to search a FingerprintArena and use hits based on integer indices rather than string
ids.

The previous sections used a high-level interface to the Tanimoto search code. Those are designed for the common
case where you just want the query id and the hits, where each hit includes the target id.

Working with strings is actually rather inefficient in both speed and memory. It’s usually better to work with indices if
you can, and in the next section I’ll show how to make a distance matrix using this interface.

The index-based search functions are in the chemfp.search module. They can be categorized into three groups:

1. Count the number of hits:

• chemfp.search.count_tanimoto_hits_fp() - search an arena using a single fingerprint

• chemfp.search.count_tanimoto_hits_arena() - search an arena using an arena

• chemfp.search.count_tanimoto_hits_symmetric() - search an arena using itself

2. Find all hits at or above a given threshold, sorted arbitrarily:

• chemfp.search.threshold_tanimoto_search_fp() - search an arena using a single
fingerprint

• chemfp.search.threshold_tanimoto_search_arena() - search an arena using an
arena

• chemfp.search.threshold_tanimoto_search_symmetric() - search an arena using
itself

3. Find the k-nearest hits at or above a given threshold, sorted by decreasing similarity:

• chemfp.search.knearest_tanimoto_search_fp() - search an arena using a single fin-
gerprint

• chemfp.search.knearest_tanimoto_search_arena() - search an arena using an
arena

• chemfp.search.knearest_tanimoto_search_symmetric() - search an arena using
itself

The functions ending ‘_fp’ take a query fingerprint and a target arena. The functions ending ‘_arena’ take a query
arena and a target arena. The functions ending ‘_symmetric’ use the same arena as both the query and target.

In the following example, I’ll use the first 5 fingerprints of a data set to search the entire data set. To do this, I load the
data set as an arena, extract the first 5 records as a sub-arena, and do the search.

>>> import chemfp
>>> from chemfp import search
>>> targets = chemfp.load_fingerprints("pubchem_queries.fps")
>>> queries = targets[:5]
>>> results = search.threshold_tanimoto_search_arena (queries, targets, threshold=0.7)

The threshold_tanimoto_search_arena search finds the target fingerprints which have a similarity score of at least 0.7
compared to the query.

32 Chapter 4. The chemfp Python library

chemfp Documentation, Release 1.4

You can iterate over the results to get the list of hits for each of the queries. The order of the results is the same as the
order of the records in the query.:

>>> for hits in results:
... print len(hits), hits.get_ids_and_scores()[:3]
...
4 [('27580389', 1.0), ('27580394', 0.8823529411764706), ('27581637', 0.75)]
2 [('27584917', 1.0), ('27585106', 0.8991596638655462)]
2 [('27584917', 0.8991596638655462), ('27585106', 1.0)]
3 [('27580389', 0.8823529411764706), ('27580394', 1.0), ('27581637', 0.
→˓7094594594594594)]
16 [('27599061', 1.0), ('27599092', 0.9453125), ('27599082', 0.9090909090909091)]

This result is like what you saw earlier, except that it doesn’t have the query id. You can get that from the arena’s id
attribute, which contains the list of fingerprint identifiers.

>>> for query_id, hits in zip(queries.ids, results):
... print "Hits for", query_id
... for hit in hits.get_ids_and_scores()[:3]:
... print "", hit
Hits for 27580389
('27580389', 1.0)
('27580394', 0.8823529411764706)
('27581637', 0.75)

Hits for 27584917
('27584917', 1.0)
('27585106', 0.8991596638655462)

Hits for 27585106
...

What I really want to show is that you can get the same data only using the offset index for the target
record instead of its id. The result from a Tanimoto search is a SearchResults instance, with meth-
ods that include SearchResults.get_indices_and_scores(), SearchResults.get_ids(), and
SearchResults.get_scores():

>>> for hits in results:
... print len(hits), hits.get_indices_and_scores()[:3]
...
4 [(0, 1.0), (3, 0.8823529411764706), (15, 0.75)]
2 [(1, 1.0), (2, 0.8991596638655462)]
2 [(1, 0.8991596638655462), (2, 1.0)]
3 [(0, 0.8823529411764706), (3, 1.0), (15, 0.7094594594594594)]
16 [(4, 1.0), (8, 0.9453125), (9, 0.9090909090909091)]
>>>
>>> targets.ids[0]
'27580389'
>>> targets.ids[3]
'27580394'
>>> targets.ids[15]
'27581637'

I did a few id lookups given the target dataset to show you that the index corresponds to the identifiers from the
previous code.

These examples iterated over each individual SearchResult to fetch the ids and scores, or indices and scores.
Another possibility is to ask the SearchResults collection to iterate directly over the list of fields you want.

4.6. FingerprintArena searches returning indices instead of ids 33

chemfp Documentation, Release 1.4

>>> for row in results.iter_indices_and_scores():
... print len(row), row[:3]
...
4 [(0, 1.0), (3, 0.8823529411764706), (15, 0.75)]
2 [(1, 1.0), (2, 0.8991596638655462)]
2 [(1, 0.8991596638655462), (2, 1.0)]
3 [(0, 0.8823529411764706), (3, 1.0), (15, 0.7094594594594594)]
16 [(4, 1.0), (8, 0.9453125), (9, 0.9090909090909091)]

This was added to get a bit more performance out of chemfp and because the API is sometimes cleaner one way and
sometimes cleaner than the other. Yes, I know that the Zen of Python recommends that “there should be one– and
preferably only one –obvious way to do it.” Oh well.

4.7 Computing a distance matrix for clustering

In this section you’ll learn how to compute a distance matrix using the chemfp API.

chemfp does not do clustering. There’s a huge number of tools which already do that. A goal of chemfp in the future
is to provide some core components which clustering algorithms can use.

That’s in the future. Right now you can use the following to build a distance matrix and pass that to one of those tools.

Since we’re using the same fingerprint arena for both queries and targets, we know the distance ma-
trix will be symmetric along the diagonal, and the diagonal terms will be 1.0. The chemfp.search.
threshold_tanimoto_search_symmetric() functions can take advantage of the symmetry for a factor of
two performance gain. There’s also a way to limit it to just the upper triangle, which gives a factor of two memory
gain as well.

Most of those tools use NumPy, which is a popular third-party package for numerical computing. You will need to
have it installed for the following to work.

import numpy # NumPy must be installed
from chemfp import search

Compute distance[i][j] = 1-Tanimoto(fp[i], fp[j])

def distance_matrix(arena):
n = len(arena)

Start off a similarity matrix with 1.0s along the diagonal
similarities = numpy.identity(n, "d")

Compute the full similarity matrix.
The implementation computes the upper-triangle then copies
the upper-triangle into lower-triangle. It does not include
terms for the diagonal.
results = search.threshold_tanimoto_search_symmetric(arena, threshold=0.0)

Copy the results into the NumPy array.
for row_index, row in enumerate(results.iter_indices_and_scores()):

for target_index, target_score in row:
similarities[row_index, target_index] = target_score

Return the distance matrix using the similarity matrix
return 1.0 - similarities

34 Chapter 4. The chemfp Python library

http://numpy.scipy.org/

chemfp Documentation, Release 1.4

Once you’ve computed the distance matrix, clustering is easy. I installed the hcluster package, as well as matplotlib,
then ran the following to see the hierarchical clustering:

import chemfp
import hcluster # Clustering package from http://code.google.com/p/scipy-cluster/

... insert the 'distance_matrix' function definition here ...

dataset = chemfp.load_fingerprints("pubchem_queries.fps")
distances = distance_matrix(dataset)

linkage = hcluster.linkage(distances, method="single", metric="euclidean")

Plot using matplotlib, which you must have installed
hcluster.dendrogram(linkage, labels=dataset.ids)

import pylab
pylab.show()

In practice you’ll almost certainly want to use one of the scikit-learn clustering algorithms.

4.8 Convert SearchResults to a SciPy csr matrix

In this section you’ll learn how to convert a SearchResults object into a SciPy compressed sparse row matrix.

In the previous section you learned how to use the chemfp API to create a NumPy similarity matrix, and convert that
into a distance matrix. The result is a dense matrix, and the amount of memory goes as the square of the number of
structures.

If you have a reasonably high similarity threshold, like 0.7, then most of the similarity scores will be zero. Internally
the SearchResults object only stores the non-zero values for each row, along with an index to specify the column.
This is a common way to compress sparse data.

SciPy has its own compressed sparse row (“csr”) matrix data type, which can be used as input to many of the scikit-
learn clustering algorithms.

If you want to use those algorithms, call the SearchResults.to_csr() method to convert the SearchResults
scores (and only the scores) into a csr matrix. The rows will be in the same order as the SearchResult (and the original
queries), and the columns will be in the same order as the target arena, including its ids.

I don’t know enough about scikit-learn to give a useful example. (If you do, let me know!) Instead, I’ll start by doing
an NxM search of two sets of fingerprints:

from __future__ import print_function
import chemfp
from chemfp import search

queries = chemfp.load_fingerprints("pubchem_queries.fps")
targets = chemfp.load_fingerprints("pubchem_targets.fps")
results = search.threshold_tanimoto_search_arena(queries, targets, threshold = 0.8)

The SearchResults attribute shape describes the number of rows and columns:

>>> results.shape
(294, 5585)
>>> len(queries)
294

4.8. Convert SearchResults to a SciPy csr matrix 35

http://code.google.com/p/scipy-cluster/
http://matplotlib.sourceforge.net/
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster

chemfp Documentation, Release 1.4

>>> len(targets)
5585
>>> results[6].get_indices_and_scores()
[(3304, 0.8235294117647058), (3404, 0.8115942028985508)]

I’ll turn it into a SciPy csr:

>>> csr = results.to_csr()
>>> csr
<294x5585 sparse matrix of type '<type 'numpy.float64'>'

with 87 stored elements in Compressed Sparse Row format>
>>> csr.shape
(294, 5585)

and look at the same row to show it has the same indices and scores:

>>> csr[6]
<1x5585 sparse matrix of type '<type 'numpy.float64'>'

with 2 stored elements in Compressed Sparse Row format>
>>> csr[6].indices
array([3304, 3404], dtype=int32)
>>> csr[6].data
array([0.82352941, 0.8115942])

4.9 Taylor-Butina clustering

For the last clustering example, here’s my (non-validated) variation of the Butina algorithm from JCICS 1999, 39,
747-750. See also http://www.redbrick.dcu.ie/~noel/R_clustering.html . You might know it as Leader clustering.

First, for each fingerprint find all other fingerprints with a threshold of 0.8:

import chemfp
from chemfp import search

arena = chemfp.load_fingerprints("pubchem_targets.fps")
results = search. threshold_tanimoto_search_symmetric (arena, threshold = 0.8)

Sort the results so that fingerprints with more hits come first. This is more likely to be a cluster centroid. Break ties
arbitrarily by the fingerprint id; since fingerprints are ordered by the number of bits this likely makes larger structures
appear first.:

Reorder so the centroid with the most hits comes first.
(That's why I do a reverse search.)
Ignore the arbitrariness of breaking ties by fingerprint index
results = sorted(((len(indices), i, indices)

for (i,indices) in enumerate(results.iter_indices())),
reverse=True)

Apply the leader algorithm to determine the cluster centroids and the singletons:

Determine the true/false singletons and the clusters
true_singletons = []
false_singletons = []
clusters = []

36 Chapter 4. The chemfp Python library

http://www.chemomine.co.uk/dbclus-paper.pdf
http://www.chemomine.co.uk/dbclus-paper.pdf
http://www.redbrick.dcu.ie/~noel/R_clustering.html

chemfp Documentation, Release 1.4

seen = set()
for (size, fp_idx, members) in results:

if fp_idx in seen:
Can't use a centroid which is already assigned
continue

seen.add(fp_idx)

Figure out which ones haven't yet been assigned
unassigned = set(members) - seen

if not unassigned:
false_singletons.append(fp_idx)
continue

this is a new cluster
clusters.append((fp_idx, unassigned))
seen.update(unassigned)

Once done, report the results:

print len(true_singletons), "true singletons"
print "=>", " ".join(sorted(arena.ids[idx] for idx in true_singletons))
print

print len(false_singletons), "false singletons"
print "=>", " ".join(sorted(arena.ids[idx] for idx in false_singletons))
print

Sort so the cluster with the most compounds comes first,
then by alphabetically smallest id
def cluster_sort_key(cluster):

centroid_idx, members = cluster
return -len(members), arena.ids[centroid_idx]

clusters.sort(key=cluster_sort_key)

print len(clusters), "clusters"
for centroid_idx, members in clusters:

print arena.ids[centroid_idx], "has", len(members), "other members"
print "=>", " ".join(arena.ids[idx] for idx in members)

The algorithm is quick for this small data set.

Out of curiosity, I tried this on 100,000 compounds selected arbitrarily from PubChem. It took 35 seconds on my
desktop (a 3.2 GHZ Intel Core i3) with a threshold of 0.8. In the Butina paper, it took 24 hours to do the same,
although that was with a 1024 bit fingerprint instead of 881. It’s hard to judge the absolute speed differences of a
MIPS R4000 from 1998 to a desktop from 2011, but it’s less than the factor of about 2000 you see here.

More relevent is the comparison between these numbers for the 1.1 release compared to the original numbers for
the 1.0 release. On my old laptop, may it rest it peace, it took 7 minutes to compute the same benchmark. Where
did the roughly 16-fold peformance boost come from? Money. After 1.0 was released, Roche funded me to add
various optimizations, including taking advantage of the symmetery (2x) and using hardware POPCNT if available
(4x). Roche and another company helped fund the OpenMP support, and when my desktop reran this benchmark it
used 4 cores instead of 1.

The wary among you might notice that 2*4*4 = 32x faster, while I said the overall code was only
16x faster. Where’s the factor of 2x slowdown? It’s in the Python code! The chemfp.search.
threshold_tanimoto_search_symmetric() step took only 13 seconds. The remaining 22 seconds was

4.9. Taylor-Butina clustering 37

chemfp Documentation, Release 1.4

in the leader code written in Python. To make the analysis more complicated, improvements to the chemfp API sped
up the clustering step by about 40%.

With chemfp 1.0 version, the clustering performance overhead was minor compared to the full similarity search, so I
didn’t keep track of it. With chemfp 1.1, those roles have reversed!

4.10 Reading structure fingerprints using a toolkit

In this section you’ll learn how to use a chemistry toolkit in order to compute fingerprints from a given structure file.

What happens if you’re given a structure file and you want to find the two nearest matches in an FPS file? You’ll have
to generate the fingerprints for the structures in the structure file, then do the comparison.

For this section you’ll need to have a chemistry toolkit. I’ll use the “chebi_maccs.fps” file generated in Using a toolkit
to process the ChEBI dataset as the targets, and the PubChem file Compound_027575001_027600000.sdf.gz as the
source of query structures:

>>> import chemfp
>>> from chemfp import search
>>> targets = chemfp.load_fingerprints("chebi_maccs.fps")
>>> queries = chemfp.read_molecule_fingerprints(targets.metadata, "Compound_027575001_
→˓027600000.sdf.gz")
>>> for (query_id, hits) in chemfp.knearest_tanimoto_search(queries, targets, k=2,
→˓threshold=0.4):
... print query_id, "=>",
... for (target_id, score) in hits.get_ids_and_scores():
... print "%s %.3f" % (target_id, score),
... print
...
27575190 => CHEBI:116551 0.779 CHEBI:105622 0.771
27575192 => CHEBI:105622 0.809 CHEBI:108425 0.809
27575198 => CHEBI:109833 0.736 CHEBI:105937 0.730
27575208 => CHEBI:105622 0.783 CHEBI:108425 0.783
27575240 => CHEBI:91516 0.747 CHEBI:111326 0.737
27575250 => CHEBI:105622 0.809 CHEBI:108425 0.809
27575257 => CHEBI:105622 0.732 CHEBI:108425 0.732
27575282 => CHEBI:126087 0.764 CHEBI:127676 0.764
27575284 => CHEBI:105622 0.900 CHEBI:108425 0.900

... many lines omitted ...

That’s it! Pretty simple, wasn’t it? You didn’t even need to explictly specify which toolkit you wanted to use.

The only new thing here is chemfp.read_molecule_fingerprints(). The first parameter of this is the
metadata used to configure the reader. In my case it’s:

>>> print targets.metadata
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2017.09.1.dev1 chemfp/1.4
#source=ChEBI_lite.sdf.gz
#date=2017-09-14T11:19:31

The “type” told chemfp which toolkit to use to read molecules, and how to generate fingerprints from those molecules,
while “aromaticity” told it which aromaticity model to use when reading the molecule file.

You can instead course pass in your own metadata as the first parameter to read_molecule_fingerprints, and as a
shortcut, if you pass in a string then it will be used as the fingerprint type.

38 Chapter 4. The chemfp Python library

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz

chemfp Documentation, Release 1.4

For examples, if you have OpenBabel installed then you can do:

>>> from chemfp.bitops import hex_encode
>>> reader = chemfp.read_molecule_fingerprints("OpenBabel-MACCS", "Compound_027575001_
→˓027600000.sdf.gz")
>>> for i, (id, fp) in enumerate(reader):
... print id, hex_encode(fp)
... if i == 3:
... break
...
27575433 800404000840549e848189cca1f132aedfab6eff1b
27575577 800400000000449e850581c22190022f8a8baadf1b
27575602 000000000000449e840191d820a0122eda9abaff1b
27575603 000000000000449e840191d820a0122eda9abaff1b

If you have OEChem and OEGraphSim installed then you can do:

>>> from chemfp.bitops import hex_encode
>>> reader = chemfp.read_molecule_fingerprints("OpenEye-MACCS166", "Compound_
→˓027575001_027600000.sdf.gz")
>>> for i, (id, fp) in enumerate(reader):
... print id, hex_encode(fp)
... if i == 3:
... break
...
27575433 000000080840448e8481cdccb1f1b216daaa6a7e3b
27575577 000000080000448e850185c2219082178a8a6a5e3b
27575602 000000080000448e8401d14820a01216da983b7e3b
27575603 000000080000448e8401d14820a01216da983b7e3b

And if you have RDKit installed then you can do:

>>> from chemfp.bitops import hex_encode
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_027575001_
→˓027600000.sdf.gz")
>>> for i, (id, fp) in enumerate(reader):
... print id, hex_encode(fp)
... if i == 3:
... break
...
27575433 000000000840549e84818dccb1f1323cdfab6eff1f
27575577 000000000000449e850185c22190023d8a8beadf1f
27575602 000000000000449e8401915820a0123eda98bbff1f
27575603 000000000000449e8401915820a0123eda98bbff1f

4.11 Select a random fingerprint sample

In this section you’ll learn how to make a new arena where the fingerprints are randomly selected from the old arena.

A FingerprintArena slice creates a subarena. Technically speaking, this is a “view” of the original data. The subarena
doesn’t actually copy its fingerprint data from the original arena. Instead, it uses the same fingerprint data, but keeps
track of the start and end position of the range it needs. This is why it’s not possible to slice with a step size other than
+1.

This also means that memory for a large arena won’t be freed until all of its subarenas are also removed.

4.11. Select a random fingerprint sample 39

chemfp Documentation, Release 1.4

You can see some evidence for this because a FingerprintArena stores the entire fingerprint data as a set of bytes
named arena:

>>> import chemfp
>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> subset = targets[10:20]
>>> targets.arena is subset.arena
True

This shows that the targets and subset share the same raw data set. At least it does to me, the person who wrote the
code.

You can ask an arena or subarena to make a FingerprintArena.copy(). This allocates new memory for the
new arena and copies all of its fingerprints there.

>>> new_subset = subset.copy()
>>> len(new_subset) == len(subset)
>>> new_subset.arena is subset.arena
False
>>> subset[7][0]
'14571646'
>>> new_subset[7][0]
'14571646'

The FingerprintArean.copy() method can do more than just copy the arena. You can give it a list of indices
and it will only copy those fingerprints:

>>> three_targets = targets.copy([3112, 0, 1234])
>>> three_targets.ids
['14550474', '14566849', '14556313']
>>> [targets.ids[3112], targets.ids[0], targets.ids[1234]]
['14556313', '14550474', '14566849']

Are you confused about why the identifiers aren’t in the same order? That’s because when you specify indicies, the
copy automatically reorders them by popcount and stores the popcount information. This extra work help makes future
searches faster. Use reorder=False to leave the order unchanged

>>> my_ordering = targets.copy([3112, 0, 1234], reorder=False)
>>> my_ordering.ids
['14556313', '14550474', '14566849']

This interesting, in a boring sort of way. Let’s get back to the main goal of getting a random subset of the data. I want
to select m records at random, without replacement, to make a new data set. You can see this just means making a list
with m different index values. Python’s built-in random.sample function makes this easy:

>>> import random
>>> random.sample("abcdefgh", 3)
['b', 'h', 'f']
>>> random.sample("abcdefgh", 2)
['d', 'a']
>>> random.sample([5, 6, 7, 8, 9], 2)
[7, 9]
>>> help(random.sample)
sample(self, population, k) method of random.Random instance

Chooses k unique random elements from a population sequence.
...
To choose a sample in a range of integers, use xrange as an argument.

40 Chapter 4. The chemfp Python library

http://docs.python.org/2/library/random.html#random.sample

chemfp Documentation, Release 1.4

This is especially fast and space efficient for sampling from a
large population: sample(xrange(10000000), 60)

The last line of the help points out what do next!:

>>> random.sample(xrange(len(targets)), 5)
[610, 2850, 705, 1402, 2635]
>>> random.sample(xrange(len(targets)), 5)
[1683, 2320, 1385, 2705, 1850]

Putting it all together, and here’s how to get a new arena containing 100 randomly selected fingerprints, without
replacement, from the targets arena:

>>> sample_indices = random.sample(xrange(len(targets)), 100)
>>> sample = targets.copy(indices=sample_indices)
>>> len(sample)
100

4.12 Look up a fingerprint with a given id

In this section you’ll learn how to get a fingerprint record with a given id.

All fingerprint records have an identifier and a fingerprint. Identifiers should be unique. (Duplicates are allowed, and
if they exist then the lookup code described in this section will arbitrarily decide which record to return. Once made,
the choice will not change.)

Let’s find the fingerprint for the record in “pubchem_targets.fps” which has the identifier 14564126. One solution is
to iterate over all of the records in a file, using the FPS reader:

>>> import chemfp
>>> for id, fp in chemfp.open("pubchem_targets.fps"):
... if id == "14564126":
... break
... else:
... raise KeyError("%r not found" % (id,))
...
>>> fp[:5]
'\x07\x1e\x1c\x00\x00'

I used the somewhat obscure else clause to the for loop. If the for finishes without breaking, which would happen if
the identifier weren’t present, then it will raise an exception saying that it couldn’t find the given identifier.

If the fingerprint records are already in a FingerprintArena then there’s a better solution. Use the
FingerprintArena.get_fingerprint_by_id() method to get the fingerprint byte string, or None if the
identifier doesn’t exist:

>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> fp = arena.get_fingerprint_by_id("14564126")
>>> fp[:5]
'\x07\x1e\x1c\x00\x00'
>>> missing_fp = arena.get_fingerprint_by_id("does-not-exist")
>>> missing_fp
>>> missing_fp is None
True

4.12. Look up a fingerprint with a given id 41

chemfp Documentation, Release 1.4

Internally this does about what you think it would. It uses the arena’s id list to make a lookup table mapping identifier
to index, and caches the table for later use. Given the index, it’s very easy to get the fingerprint.

In fact, you can get the index and do the record lookup yourself:

>>> fp_index = arena.get_index_by_id("14564126")
>>> arena.get_index_by_id("14564126")
2824
>>> arena[2824]
('14564126', '\x07\x1e\x1c\x00\x00 ... many bytes deleted ...')

4.13 Sorting search results

In this section you’ll learn how to sort the search results.

The k-nearest searches return the hits sorted from highest score to lowest, and break ties arbitrarily. This is usually
what you want, and the extra cost to sort is small (k*log(k)) compared to the time needed to maintain the internal heap
(N*log(k)).

By comparison, the threshold searches return the hits in arbitrary order. Sorting takes up to N*log(N) time, which is
extra work for those cases where you don’t want sorted data. Use the SearchResult.reorder() method if you
want the hits sorted in-place:

>>> import chemfp
>>> arena = chemfp.load_fingerprints("pubchem_queries.fps")
>>> query_fp = arena.get_fingerprint_by_id("27585812")
>>> from chemfp import search
>>> result = search.threshold_tanimoto_search_fp(query_fp, arena, threshold=0.90)
>>> len(result)
6
>>> result.get_ids_and_scores()
[('27585852', 0.901840490797546), ('27586264', 0.9024390243902439),
('27585812', 1.0), ('27585979', 0.9753086419753086), ('27586050',
0.9753086419753086), ('27586369', 0.9166666666666666)]

>>> result.reorder("decreasing-score")
>>> result.get_ids_and_scores()
[('27585812', 1.0), ('27585979', 0.9753086419753086), ('27586050',
0.9753086419753086), ('27586369', 0.9166666666666666), ('27586264',
0.9024390243902439), ('27585852', 0.901840490797546)]

>>> result.reorder("increasing-score")
>>> result.get_ids_and_scores()
[('27585852', 0.901840490797546), ('27586264', 0.9024390243902439),
('27586369', 0.9166666666666666), ('27585979', 0.9753086419753086),
('27586050', 0.9753086419753086), ('27585812', 1.0)]

There are currently six different sort methods, all specified by name. These are

• increasing-score: sort by increasing score

• decreasing-score: sort by decreasing score

• increasing-index: sort by increasing target index

• decreasing-index: sort by decreasing target index

• reverse: reverse the current ordering

42 Chapter 4. The chemfp Python library

chemfp Documentation, Release 1.4

• move-closest-first: move the hit with the highest score to the first position

The first two should be obvious from the examples. If you find something useful for the next two then let me know.
The “reverse” option reverses the current ordering, and is most useful if you want to reverse the sorted results from a
k-nearest search.

The “move-closest-first” option exists to improve the leader algorithm stage used by the Taylor-Butina algorithm. The
newly seen compound is either in the same cluster as its nearest neighbor or it is the new centroid. I felt it best to
implement this as a special reorder term, rather than one of the other possible options.

If you are interested in other ways to help improve your clustering performance, let me know.

Each SearchResult has a SearchResult.reorder() method. If you want to reorder all of the hits of a
SearchResults then use its SearchResults.reorder_all() method:

>>> similarity_matrix = search.threshold_tanimoto_search_symmetric(
... arena, threshold=0.8)
>>> for query_id, row in zip(arena.ids, similarity_matrix):
... print query_id, "->", row.get_ids_and_scores()[:3]
...
>>> for query_id, row in zip(arena.ids, similarity_matrix):
... print query_id, "->", row.get_ids_and_scores()[:3]
...
27580389 -> [('27580394', 0.8823529411764706)]
27584917 -> [('27585106', 0.8991596638655462)]
27585106 -> [('27584917', 0.8991596638655462)]
27580394 -> [('27580389', 0.8823529411764706)]
27599061 -> [('27599092', 0.9453125), ('27599082', 0.9090909090909091), ('27599303',
→˓0.8461538461538461)]
27593061 -> []

...

It takes the same set of ordering names as SearchResult.reorder().

4.14 Working with raw scores and counts in a range

In this section you’ll learn how to get the hit counts and raw scores for a interval.

The length of the SearchResult is the number of hits it contains:

>>> import chemfp
>>> from chemfp import search
>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> fp = arena.get_fingerprint_by_id("14564126")
>>> result = search.threshold_tanimoto_search_fp(fp, arena, threshold=0.2)
>>> len(result)
4720

This gives you the number of hits at or above a threshold of 0.2, which you can also get by doing chemfp.search.
count_tanimoto_hits_fp(). The result also stores the hits, and you can get the number of hits which are
within a specified interval. Here are the hits counts at or above 0.5, 0.80, and 0.95:

>>> result.count(0.5)
1240
>>> result.count(0.8)
9
>>> result.count(0.95)
2

4.14. Working with raw scores and counts in a range 43

chemfp Documentation, Release 1.4

The first parameter, min_score, specifies the minimum threshold. The second, max_score, specifies the maximum.
Here’s how to get the number of hits with a score of at most 0.95 and 0.5:

>>> result.count(max_score=0.95)
4718
>>> result.count(max_score=0.5)
3506

If you work do the addition you’ll realize that that 1240 + 3506 equals 4746 which is 26 elements larger than the
results size of 4720. This is because the default interval uses a closed range, and there are 27 hits with a score of
exactly 0.5:

>>> result.count(0.5, 0.5)
26

The third parameter, interval, specifies the end conditions. The default is “[]” which means that both ends are closed.
The interval “()” means that both ends are open, and “[)” and “(]” are the two half-open/half-closed ranges. To get the
number of hits below 0.5 and the number of hits at or above 0.5 then you might use:

>>> result.count(None, 0.5, "[)")
3480
>>> result.count(0.5, None, "[]")
1240

at get the expected results. (A min or max of None means that there is respectively no lower or no upper bound.)

Now for something a bit fancier. Suppose you have two sets of structures. How well do they compare to each other? I
can think of various ways to do it. One is to look at a comparison profile. Find all NxM comparisons between the two
sets. How many of the hits have a threshold of 0.2? How many at 0.5? 0.95?

If there are “many”, then the two sets are likely more similar than not. If the answer is “few”, then they are likely
rather distinct.

I’ll be more specific. Are the coenzyme A-like structures in ChEBI more similar to the penicillin-like structures
than you would expect by comparing two randomly chosen subsets? By similar, I’ll use Tanimoto similarity of the
“chebi_maccs.fps” file created in the Using a toolkit to process the ChEBI dataset command-line tool example XXX.

The CHEBI id for coenzyme A is CHEBI:15346 and for penicillin is CHEBI:17334. I’ll define the “coenzyme A-like”
structures as the 117 structures where the fingerprint is at least 0.95 similar to coenzyme A, and “penicillin-like” as
the 15 structures at least 0.90 similar to penicillin. This gives 1755 total comparisons.

You know enough to do this, but there’s a nice optimization I haven’t told you about. You can get the total count
of all of the threshold hits using the SearchResults.count_all() method, instead of looping over each
SearchResult and calling its SearchResult.count():

import chemfp
from chemfp import search

def get_neighbors_as_arena(arena, id, threshold):
fp = arena.get_fingerprint_by_id(id)
neighbor_results = search.threshold_tanimoto_search_fp(fp, chebi,

→˓threshold=threshold)
neighbor_arena = arena.copy(neighbor_results.get_indices())
return neighbor_arena

chebi = chemfp.load_fingerprints("chebi_maccs.fps")

44 Chapter 4. The chemfp Python library

chemfp Documentation, Release 1.4

coenzyme A
coA_arena = get_neighbors_as_arena(chebi, "CHEBI:15346", threshold=0.95)
print len(coA_arena), "coenzyme A-like structures"

penicillin
penicillin_arena = get_neighbors_as_arena(chebi, "CHEBI:17334", threshold=0.9)
print len(penicillin_arena), "penicillin-like structures"

I'll compute a profile at different thresholds
thresholds = [0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9]

Compare the two sets. (For this case the speed difference between a threshold
of 0.25 and 0.0 is not noticible, but having it makes me feel better.)
coA_against_penicillin_result= search.threshold_tanimoto_search_arena(

coA_arena, penicillin_arena, threshold=min(thresholds))

Show a similarity profile
print "Counts coA/penicillin"
for threshold in thresholds:

print " %.2f %5d" % (threshold,
coA_against_penicillin_result.count_all(min_

→˓score=threshold))

This gives a not very useful output:

261 coenzyme A-like structures
8 penicillin-like structures
Counts coA/penicillin
0.30 2088
0.35 2088
0.40 2087
0.45 1113
0.50 0
0.60 0
0.70 0
0.80 0
0.90 0

It’s not useful because it’s not possible to make any decisions from this. Are the numbers high or low? It should be
low, because these are two quite different structure classes, but there’s nothing to compare it against.

I need some sort of background reference. What I’ll two is construct two randomly chosen sets, one with 117 finger-
prints and the other with 15, and generate the same similarity profile with them. That isn’t quite fair, since randomly
chosen sets will most likely be diverse. Instead, I’ll pick one fingerprint at random, then get its 117 or 15, respectively,
nearest neighbors as the set members:

Get background statistics for random similarity groups of the same size
import random

Find a fingerprint at random, get its k neighbors, return them as a new arena
def get_random_fp_and_its_k_neighbors(arena, k):

fp = arena[random.randrange(len(arena))][1]
similar_search = search.knearest_tanimoto_search_fp(fp, arena, k)
return arena.copy(similar_search.get_indices())

I’ll construct 1000 pairs of sets this way, accumulate the threshold profile, and compare the CoA/penicillin profile to
it:

4.14. Working with raw scores and counts in a range 45

chemfp Documentation, Release 1.4

Initialize the threshold counts to 0
total_background_counts = dict.fromkeys(thresholds, 0)

REPEAT = 1000
for i in range(REPEAT):

Select background sets of the same size and accumulate the threshold count
→˓totals

set1 = get_random_fp_and_its_k_neighbors(chebi, len(coA_arena))
set2 = get_random_fp_and_its_k_neighbors(chebi, len(penicillin_arena))
background_search = search.threshold_tanimoto_search_arena(set1, set2,

→˓threshold=min(thresholds))
for threshold in thresholds:

total_background_counts[threshold] += background_search.count_all(min_
→˓score=threshold)

print "Counts coA/penicillin background"
for threshold in thresholds:

print " %.2f %5d %5d" % (threshold,
coA_against_penicillin_result.count_

→˓all(min_score=threshold),
total_background_counts[threshold] /

→˓(REPEAT+0.0))

Your output should look something like:

Counts coA/penicillin background
0.30 2088 882
0.35 2088 698
0.40 2087 550
0.45 1113 413
0.50 0 322
0.60 0 156
0.70 0 58
0.80 0 20
0.90 0 5

This is a bit hard to interpret. Clearly the coenzyme A and penicillin sets are not closely similar, but for low Tanimoto
scores the similarity is higher than expected.

That difficulty is okay for now because I mostly wanted to show an example of how to use the chemfp API. If you want
to dive deeper into this sort of analysis then read a three-part series I wrote at http://www.dalkescientific.com/writings/
diary/archive/2017/03/20/fingerprint_set_similarity.html on using chemfp to build a target set association network
using ChEMBL.

I first learned about this approach from the Similarity Ensemble Approach (SEA) work of Keiser, Roth, Armbruster,
Ernsberger, and Irwin. The paper is available online from http://sea.bkslab.org/ .

That paper actually wants you to use the “raw score”. This is the sum of the hit scores in a given range, and not
just the number of hits. No problem! Use SearchResult.cumulative_score() for an individual result or
SearchResults.cumulative_score_all() for the entire set of results:

>>> sum(row.cumulative_score(min_score=0.5, max_score=0.9)
... for row in coA_against_penicillin_result)
224.83239025119906
>>> coA_against_penicillin_result.cumulative_score_all(min_score=0.5, max_score=0.9)
224.83239025119866

These also take the interval parameter if you don’t want the default of [].

46 Chapter 4. The chemfp Python library

http://www.dalkescientific.com/writings/diary/archive/2017/03/20/fingerprint_set_similarity.html
http://www.dalkescientific.com/writings/diary/archive/2017/03/20/fingerprint_set_similarity.html
http://sea.bkslab.org/

chemfp Documentation, Release 1.4

You may wonder why these two values aren’t exactly the same. Addition of floating point numbers isn’t associative.
You can see that I get still different results if I sum up the values in reverse order:

>>> sum(list(row.cumulative_score(min_score=0.5, max_score=0.9)
... for row in coA_against_penicillin_result)[::-1])
224.83239025119875

4.14. Working with raw scores and counts in a range 47

chemfp Documentation, Release 1.4

48 Chapter 4. The chemfp Python library

CHAPTER 5

chemfp API

This chapter contains the docstrings for the public portion of the chemfp API.

49

chemfp Documentation, Release 1.4

50 Chapter 5. chemfp API

CHAPTER 6

chemfp top-level module

The following functions and classes are in the top-level chemfp module.

chemfp.open(source, format=None, location=None)
Read fingerprints from a fingerprint file

Read fingerprints from source, using the given format. If source is a string then it is treated as a filename. If
source is None then fingerprints are read from stdin. Otherwise, source must be a Python file object supporting
the read and readline methods.

If format is None then the fingerprint file format and compression type are derived from the source filename,
or from the name attribute of the source file object. If the source is None then the stdin is assumed to be
uncompressed data in “fps” format.

The supported format strings are “fps”, “fps.gz” for fingerprints in FPS format and compressed FPS format,
respectively.

This version of chemfp does not support the FPB format. Trying to use the “fpb” format will raise a NotImple-
mentedError.

If the chemfp_converters package is available then the “flush” format is also supported.

The optional location is a chemfp.io.Location instance. It will only be used if the source is in FPS format.

If the source is in FPS format then open will return a chemfp.fps_io.FPSReader, which will use the
location if specified.

Here’s an example of printing the contents of the file:

from chemfp.bitops import hex_encode
reader = chemfp.open("example.fps.gz")
for id, fp in reader:

print(id, hex_encode(fp))

Parameters

• source (A filename string, a file object, or None) – The fingerprint
source.

51

chemfp Documentation, Release 1.4

• format (string, or None) – The file format and optional compression.

Returns a chemfp.fps_io.FPSReader

chemfp.load_fingerprints(reader, metadata=None, reorder=True, alignment=None, format=None)
Load all of the fingerprints into an in-memory FingerprintArena data structure

The FingerprintArena data structure reads all of the fingerprints and identifers from ‘reader’ and stores them
into an in-memory data structure which supports fast similarity searches.

If ‘reader’ is a string or implements “read” then the contents will be parsed with the ‘chemfp.open’ function.
Otherwise it must support iteration returning (id, fingerprint) pairs. ‘metadata’ contains the metadata the arena.
If not specified then ‘reader.metadata’ is used.

The loader may reorder the fingerprints for better search performance. To prevent ordering, use reorder=False.

The ‘alignment’ option specifies the alignment data alignment and padding size for each fingerprint. A value
of 8 means that each fingerprint will start on a 8 byte alignment, and use storage space which a multiple of 8
bytes long. The default value of None determines the best alignment based on the fingerprint size and available
popcount methods.

Parameters

• reader (a string, file object, or (id, fingerprint) iterator)
– An iterator over (id, fingerprint) pairs

• metadata (Metadata) – The metadata for the arena, if other than reader.metadata

• reorder (True or False) – Specify if fingerprints should be reordered for better per-
formance

• alignment (a positive integer, or None) – Alignment size in bytes (both
data alignment and padding); None autoselects the best alignment.

• format (None, "fps", or "fps.gz". "fpb" will raise a
NotImplementedError) – The file format name if the reader is a string

Returns FingerprintArena

chemfp.read_structure_fingerprints(type, source=None, format=None, id_tag=None,
reader_args=None, errors="strict")

Deprecated function. Please call read_molecule_fingerprints() instead

The function named changed in chemfp 2.0 to read_molecule_fingerprints() because it was a better fit to the
toolkit API. Chemfp-1.3 maintains backwards compatibility with chemfp-1.1, so the function remains. It for-
wards the call the correct function.

Parameters

• type (string or Metadata) – information about how to convert the input structure
into a fingerprint

• source (A filename (as a string), a file object, or None to
read from stdin) – The structure data source.

• format (string, or None to autodetect based on the source) – The
file format and optional compression. Examples: ‘smi’ and ‘sdf.gz’

• id_tag (string, or None to use the default title for the
given format) – The tag containing the record id. Example: ‘ChEBI ID’. Only
valid for SD files.

Returns a FingerprintReader

52 Chapter 6. chemfp top-level module

chemfp Documentation, Release 1.4

chemfp.read_molecule_fingerprints(type, source=None, format=None, id_tag=None,
reader_args=None, errors="strict")

Read structures from ‘source’ and return the corresponding ids and fingerprints

This returns a FingerprintReader which can be iterated over to get the id and fingerprint for each read structure
record. The fingerprint generated depends on the value of ‘type’. Structures are read from ‘source’, which can
either be the structure filename, or None to read from stdin.

‘type’ contains the information about how to turn a structure into a fingerprint. It can be a string or a metadata
instance. String values look like “OpenBabel-FP2/1”, “OpenEye-Path”, and “OpenEye-Path/1 min_bonds=0
max_bonds=5 atype=DefaultAtom btype=DefaultBond”. Default values are used for unspecified parameters.
Use a Metadata instance with ‘type’ and ‘aromaticity’ values set in order to pass aromaticity information to
OpenEye.

If ‘format’ is None then the structure file format and compression are determined by the filename’s extension(s),
defaulting to uncompressed SMILES if that is not possible. Otherwise ‘format’ may be “smi” or “sdf” option-
ally followed by “.gz” or “bz2” to indicate compression. The OpenBabel and OpenEye toolkits also support
additional formats.

If ‘id_tag’ is None, then the record id is based on the title field for the given format. If the input format is “sdf”
then ‘id_tag’ specifies the tag field containing the identifier. (Only the first line is used for multi-line values.)
For example, ChEBI omits the title from the SD files and stores the id after the “> <ChEBI ID>” line. In that
case, use id_tag = “ChEBI ID”.

‘aromaticity’ specifies the aromaticity model, and is only appropriate for OEChem. It must be a string like
“openeye” or “daylight”.

Here is an example of using fingerprints generated from structure file:

fp_reader = read_molecule_fingerprints("OpenBabel-FP4/1", "example.sdf.gz")
print "Each fingerprint has", fps.metadata.num_bits, "bits"
for (id, fp) in fp_reader:

print id, fp.encode("hex")

Parameters

• type (string or Metadata) – information about how to convert the input structure
into a fingerprint

• source (A filename (as a string), a file object, or None to
read from stdin) – The structure data source.

• format (string, or None to autodetect based on the source) – The
file format and optional compression. Examples: ‘smi’ and ‘sdf.gz’

• id_tag (string, or None to use the default title for the
given format) – The tag containing the record id. Example: ‘ChEBI ID’. Only
valid for SD files.

Returns a FingerprintReader

chemfp.open_fingerprint_writer(destination, metadata=None, format=None, alignment=8,
reorder=True, tmpdir=None, max_spool_size=None, er-
rors="strict", location=None)

Create a fingerprint writer for the given destination

The fingerprint writer is an object with methods to write fingerprints to the given destination. The output format
is based on the format. If that’s None then the format depends on the destination, or is “fps” if the attempts at
format detection fail.

The metadata, if given, is a Metadata instance, and used to fill the header of an FPS file.

53

chemfp Documentation, Release 1.4

If the output format is “fps” or “fps.gz” then destination may be a filename, a file object, or None for stdout.
The “fpb” format is not available for this version of chemfp, and function will raise a NotImplementedError in
that case.

If the chemfp_converters package is available then the “flush” format is also supported.

The parameters alignment, reorder, tmpdir, and max_spool_size are for FPB output and are ignored. The pa-
rameters are listed for better forwards-compatibility.

The errors specifies how to handle recoverable write errors. The value “strict” raises an exception if there are
any detected errors. The value “report” sends an error message to stderr and skips to the next record. The value
“ignore” skips to the next record.

The location is a Location instance. It lets the caller access state information such as the number of records
that have been written.

Parameters

• destination (a filename, file object, or None) – the output destination

• metadata (a Metadata instance, or None) – the fingerprint metadata

• format (None, "fps", "fps.gz", or "fpb") – the output format

• alignment (positive integer) – arena byte alignment for FPB files

• reorder (True or False) – True reorders the fingerprints by popcount, False leaves
them in input order

• tmpdir (string or None) – the directory to use for temporary files, when
max_spool_size is specified

• max_spool_size (integer, or None) – number of bytes to store in memory be-
fore using a temporary file. If None, use memory for everything.

• location (a Location instance, or None) – a location object used to access
output state information

Returns a chemfp.FingerprintWriter

6.1 ChemFPError

class chemfp.ChemFPError
Base class for all of the chemfp exceptions

6.2 ParseError

class chemfp.ParseError
Exception raised by the molecule and fingerprint parsers and writers

The public attributes are:

msg
a string describing the exception

location
a chemfp.io.Location instance, or None

54 Chapter 6. chemfp top-level module

chemfp Documentation, Release 1.4

6.3 Metadata

class chemfp.Metadata

Store information about a set of fingerprints

The public attributes are:

num_bits
the number of bits in the fingerprint

num_bytes
the number of bytes in the fingerprint

type
the fingerprint type string

aromaticity
aromaticity model (only used with OEChem, and now deprecated)

software
software used to make the fingerprints

sources
list of sources used to make the fingerprint

date
a datetime timestamp of when the fingerprints were made

datestamp
the ISO string representation of the date

__repr__()
Return a string like Metadata(num_bits=1024, num_bytes=128, type='OpenBabel/
FP2',)

__str__()
Show the metadata in FPS header format

copy(num_bits=None, num_bytes=None, type=None, aromaticity=None, software=None,
sources=None, date=None)

Return a new Metadata instance based on the current attributes and optional new values

When called with no parameter, make a new Metadata instance with the same attributes as the current
instance.

If a given call parameter is not None then it will be used instead of the current value. If you want to change
a current value to None then you will have to modify the new Metadata after you created it.

Parameters

• num_bits (an integer, or None) – the number of bits in the fingerprint

• num_bytes (an integer, or None) – the number of bytes in the fingerprint

• type (string or None) – the fingerprint type description

• aromaticity (None) – obsolete

• software (string or None) – a description of the software

• sources (list of strings, a string (interpreted as a list
with one string), or None) – source filenames

6.3. Metadata 55

https://docs.python.org/2/library/datetime.html#module-datetime

chemfp Documentation, Release 1.4

• date (a datetime instance, or None) – creation or processing date for the
contents

Returns a new Metadata instance

6.4 FingerprintReader

class chemfp.FingerprintReader

Base class for all chemfp objects holding fingerprint records

All FingerprintReader instances have a metadata attribute containing a Metadata and can be iter-
atated over to get the (id, fingerprint) for each record.

__iter__()
iterate over the (id, fingerprint) pairs

iter_arenas(arena_size=1000)
iterate through arena_size fingerprints at a time, as subarenas

Iterate through arena_size fingerprints at a time, returned as chemfp.arena.FingerprintArena
instances. The arenas are in input order and not reordered by popcount.

This method helps trade off between performance and memory use. Working with arenas is often faster
than processing one fingerprint at a time, but if the file is very large then you might run out of memory, or
get bored while waiting to process all of the fingerprint before getting the first answer.

If arena_size is None then this makes an iterator which returns a single arena containing all of the finger-
prints.

Parameters arena_size (positive integer, or None) – The number of finger-
prints to put into each arena.

Returns an iterator of chemfp.arena.FingerprintArena instances

save(destination, format=None)
Save the fingerprints to a given destination and format

The output format is based on the format. If the format is None then the format depends on the destination
file extension. If the extension isn’t recognized then the fingerprints will be saved in “fps” format.

If the output format is “fps” or “fps.gz” then destination may be a filename, a file object, or None; None
writes to stdout.

If the output format is “fpb” then destination must be a filename.

Parameters

• destination (a filename, file object, or None) – the output destina-
tion

• format (None, "fps", "fps.gz", or "fpb") – the output format

Returns None

get_fingerprint_type()
Get the fingerprint type object based on the metadata’s type field

This uses self.metadata.type to get the fingerprint type string then calls chemfp.
get_fingerprint_type() to get and return a chemfp.types.FingerprintType instance.

This will raise a TypeError if there is no metadata, and a ValueError if the type field was invalid or the
fingerprint type isn’t available.

56 Chapter 6. chemfp top-level module

chemfp Documentation, Release 1.4

Returns a chemfp.types.FingerprintType

6.5 FingerprintIterator

class chemfp.FingerprintIterator

A chemfp.FingerprintReader for an iterator of (id, fingerprint) pairs

This is often used as an adapter container to hold the metadata and (id, fingerprint) iterator. It supports
an optional location, and can call a close function when the iterator has completed.

A FingerprintIterator is a context manager which will close the underlying iterator if it’s given a close
handler.

Like all iterators you can use next() to get the next (id, fingerprint) pair.

__init__(metadata, id_fp_iterator, location=None, close=None)
Initialize with a Metadata instance and the (id, fingerprint) iterator

The metadata is a Metadata instance. The id_fp_iterator is an iterator which returns (id, fingerprint)
pairs.

The optional location is a chemfp.io.Location. The optional close callable is called (as close())
whenever self.close() is called and when the context manager exits.

__iter__()
Iterate over the (id, fingerprint) pairs

close()
Close the iterator

The call will be forwarded to the close callable passed to the constructor. If that close is None then
this does nothing.

6.6 Fingerprints

class chemfp.Fingerprints

A chemf.FingerprintReader containing a metadata and a list of (id, fingerprint) pairs.

This is typically used as an adapater when you have a list of (id, fingerprint) pairs and you want to
pass it (and the metadata) to the rest of the chemfp API.

This implements a simple list-like collection of fingerprints. It supports:

• for (id, fingerprint) in fingerprints: . . .

• id, fingerprint = fingerprints[1]

• len(fingerprints)

More features, like slicing, will be added as needed or when requested.

__init__(metadata, id_fp_pairs)
Initialize with a Metadata instance and the (id, fingerprint) pair list

The metadata is a Metadata instance. The id_fp_iterator is an iterator which returns (id, fingerprint)
pairs.

6.5. FingerprintIterator 57

chemfp Documentation, Release 1.4

6.7 FingerprintWriter

class chemfp.FingerprintWriter

Base class for the fingerprint writers

The only concrete fingerprint writer class in chemfp 1.4 is:

• chemfp.fps_io.FPSWriter - write an FPS file

Chemfp 2.0 and later also implement OrderedFPBWriter and InputOrderFPBWriter. If the
chemfp_converters package is available then its FlushFingerprintWriter will be used to write fin-
gerprints in flush format.

Use chemfp.open_fingerprint_writer() to create a fingerprint writer class; do not create
them directly.

All classes have the following attributes:

• metadata - a chemfp.Metadata instance

• closed - False when the file is open, else True

Fingerprint writers are also their own context manager, and close the writer on context exit.

write_fingerprint(id, fp)
Write a single fingerprint record with the given id and fp to the destination

Parameters

• id (string) – the record identifier

• fp (byte string) – the fingerprint

write_fingerprints(id_fp_pairs)
Write a sequence of (id, fingerprint) pairs to the destination

Parameters id_fp_pairs – An iterable of (id, fingerprint) pairs. id is a string and fingerprint
is a byte string.

close()
Close the writer

This will set self.closed to False.

6.8 ChemFPProblem

class chemfp.ChemFPProblem
Information about a compatibility problem between a query and target.

Instances are generated by chemfp.check_fingerprint_problems() and chemfp.
check_metadata_problems().

The public attributes are:

severity
one of “info”, “warning”, or “error”

error_level
5 for “info”, 10 for “warning”, and 20 for “error”

category
a string used as a category name. This string will not change over time.

58 Chapter 6. chemfp top-level module

chemfp Documentation, Release 1.4

description
a more detailed description of the error, including details of the mismatch. The description depends on
query_name and target_name and may change over time.

The current category names are:

• “num_bits mismatch” (error)

• “num_bytes_mismatch” (error)

• “type mismatch” (warning)

• “aromaticity mismatch” (info)

• “software mismatch” (info)

chemfp.check_fingerprint_problems(query_fp, target_metadata, query_name="query", tar-
get_name="target")

Return a list of compatibility problems between a fingerprint and a metadata

If there are no problems then this returns an empty list. If there is a bit length or byte length mismatch be-
tween the query_fp byte string and the target_metadata then it will return a list containing a ChemFPProblem
instance, with a severity level “error” and category “num_bytes mismatch”.

This function is usually used to check if a query fingerprint is compatible with the target fingerprints. In case of
a problem, the default message looks like:

>>> problems = check_fingerprint_problems("A"*64, Metadata(num_bytes=128))
>>> problems[0].description
'query contains 64 bytes but target has 128 byte fingerprints'

You can change the error message with the query_name and target_name parameters:

>>> import chemfp
>>> problems = check_fingerprint_problems("z"*64, chemfp.Metadata(num_bytes=128),
... query_name="input", target_name="database")
>>> problems[0].description
'input contains 64 bytes but database has 128 byte fingerprints'

Parameters

• query_fp (byte string) – a fingerprint (usually the query fingerprint)

• target_metadata (Metadata instance) – the metadata to check against (usually
the target metadata)

• query_name (string) – the text used to describe the fingerprint, in case of problem

• target_name (string) – the text used to describe the metadata, in case of problem

Returns a list of ChemFPProblem instances

chemfp.check_metadata_problems(query_metadata, target_metadata, query_name="query", tar-
get_name="target")

Return a list of compatibility problems between two metadata instances.

If there are no probelms then this returns an empty list. Otherwise it returns a list of ChemFPProblem in-
stances, with a severity level ranging from “info” to “error”.

Bit length and byte length mismatches produce an “error”. Fingerprint type and aromaticity mismatches produce
a “warning”. Software version mismatches produce an “info”.

6.8. ChemFPProblem 59

chemfp Documentation, Release 1.4

This is usually used to check if the query metadata is incompatible with the target metadata. In case of a problem
the messages look like:

>>> import chemfp
>>> m1 = chemfp.Metadata(num_bytes=128, type="Example/1")
>>> m2 = chemfp.Metadata(num_bytes=256, type="Counter-Example/1")
>>> problems = chemfp.check_metadata_problems(m1, m2)
>>> len(problems)
2
>>> print(problems[1].description)
query has fingerprints of type 'Example/1' but target has fingerprints of type
→˓'Counter-Example/1'

You can change the error message with the query_name and target_name parameters:

>>> problems = chemfp.check_metadata_problems(m1, m2, query_name="input", target_
→˓name="database")
>>> print(problems[1].description)
input has fingerprints of type 'Example/1' but database has fingerprints of type
→˓'Counter-Example/1'

Parameters

• fp (byte string) – a fingerprint

• metadata (Metadata instance) – the metadata to check against

• query_name (string) – the text used to describe the fingerprint, in case of problem

• target_name (string) – the text used to describe the metadata, in case of problem

Returns a list of ChemFPProblem instances

chemfp.count_tanimoto_hits(queries, targets, threshold=0.7, arena_size=100)
Count the number of targets within ‘threshold’ of each query term

For each query in ‘queries’, count the number of targets in ‘targets’ which are at least ‘threshold’ similar to the
query. This function returns an iterator containing the (query_id, count) pairs.

Example:

queries = chemfp.open("queries.fps")
targets = chemfp.load_fingerprints("targets.fps.gz")
for (query_id, count) in chemfp.count_tanimoto_hits(queries, targets, threshold=0.
→˓9):

print query_id, "has", count, "neighbors with at least 0.9 similarity"

Internally, queries are processed in batches of size ‘arena_size’. A small batch size uses less overall memory
and has lower processing latency, while a large batch size has better overall performance. Use arena_size=None
to process the input as a single batch.

Note: the FPSReader may be used as a target but it can only process one batch, and searching a FingerprintArena
is faster if you have more than a few queries.

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (FingerprintArena or the slower FPSReader) – The target fin-
gerprints.

60 Chapter 6. chemfp top-level module

chemfp Documentation, Release 1.4

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• arena_size (a positive integer, or None) – The number of queries to pro-
cess in a batch

Returns An iterator containing (query_id, score) pairs, one for each query

chemfp.count_tanimoto_hits_symmetric(fingerprints, threshold=0.7)
Find the number of other fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the number of other fingerprints in the same arena which are
at least threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never matches itself.

This function returns an iterator of (fingerprint_id, count) pairs.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, count) in chemfp.count_tanimoto_hits_symmetric(arena, threshold=0.6):

print fp_id, "has", count, "neighbors with at least 0.6 similarity"

Parameters

• fingerprints (a FingerprintArena with precomputed
popcount_indices) – The arena containing the fingerprints.

• threshold – The minimum score threshold.

Returns An iterator of (fp_id, count) pairs, one for each fingerprint

chemfp.threshold_tanimoto_search(queries, targets, threshold=0.7, arena_size=100)
Find all targets within ‘threshold’ of each query term

For each query in ‘queries’, find all the targets in ‘targets’ which are at least ‘threshold’ similar to the query.
This function returns an iterator containing the (query_id, hits) pairs. The hits are stored as a list of (target_id,
score) pairs.

Example:

queries = chemfp.open("queries.fps")
targets = chemfp.load_fingerprints("targets.fps.gz")
for (query_id, hits) in chemfp.id_threshold_tanimoto_search(queries, targets,
→˓threshold=0.8):

print query_id, "has", len(hits), "neighbors with at least 0.8 similarity"
non_identical = [target_id for (target_id, score) in hits if score != 1.0]
print " The non-identical hits are:", non_identical

Internally, queries are processed in batches of size ‘arena_size’. A small batch size uses less overall memory
and has lower processing latency, while a large batch size has better overall performance. Use arena_size=None
to process the input as a single batch.

Note: the FPSReader may be used as a target but it can only process one batch, and searching a FingerprintArena
is faster if you have more than a few queries.

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (FingerprintArena or the slower FPSReader) – The target fin-
gerprints.

6.8. ChemFPProblem 61

chemfp Documentation, Release 1.4

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• arena_size (positive integer, or None) – The number of queries to process
in a batch

Returns An iterator containing (query_id, hits) pairs, one for each query. ‘hits’ contains a list of
(target_id, score) pairs.

chemfp.threshold_tanimoto_search_symmetric(fingerprints, threshold=0.7)
Find the other fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the other fingerprints in the same arena which hare at least
threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never matches itself.

This function returns an iterator of (fingerprint, SearchResult) pairs. The SearchResult hit order is arbitrary.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, hits) in chemfp.threshold_tanimoto_search_symmetric(arena,
→˓threshold=0.75):

print fp_id, "has", len(hits), "neighbors:"
for (other_id, score) in hits.get_ids_and_scores():

print " %s %.2f" % (other_id, score)

Parameters

• fingerprints (a FingerprintArena with precomputed
popcount_indices) – The arena containing the fingerprints.

• threshold – The minimum score threshold.

Returns An iterator of (fp_id, SearchResult) pairs, one for each fingerprint

chemfp.knearest_tanimoto_search(queries, targets, k=3, threshold=0.7, arena_size=100)
Find the ‘k’-nearest targets within ‘threshold’ of each query term

For each query in ‘queries’, find the ‘k’-nearest of all the targets in ‘targets’ which are at least ‘threshold’ similar
to the query. Ties are broken arbitrarily and hits with scores equal to the smallest value may have been omitted.

This function returns an iterator containing the (query_id, hits) pairs, where hits is a list of (target_id, score)
pairs, sorted so that the highest scores are first. The order of ties is arbitrary.

Example:

Use the first 5 fingerprints as the queries
queries = next(chemfp.open("pubchem_subset.fps").iter_arenas(5))
targets = chemfp.load_fingerprints("pubchem_subset.fps")

Find the 3 nearest hits with a similarity of at least 0.8
for (query_id, hits) in chemfp.id_knearest_tanimoto_search(queries, targets, k=3,
→˓threshold=0.8):

print query_id, "has", len(hits), "neighbors with at least 0.8 similarity"
if hits:

target_id, score = hits[-1]
print " The least similar is", target_id, "with score", score

Internally, queries are processed in batches of size ‘arena_size’. A small batch size uses less overall memory
and has lower processing latency, while a large batch size has better overall performance. Use arena_size=None
to process the input as a single batch.

62 Chapter 6. chemfp top-level module

chemfp Documentation, Release 1.4

Note: the FPSReader may be used as a target but it can only process one batch, and searching a FingerprintArena
is faster if you have more than a few queries.

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (FingerprintArena or the slower FPSReader) – The target fin-
gerprints.

• k (positive integer) – The maximum number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• arena_size (positive integer, or None) – The number of queries to process
in a batch

Returns An iterator containing (query_id, hits) pairs, one for each query. ‘hits’ contains a list of
(target_id, score) pairs, sorted by score.

chemfp.knearest_tanimoto_search_symmetric(fingerprints, k=3, threshold=0.7)
Find the nearest k fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the nearest k fingerprints in the same arena which hare at least
threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never matches itself.

This function returns an iterator of (fingerprint, SearchResult) pairs. The SearchResult hits are ordered from
highest score to lowest, with ties broken arbitrarily.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, hits) in chemfp.knearest_tanimoto_search_symmetric(arena, k=5,
→˓threshold=0.5):

print fp_id, "has", len(hits), "neighbors, with scores",
print ", ".join("%.2f" % x for x in hits.get_scores())

Parameters

• fingerprints (a FingerprintArena with precomputed
popcount_indices) – The arena containing the fingerprints.

• k (positive integer) – The maximum number of nearest neighbors to find.

• threshold – The minimum score threshold.

Returns An iterator of (fp_id, SearchResult) pairs, one for each fingerprint

chemfp.get_max_threads()
Return the maximum number of threads available.

If OpenMP is not available then this will return 1. Otherwise it returns the maximum number of threads avail-
able, as reported by omp_get_num_threads().

chemfp.get_num_threads()
Return the number of OpenMP threads to use in searches

Initially this is the value returned by omp_get_max_threads(), which is generally 4 unless you set the environ-
ment variable OMP_NUM_THREADS to some other value.

It may be any value in the range 1 to get_max_threads(), inclusive.

6.8. ChemFPProblem 63

chemfp Documentation, Release 1.4

chemfp.set_num_threads(num_threads)
Set the number of OpenMP threads to use in searches

If num_threads is less than one then it is treated as one, and a value greater than get_max_threads() is treated as
get_max_threads().

6.9 Open Babel fingerprints

Open Babel implements four fingerprints families and chemfp implements two fingerprint families using the Open
Babel toolkit. These are:

• OpenBabel-FP2 - Indexes linear fragments up to 7 atoms.

• OpenBabel-FP3 - SMARTS patterns specified in the file patterns.txt

• OpenBabel-FP4 - SMARTS patterns specified in the file SMARTS_InteLigand.txt

• OpenBabel-MACCS - SMARTS patterns specified in the file MACCS.txt, which implements nearly all of the
166 MACCS keys

• RDMACCS-OpenBabel - a chemfp implementation of nearly all of the MACCS keys

• ChemFP-Substruct-OpenBabel - an experimental chemfp implementation of the PubChem keys

Most people use FP2 and MACCS.

Note: chemfp, starting with version 1.3, implements both RDMACCS-OpenBabel/1 and RDMACCS-OpenBabel/2.
Version 1.1 did not have a definition for key 44.

6.10 OpenEye fingerprints

OpenEye’s OEGraphSim library implements four bitstring-based fingerprint families, and chemfp implements two
fingerprint families based on OEChem. These are:

• OpenEye-Path - exhaustive enumeration of all linear fragments up to a given size

• OpenEye-Circular - exhaustive enumeration of all circular fragments grown radially from each heavy atom up
to a given radius

• OpenEye-Tree - exhaustive enumeration of all trees up to a given size

• OpenEye-MACCS166 - an implementation of the 166 MACCS keys

• RDMACCS-OpenEye - a chemfp implementation of the 166 MACCS keys

• ChemFP-Substruct-OpenEye - an experimental chemfp implementation of the PubChem keys

Note: chemfp, starting with version 1.3, implements both RDMACCS-OpenEye/1 and RDMACCS-OpenEye/2. Ver-
sion 1.1 did not have a definition for key 44.

6.11 RDKit fingerprints

RDKit implements nine fingerprint families, and chemfp implements two fingerprint families based on RDKit. These
are:

• RDKit-Fingerprint - exhaustive enumeration of linear and branched trees

• RDKit-MACCS166 - The RDKit implementation of the MACCS keys

64 Chapter 6. chemfp top-level module

chemfp Documentation, Release 1.4

• RDKit-Morgan - EFCP-like circular fingerprints

• RDKit-AtomPair - atom pair fingerprints

• RDKit-Torsion - topological-torsion fingerprints

• RDKit-Pattern - substructure screen fingerprint

• RDKit-Avalon - RDKit’s interface to the Avalon toolkit fingerprints

• RDMACCS-RDKit - a chemfp implementation of the 166 MACCS keys

• ChemFP-Substruct-RDKit - an experimental chemfp implementation of the PubChem keys

Note: chemfp, starting with version 1.3, implements both RDMACCS-OpenEye/1 and RDMACCS-OpenEye/2. Ver-
sion 1.1 did not have a definition for key 44.

6.11. RDKit fingerprints 65

chemfp Documentation, Release 1.4

66 Chapter 6. chemfp top-level module

CHAPTER 7

chemfp.arena module

There should be no reason for you to import this module yourself. It contains the FingerprintArena implemen-
tation. FingerprintArena instances are returns part of the public API but should not be constructed directly.

7.1 FingerprintArena

class chemfp.arena.FingerprintArena

Store fingerprints in a contiguous block of memory for fast searches

A fingerprint arena implements the chemfp.FingerprintReader API.

A fingerprint arena stores all of the fingerprints in a continuous block of memory, so the per-molecule
overhead is very low.

The fingerprints can be sorted by popcount, so the fingerprints with no bits set come first, followed
by those with 1 bit, etc. If self.popcount_indices is a non-empty string then the string
contains information about the start and end offsets for all the fingerprints with a given popcount.
This information is used for the sublinear search methods.

The public attributes are:

metadata
chemfp.Metadata about the fingerprints

ids
list of identifiers, in index order

Other attributes, which might be subject to change, and which I won’t fully explain, are:

• arena - a contiguous block of memory, which contains the fingerprints

• start_padding - number of bytes to the first fingerprint in the block

• end_padding - number of bytes after the last fingerprint in the block

• storage_size - number of bytes used to store a fingerprint

67

chemfp Documentation, Release 1.4

• num_bytes - number of bytes in each fingerprint (must be <= storage_size)

• num_bits - number of bits in each fingerprint

• alignment - the fingerprint alignment

• start - the index for the first fingerprint in the arena/subarena

• end - the index for the last fingerprint in the arena/subarena

• arena_ids - all of the identifiers for the parent arena

The FingerprintArena is its own context manager, but it does nothing on context exit.

__len__()
Number of fingerprint records in the FingerprintArena

__getitem__(i)
Return the (id, fingerprint) pair at index i

__iter__()
Iterate over the (id, fingerprint) contents of the arena

get_fingerprint_type()
Get the fingerprint type object based on the metadata’s type field

This uses self.metadata.type to get the fingerprint type string then calls chemfp.
get_fingerprint_type() to get and return a chemfp.types.FingerprintType instance.

This will raise a TypeError if there is no metadata, and a ValueError if the type field was invalid or the
fingerprint type isn’t available.

Returns a chemfp.types.FingerprintType

get_fingerprint(i)
Return the fingerprint at index i

Raises an IndexError if index i is out of range.

get_by_id(id)
Given the record identifier, return the (id, fingerprint) pair,

If the id is not present then return None.

get_index_by_id(id)
Given the record identifier, return the record index

If the id is not present then return None.

get_fingerprint_by_id(id)
Given the record identifier, return its fingerprint

If the id is not present then return None

save(destination, format=None)
Save the fingerprints to a given destination and format

The output format is based on the format. If the format is None then the format depends on the destination
file extension. If the extension isn’t recognized then the fingerprints will be saved in “fps” format.

If the output format is “fps” or “fps.gz” then destination may be a filename, a file object, or None; None
writes to stdout.

If the output format is “fpb” then destination must be a filename.

Parameters

68 Chapter 7. chemfp.arena module

chemfp Documentation, Release 1.4

• destination (a filename, file object, or None) – the output destina-
tion

• format (None, "fps", "fps.gz", or "fpb") – the output format

Returns None

iter_arenas(arena_size = 1000)
Base class for all chemfp objects holding fingerprint records

All FingerprintReader instances have a metadata attribute containing a Metadata and can be iteratated
over to get the (id, fingerprint) for each record.

copy(indices=None, reorder=None)
Create a new arena using either all or some of the fingerprints in this arena

By default this create a new arena. The fingerprint data block and ids may be shared with the original
arena, which makes this a shallow copy. If the original arena is a slice, or “sub-arena” of an arena, then the
copy will allocate new space to store just the fingerprints in the slice and use its own list for the ids.

The indices parameter, if not None, is an iterable which contains the indicies of the fingerprint records to
copy. Duplicates are allowed, though discouraged.

If indices are specified then the default reorder value of None, or the value True, will reorder the finger-
prints for the new arena by popcount. This improves overall search performance. If reorder is False then
the new arena will preserve the order given by the indices.

If indices are not specified, then the default is to preserve the order type of the original arena. Use
reorder=True to always reorder the fingerprints in the new arena by popcount, and reorder=False
to always leave them in the current ordering.

>>> import chemfp
>>> arena = chemfp.load_fingerprints("pubchem_queries.fps")
>>> arena.ids[1], arena.ids[5], arena.ids[10], arena.ids[18]
(b'9425031', b'9425015', b'9425040', b'9425033')
>>> len(arena)
19
>>> new_arena = arena.copy(indices=[1, 5, 10, 18])
>>> len(new_arena)
4
>>> new_arena.ids
[b'9425031', b'9425015', b'9425040', b'9425033']
>>> new_arena = arena.copy(indices=[18, 10, 5, 1], reorder=False)
>>> new_arena.ids
[b'9425033', b'9425040', b'9425015', b'9425031']

Parameters

• indices (iterable containing integers, or None) – indicies of the
records to copy into the new arena

• reorder (True to reorder, False to leave in input order,
None for default action) – describes how to order the fingerprints

count_tanimoto_hits_fp(query_fp, threshold=0.7)
Count the fingerprints which are sufficiently similar to the query fingerprint

Return the number of fingerprints in the arena which are at least threshold similar to the query fingerprint
query_fp.

Parameters

7.1. FingerprintArena 69

chemfp Documentation, Release 1.4

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns integer count

threshold_tanimoto_search_fp(query_fp, threshold=0.7)
Find the fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this arena which are at least threshold similar to the query fingerprint
query_fp. The hits are returned as a SearchResult, in arbitrary order.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

knearest_tanimoto_search_fp(query_fp, k=3, threshold=0.7)
Find the k-nearest fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this arena which are at least threshold similar to the query fingerprint, and
of those, select the top k hits. The hits are returned as a SearchResult, sorted from highest score to
lowest.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

70 Chapter 7. chemfp.arena module

CHAPTER 8

chemfp.search module

The following functions and classes are in the chemfp.search module.

There are three main classes of functions. The ones ending with *_fp use a query fingerprint to search a target arena.
The ones ending with *_arena use a query arena to search a target arena. The ones ending with *_symmetric use
arena to search itself, except that a fingerprint is not tested against itself.

These functions share the same name with very similar functions in the top-level chemfp module. My apologies
for any confusion. The top-level functions are designed to work with both arenas and iterators as the target. They
give a simple search API, and automatically process in blocks, to give a balanced trade-off between performance and
response time for the first results.

The functions in this module only work with arena as the target. By default it searches the entire arena before returning.
If you want to process portions of the arena then you need to specify the range yourself.

chemfp.search.count_tanimoto_hits_fp(query_fp, target_arena, threshold=0.7)
Count the number of hits in target_arena at least threshold similar to the query_fp

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print chemfp.search.count_tanimoto_hits_fp(query_fp, targets, threshold=0.1)

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena – the target arena

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns an integer count

chemfp.search.count_tanimoto_hits_arena(query_arena, target_arena, threshold=0.7)
For each fingerprint in query_arena, count the number of hits in target_arena at least threshold similar to it

71

chemfp Documentation, Release 1.4

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tanimoto_hits_arena(queries, targets, threshold=0.1)
print counts[:10]

The result is implementation specific. You’ll always be able to get its length and do an index lookup to get an
integer count. Currently it’s a ctypes array of longs, but it could be an array.array or Python list in the future.

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns an array of counts

chemfp.search.count_tanimoto_hits_symmetric(arena, threshold=0.7, batch_size=100)
For each fingerprint in the arena, count the number of other fingerprints at least threshold similar to it

A fingerprint never matches itself.

The computation can take a long time. Python won’t check check for a ^C until the function finishes. This can
be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. I can’t detect any performance difference
between the current value and a larger value, so it seems rather pointless to have. Let me know if it’s useful to
keep as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tanimoto_hits_symmetric(arena, threshold=0.2)
print counts[:10]

The result object is implementation specific. You’ll always be able to get its length and do an index lookup to
get an integer count. Currently it’s a ctype array of longs, but it could be an array.array or Python list in the
future.

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns an array of counts

chemfp.search.partial_count_tanimoto_hits_symmetric(counts, arena, thresh-
old=0.7, query_start=0,
query_end=None, tar-
get_start=0, target_end=None)

Compute a portion of the symmetric Tanimoto counts

For most cases, use chemfp.search.count_tanimoto_hits_symmetric() instead of this function!

This function is only useful for thread-pool implementations. In that case, set the number of OpenMP threads
to 1.

72 Chapter 8. chemfp.search module

https://docs.python.org/2/library/ctypes.html#arrays
https://docs.python.org/2/library/array.html

chemfp Documentation, Release 1.4

counts is a contiguous array of integers. It should be initialized to zeros, and reused for successive calls.

The function adds counts for counts[query_start:query_end] based on computing the upper-triangle portion
contained in the rectangle query_start:query_end and target_start:target_end* and using symmetry to fill in the
lower half.

You know, this is pretty complicated. Here’s the bare minimum example of how to use it correctly to process 10
rows at a time using up to 4 threads:

import chemfp
import chemfp.search
from chemfp import futures
import array

chemfp.set_num_threads(1) # Globally disable OpenMP

arena = chemfp.load_fingerprints("targets.fps") # Load the fingerprints
n = len(arena)
counts = array.array("i", [0]*n)

with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):

executor.submit(chemfp.search.partial_count_tanimoto_hits_symmetric,
counts, arena, threshold=0.2,
query_start=row, query_end=min(row+10, n))

print counts

Parameters

• counts (a contiguous block of integer) – the accumulated Tanimoto counts

• arena (a chemfp.arena.FingerprintArena) – the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• query_start (an integer) – the query start row

• query_end (an integer, or None to mean the last query row) – the
query end row

• target_start (an integer) – the target start row

• target_end (an integer, or None to mean the last target row) –
the target end row

Returns None

chemfp.search.threshold_tanimoto_search_fp(query_fp, target_arena, threshold=0.7)
Search for fingerprint hits in target_arena which are at least threshold similar to query_fp

The hits in the returned chemfp.search.SearchResult are in arbitrary order.

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print list(chemfp.search.threshold_tanimoto_search_fp(query_fp, targets,
→˓threshold=0.15))

73

chemfp Documentation, Release 1.4

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena (a chemfp.arena.FingerprintArena) – the target arena

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResult

chemfp.search.threshold_tanimoto_search_arena(query_arena, target_arena, thresh-
old=0.7)

Search for the hits in the target_arena at least threshold similar to the fingerprints in query_arena

The hits in the returned chemfp.search.SearchResults are in arbitrary order.

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.threshold_tanimoto_search_arena(queries, targets,
→˓threshold=0.5)
for query_id, query_hits in zip(queries.ids, results):

if len(query_hits) > 0:
print query_id, "->", ", ".join(query_hits.get_ids())

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResults

chemfp.search.threshold_tanimoto_search_symmetric(arena, threshold=0.7, in-
clude_lower_triangle=True,
batch_size=100)

Search for the hits in the arena at least threshold similar to the fingerprints in the arena

When include_lower_triangle is True, compute the upper-triangle similarities, then copy the results to get the
full set of results. When include_lower_triangle is False, only compute the upper triangle.

The hits in the returned chemfp.search.SearchResults are in arbitrary order.

The computation can take a long time. Python won’t check check for a ^C until the function finishes. This can
be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. Let me know if it really is useful for you to
have as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("queries.fps")
full_result = chemfp.search.threshold_tanimoto_search_symmetric(arena,
→˓threshold=0.2)
upper_triangle = chemfp.search.threshold_tanimoto_search_symmetric(

arena, threshold=0.2, include_lower_triangle=False)
assert sum(map(len, full_result)) == sum(map(len, upper_triangle))*2

74 Chapter 8. chemfp.search module

chemfp Documentation, Release 1.4

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• include_lower_triangle (boolean) – if False, compute only the upper triangle,
otherwise use symmetry to compute the full matrix

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns a chemfp.search.SearchResults

chemfp.search.partial_threshold_tanimoto_search_symmetric(results, arena,
threshold=0.7,
query_start=0,
query_end=None,
target_start=0, tar-
get_end=None, re-
sults_offset=0)

Compute a portion of the symmetric Tanimoto search results

For most cases, use chemfp.search.threshold_tanimoto_search_symmetric() instead of this
function!

This function is only useful for thread-pool implementations. In that case, set the number of OpenMP threads
to 1.

results is a chemfp.search.SearchResults instance which is at least as large as the arena. It should be
reused for successive updates.

The function adds hits to results[query_start:query_end], based on computing the upper-triangle portion con-
tained in the rectangle query_start:query_end and target_start:target_end.

It does not fill in the lower triangle. To get the full matrix, call fill_lower_triangle.

You know, this is pretty complicated. Here’s the bare minimum example of how to use it correctly to process 10
rows at a time using up to 4 threads:

import chemfp
import chemfp.search
from chemfp import futures
import array

chemfp.set_num_threads(1)

arena = chemfp.load_fingerprints("targets.fps")
n = len(arena)
results = chemfp.search.SearchResults(n, n, arena.ids)

with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):

executor.submit(chemfp.search.partial_threshold_tanimoto_search_symmetric,
results, arena, threshold=0.2,
query_start=row, query_end=min(row+10, n))

chemfp.search.fill_lower_triangle(results)

The hits in the chemfp.search.SearchResults are in arbitrary order.

Parameters

75

chemfp Documentation, Release 1.4

• results (a chemfp.search.SearchResults instance) – the intermediate search
results

• arena (a chemfp.arena.FingerprintArena) – the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• query_start (an integer) – the query start row

• query_end (an integer, or None to mean the last query row) – the
query end row

• target_start (an integer) – the target start row

• target_end (an integer, or None to mean the last target row) –
the target end row

• results_offset – use results[results_offset] as the base for the results

• results_offset – an integer

Returns None

chemfp.search.fill_lower_triangle(results)
Duplicate each entry of results to its transpose

This is used after the symmetric threshold search to turn the upper-triangle results into a full matrix.

Parameters results (a chemfp.search.SearchResults) – search results

chemfp.search.knearest_tanimoto_search_fp(query_fp, target_arena, k=3, threshold=0.7)
Search for k-nearest hits in target_arena which are at least threshold similar to query_fp

The hits in the chemfp.search.SearchResults are ordered by decreasing similarity score.

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print list(chemfp.search.knearest_tanimoto_search_fp(query_fp, targets, k=3,
→˓threshold=0.0))

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena (a chemfp.arena.FingerprintArena) – the target arena

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResult

chemfp.search.knearest_tanimoto_search_arena(query_arena, target_arena, k=3, thresh-
old=0.7)

Search for the k nearest hits in the target_arena at least threshold similar to the fingerprints in query_arena

The hits in the chemfp.search.SearchResults are ordered by decreasing similarity score.

Example:

76 Chapter 8. chemfp.search module

chemfp Documentation, Release 1.4

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.knearest_tanimoto_search_arena(queries, targets, k=3,
→˓threshold=0.5)
for query_id, query_hits in zip(queries.ids, results):

if len(query_hits) >= 2:
print query_id, "->", ", ".join(query_hits.get_ids())

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResults

chemfp.search.knearest_tanimoto_search_symmetric(arena, k=3, threshold=0.7,
batch_size=100)

Search for the k-nearest hits in the arena at least threshold similar to the fingerprints in the arena

The hits in the SearchResults are ordered by decreasing similarity score.

The computation can take a long time. Python won’t check check for a ^C until the function finishes. This can
be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. Let me know if it really is useful for you to
keep as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("queries.fps")
results = chemfp.search.knearest_tanimoto_search_symmetric(arena, k=3,
→˓threshold=0.8)
for (query_id, hits) in zip(arena.ids, results):

print query_id, "->", ", ".join(("%s %.2f" % hit) for hit in hits.get_ids_
→˓and_scores())

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• include_lower_triangle (boolean) – if False, compute only the upper triangle,
otherwise use symmetry to compute the full matrix

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns a chemfp.search.SearchResults

chemfp.search.contains_fp(query_fp, target_arena)
Find the target fingerprints which contain the query fingerprint bits as a subset

77

chemfp Documentation, Release 1.4

A target fingerprint contains a query fingerprint if all of the on bits of the query fingerprint are also on bits of
the target fingerprint. This function returns a chemfp.search.SearchResult containing all of the target
fingerprints in target_arena that contain the query_fp.

The SearchResult scores are all 0.0.

There is currently no direct way to limit the arena search range. Instead create a subarena by using Python’s
slice notation on the arena then search the subarena.

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

Returns a SearchResult instance

chemfp.search.contains_arena(query_arena, target_arena)
Find the target fingerprints which contain the query fingerprints as a subset

A target fingerprint contains a query fingerprint if all of the on bits of the query fingerprint are also on bits of
the target fingerprint. This function returns a chemfp.search.SearchResults where SearchResults[i]
contains all of the target fingerprints in target_arena that contain the fingerprint for entry query_arena [i].

The SearchResult scores are all 0.0.

There is currently no direct way to limit the arena search range, though you can create and search a subarena by
using Python’s slice notation.

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – the query fingerprints

• target_arena (a chemfp.arena.FingerprintArena) – the target fingerprints

Returns a chemfp.search.SearchResults instance, of the same size as query_arena

8.1 SearchResults

class chemfp.search.SearchResults

Search results for a list of query fingerprints against a target arena

This acts like a list of SearchResult elements, with the ability to iterate over each search results, look
them up by index, and get the number of scores.

In addition, there are helper methods to iterate over each hit and to get the hit indicies, scores, and
identifiers directly as Python lists, sort the list contents, and more.

__len__()
The number of rows in the SearchResults

__iter__()
Iterate over each SearchResult hit

__getitem__(i)
Get the i-th SearchResult

shape
Read-only attribute.

the tuple (number of rows, number of columns)

The number of columns is the size of the target arena.

78 Chapter 8. chemfp.search module

chemfp Documentation, Release 1.4

iter_indices()
For each hit, yield the list of target indices

iter_ids()
For each hit, yield the list of target identifiers

iter_scores()
For each hit, yield the list of target scores

iter_indices_and_scores()
For each hit, yield the list of (target index, score) tuples

iter_ids_and_scores()
For each hit, yield the list of (target id, score) tuples

clear_all()
Remove all hits from all of the search results

count_all(min_score=None, max_score=None, interval="[]")
Count the number of hits with a score between min_score and max_score

Using the default parameters this returns the number of hits in the result.

The default min_score of None is equivalent to -infinity. The default max_score of None is equivalent to
+infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed interval,
where min_score <= score <= max_score. The interval “()” uses the open interval where min_score <
score < max_score. The half-open/half-closed intervals “(]” and “[)” are also supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns an integer count

cumulative_score_all(min_score=None, max_score=None, interval="[]")
The sum of all scores in all rows which are between min_score and max_score

Using the default parameters this returns the sum of all of the scores in all of the results. With a specified
range this returns the sum of all of the scores in that range. The cumulative score is also known as the raw
score.

The default min_score of None is equivalent to -infinity. The default max_score of None is equivalent to
+infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed interval,
where min_score <= score <= max_score. The interval “()” uses the open interval where min_score <
score < max_score. The half-open/half-closed intervals “(]” and “[)” are also supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

8.1. SearchResults 79

chemfp Documentation, Release 1.4

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns a floating point count

reorder_all(order="decreasing-score")
Reorder the hits for all of the rows based on the requested order.

The available orderings are:

• increasing-score - sort by increasing score

• decreasing-score - sort by decreasing score

• increasing-index - sort by increasing target index

• decreasing-index - sort by decreasing target index

• move-closest-first - move the hit with the highest score to the first position

• reverse - reverse the current ordering

Parameters ordering – the name of the ordering to use

to_csr(dtype=None)
Return the results as a SciPy compressed sparse row matrix.

The returned matrix has the same shape as the SearchResult instance and can be passed into, for example,
a scikit-learn clustering algorithm.

By default the scores are stored with the dtype is “float64”.

This method requires that SciPy (and NumPy) be installed.

Parameters dtype (string or NumPy type) – a NumPy numeric data type

8.2 SearchResult

class chemfp.search.SearchResult

Search results for a query fingerprint against a target arena.

The results contains a list of hits. Hits contain a target index, score, and optional target ids. The hits
can be reordered based on score or index.

__len__()
The number of hits

__iter__()
Iterate through the pairs of (target index, score) using the current ordering

clear()
Remove all hits from this result

get_indices()
The list of target indices, in the current ordering.

get_ids()
The list of target identifiers (if available), in the current ordering

iter_ids()
Iterate over target identifiers (if available), in the current ordering

80 Chapter 8. chemfp.search module

chemfp Documentation, Release 1.4

get_scores()
The list of target scores, in the current ordering

get_ids_and_scores()
The list of (target identifier, target score) pairs, in the current ordering

Raises a TypeError if the target IDs are not available.

get_indices_and_scores()
The list of (target index, score) pairs, in the current ordering

reorder(ordering="decreasing-score")
Reorder the hits based on the requested ordering.

The available orderings are:

• increasing-score - sort by increasing score

• decreasing-score - sort by decreasing score

• increasing-index - sort by increasing target index

• decreasing-index - sort by decreasing target index

• move-closest-first - move the hit with the highest score to the first position

• reverse - reverse the current ordering

Parameters ordering (string) – the name of the ordering to use

count(min_score=None, max_score=None, interval="[]")
Count the number of hits with a score between min_score and max_score

Using the default parameters this returns the number of hits in the result.

The default min_score of None is equivalent to -infinity. The default max_score of None is equivalent to
+infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed interval,
where min_score <= score <= max_score. The interval “()” uses the open interval where min_score <
score < max_score. The half-open/half-closed intervals “(]” and “[)” are also supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns an integer count

cumulative_score(min_score=None, max_score=None, interval="[]")
The sum of the scores which are between min_score and max_score

Using the default parameters this returns the sum of all of the scores in the result. With a specified range
this returns the sum of all of the scores in that range. The cumulative score is also known as the raw score.

The default min_score of None is equivalent to -infinity. The default max_score of None is equivalent to
+infinity.

8.2. SearchResult 81

chemfp Documentation, Release 1.4

The interval parameter describes the interval end conditions. The default of “[]” uses a closed interval,
where min_score <= score <= max_score. The interval “()” uses the open interval where min_score <
score < max_score. The half-open/half-closed intervals “(]” and “[)” are also supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns a floating point value

82 Chapter 8. chemfp.search module

CHAPTER 9

chemfp.bitops module

The following functions from the chemfp.bitops module provide low-level bit operations on byte and hex fingerprints.

chemfp.bitops.byte_contains(super_fp, sub_fp)
Return 1 if the on bits of sub_fp are also 1 bits in super_fp

chemfp.bitops.byte_contains_bit(fp, bit_index)
Return True if the the given bit position is on, otherwise False

chemfp.bitops.byte_difference(fp1, fp2)
Return the absolute difference (xor) between the two byte strings, fp1 ^ fp2

chemfp.bitops.byte_from_bitlist(fp[, num_bits=1024])
Convert a list of bit positions into a byte fingerprint, including modulo folding

chemfp.bitops.byte_hex_tanimoto(fp1, fp2)
Compute the Tanimoto similarity between the byte fingerprint fp1 and the hex fingerprint fp2. Return a float
between 0.0 and 1.0, or raise a ValueError if fp2 is not a hex fingerprint

chemfp.bitops.byte_intersect(fp1, fp2)
Return the intersection of the two byte strings, fp1 & fp2

chemfp.bitops.byte_intersect_popcount(fp1, fp2)
Return the number of bits set in the instersection of the two byte fingerprints

chemfp.bitops.byte_popcount(fp)
Return the number of bits set in a byte fingerprint

chemfp.bitops.byte_tanimoto(fp1, fp2)
Compute the Tanimoto similarity between two byte fingerprints

chemfp.bitops.byte_to_bitlist(bitlist)
Return a sorted list of the on-bit positions in the byte fingerprint

chemfp.bitops.byte_union(fp1, fp2)
Return the union of the two byte strings, fp1 | fp2

83

chemfp Documentation, Release 1.4

chemfp.bitops.hex_contains(sub_fp, super_fp)
Return 1 if the on bits of sub_fp are also on bits in super_fp, otherwise 0. Return -1 if either string is not a hex
fingerprint

chemfp.bitops.hex_contains_bit(fp, bit_index)
Return True if the the given bit position is on, otherwise False.

This function does not validate that the hex fingerprint is actually in hex.

chemfp.bitops.hex_difference(fp1, fp2)
Return the absolute difference (xor) between the two hex strings, fp1 ^ fp2. Raises a ValueError for non-hex
fingerprints.

chemfp.bitops.hex_from_bitlist(fp[, num_bits=1024])
Convert a list of bit positions into a hex fingerprint, including modulo folding

chemfp.bitops.hex_intersect(fp1, fp2)
Return the intersection of the two hex strings, fp1 & fp2. Raises a ValueError for non-hex fingerprints.

chemfp.bitops.hex_intersect_popcount(fp1, fp2)
Return the number of bits set in the intersection of the two hex fingerprint, or -1 if either string is a non-hex
string

chemfp.bitops.hex_isvalid(s)
Return 1 if the string is a valid hex fingerprint, otherwise 0

chemfp.bitops.hex_popcount(fp)
Return the number of bits set in a hex fingerprint, or -1 for non-hex strings

chemfp.bitops.hex_tanimoto(fp1, fp2)
Compute the Tanimoto similarity between two hex fingerprints. Return a float between 0.0 and 1.0, or -1.0 if
either string is not a hex fingerprint

chemfp.bitops.hex_to_bitlist(bitlist)
Return a sorted list of the on-bit positions in the hex fingerprint

chemfp.bitops.hex_union(fp1, fp2)
Return the union of the two hex strings, fp1 | fp2. Raises a ValueError for non-hex fingerprints.

chemfp.bitops.hex_encode(s)
Encode the byte string or ASCII string to hex. Returns a text string.

chemfp.bitops.hex_encode_as_bytes(s)
Encode the byte string or ASCII string to hex. Returns a byte string.

chemfp.bitops.hex_decode(s)
Decode the hex-encoded value to a byte string

84 Chapter 9. chemfp.bitops module

CHAPTER 10

chemfp.encodings

Decode different fingerprint representations into chemfp form. (Currently only decoders are available. Future released
may include encoders.)

The chemfp fingerprints are stored as byte strings, with the bytes in least-significant bit order (bit #0 is stored in the
first/left-most byte) and with the bits in most-significant bit order (bit #0 is stored in the first/right-most bit of the first
byte).

Other systems use different encodings. These include:

• the ‘0 and ‘1’ characters, as in ‘00111101’

• hex encoding, like ‘3d’

• base64 encoding, like ‘SGVsbG8h’

• CACTVS’s variation of base64 encoding

plus variations of different LSB and MSB orders.

This module decodes most of the fingerprint encodings I have come across. The fingerprint decoders return a 2-ple of
the bit length and the chemfp fingerprint. The bit length is None unless the bit length is known exactly, which currently
is only the case for the binary and CACTVS fingerprints. (The hex and other encoders must round the fingerprints up
to a multiple of 8 bits.)

chemfp.encodings.from_binary_lsb(text)
Convert a string like ‘00010101’ (bit 0 here is off) into ‘xa8’

The encoding characters ‘0’ and ‘1’ are in LSB order, so bit 0 is the left-most field. The result is a 2-ple of the
fingerprint length and the decoded chemfp fingerprint

>>> from_binary_lsb('00010101')
(8, '\xa8')
>>> from_binary_lsb('11101')
(5, '\x17')
>>> from_binary_lsb('00000000000000010000000000000')
(29, '\x00\x80\x00\x00')
>>>

85

chemfp Documentation, Release 1.4

chemfp.encodings.from_binary_msb(text)
Convert a string like ‘10101000’ (bit 0 here is off) into ‘xa8’

The encoding characters ‘0’ and ‘1’ are in MSB order, so bit 0 is the right-most field.

>>> from_binary_msb('10101000')
(8, '\xa8')
>>> from_binary_msb('00010101')
(8, '\x15')
>>> from_binary_msb('00111')
(5, '\x07')
>>> from_binary_msb('00000000000001000000000000000')
(29, '\x00\x80\x00\x00')
>>>

chemfp.encodings.from_base64(text)
Decode a base64 encoded fingerprint string

The encoded fingerprint must be in chemfp form, with the bytes in LSB order and the bits in MSB order.

>>> from_base64("SGk=")
(None, 'Hi')
>>> from_base64("SGk=")[1].encode("hex")
'4869'
>>>

chemfp.encodings.from_hex(text)
Decode a hex encoded fingerprint string

The encoded fingerprint must be in chemfp form, with the bytes in LSB order and the bits in MSB order.

>>> from_hex('10f2')
(None, '\x10\xf2')
>>>

Raises a ValueError if the hex string is not a multiple of 2 bytes long or if it contains a non-hex character.

chemfp.encodings.from_hex_msb(text)
Decode a hex encoded fingerprint string where the bits and bytes are in MSB order

>>> from_hex_msb('10f2')
(None, '\xf2\x10')
>>>

Raises a ValueError if the hex string is not a multiple of 2 bytes long or if it contains a non-hex character.

chemfp.encodings.from_hex_lsb(text)
Decode a hex encoded fingerprint string where the bits and bytes are in LSB order

>>> from_hex_lsb('102f')
(None, '\x08\xf4')
>>>

Raises a ValueError if the hex string is not a multiple of 2 bytes long or if it contains a non-hex character.

chemfp.encodings.from_cactvs(text)
Decode a 881-bit CACTVS-encoded fingerprint used by PubChem

>>> from_cactvs("AAADceB7sQAEAAAAAAAAAAAAAAAAAWAAAAAwAAAAAAAAAAABwAAAHwIYAAAADA" +
... "rBniwygJJqAACqAyVyVACSBAAhhwIa+CC4ZtgIYCLB0/CUpAhgmADIyYcAgAAO" +

86 Chapter 10. chemfp.encodings

chemfp Documentation, Release 1.4

... "AAAAAAABAAAAAAAAAAIAAAAAAAAAAA==")
(881, '\x07\xde\x8d\x00
→˓\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x06\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\xf8@\x18\x00\x00\x000P\x83y4L\x01IV\x00\x00U\xc0\xa4N*\x00I
→˓\x00\x84\xe1@X\x1f\x04\x1df\x1b\x10\x06D\x83\xcb\x0f)
→˓%\x10\x06\x19\x00\x13\x93\xe1\x00\x01\x00p\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00
→˓')
>>>

For format details, see ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

chemfp.encodings.from_daylight(text)
Decode a Daylight ASCII fingerprint

>>> from_daylight("I5Z2MLZgOKRcR...1")
(None, 'PyDaylight')

See the implementation for format details.

chemfp.encodings.from_on_bit_positions(text, num_bits=1024, separator=" ")
Decode from a list of integers describing the location of the on bits

>>> from_on_bit_positions("1 4 9 63", num_bits=32)
(32, '\x12\x02\x00\x80')
>>> from_on_bit_positions("1,4,9,63", num_bits=64, separator=",")
(64, '\x12\x02\x00\x00\x00\x00\x00\x80')

The text contains a sequence of non-negative integer values separated by the separator text. Bit positions are
folded modulo num_bits.

This is often used to convert sparse fingerprints into a dense fingerprint.

87

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

chemfp Documentation, Release 1.4

88 Chapter 10. chemfp.encodings

CHAPTER 11

chemfp.fps_io module

This module is part of the private API. Do not import it directly.

The function chemfp.open() returns an FPSReader if the source is an FPS file. The function chemfp.
open_fingerprint_writer() returns an FPSWriter if the destination is an FPS file.

11.1 FPSReader

class chemfp.fps_io.FPSReader

FPS file reader

This class implements the chemfp.FingerprintReader API. It is also its own a context man-
ager, which automatically closes the file when the manager exists.

The public attributes are:

metadata
a chemfp.Metadata instance with information about the fingerprint type

location
a chemfp.io.Location instance with parser location and state information

closed
True if the file is open, else False

The FPSReader.location only tracks the “lineno” variable.

__iter__()
Iterate through the (id, fp) pairs

iter_arenas(arena_size=1000)
iterate through arena_size fingerprints at a time, as subarenas

Iterate through arena_size fingerprints at a time, returned as chemfp.arena.FingerprintArena
instances. The arenas are in input order and not reordered by popcount.

89

chemfp Documentation, Release 1.4

This method helps trade off between performance and memory use. Working with arenas is often faster
than processing one fingerprint at a time, but if the file is very large then you might run out of memory, or
get bored while waiting to process all of the fingerprint before getting the first answer.

If arena_size is None then this makes an iterator which returns a single arena containing all of the finger-
prints.

Parameters arena_size (positive integer, or None) – The number of finger-
prints to put into each arena.

Returns an iterator of chemfp.arena.FingerprintArena instances

save(destination, format=None)
Save the fingerprints to a given destination and format

The output format is based on the format. If the format is None then the format depends on the destination
file extension. If the extension isn’t recognized then the fingerprints will be saved in “fps” format.

If the output format is “fps” or “fps.gz” then destination may be a filename, a file object, or None; None
writes to stdout.

If the output format is “fpb” then destination must be a filename.

Parameters

• destination (a filename, file object, or None) – the output destina-
tion

• format (None, "fps", "fps.gz", or "fpb") – the output format

Returns None

get_fingerprint_type()
Get the fingerprint type object based on the metadata’s type field

This uses self.metadata.type to get the fingerprint type string then calls chemfp.
get_fingerprint_type() to get and return a chemfp.types.FingerprintType instance.

This will raise a TypeError if there is no metadata, and a ValueError if the type field was invalid or the
fingerprint type isn’t available.

Returns a chemfp.types.FingerprintType

close()
Close the file

count_tanimoto_hits_fp(query_fp, threshold=0.7)
Count the fingerprints which are sufficiently similar to the query fingerprint

Return the number of fingerprints in the reader which are at least threshold similar to the query fingerprint
query_fp.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns integer count

count_tanimoto_hits_arena(queries, threshold=0.7)
Count the fingerprints which are sufficiently similar to each query fingerprint

Returns a list containing a count for each query fingerprint in the queries arena. The count is the number
of fingerprints in the reader which are at least threshold similar to the query fingerprint.

90 Chapter 11. chemfp.fps_io module

chemfp Documentation, Release 1.4

The order of results is the same as the order of the queries.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns list of integer counts, one for each query

threshold_tanimoto_search_fp(query_fp, threshold=0.7)
Find the fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this reader which are at least threshold similar to the query fingerprint
query_fp. The hits are returned as a SearchResult, in arbitrary order.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

threshold_tanimoto_search_arena(queries, threshold=0.7)
Find the fingerprints which are sufficiently similar to each of the query fingerprints

For each fingerprint in the queries arena, find all of the fingerprints in this arena which are at least threshold
similar. The hits are returned as a SearchResults, where the hits in each SearchResult is in
arbitrary order.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResults

knearest_tanimoto_search_fp(query_fp, k=3, threshold=0.7)
Find the k-nearest fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this reader which are at least threshold similar to the query fingerprint, and
of those, select the top k hits. The hits are returned as a SearchResult, sorted from highest score to
lowest.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

knearest_tanimoto_search_arena(queries, k=3, threshold=0.7)
Find the k-nearest fingerprints which are sufficiently similar to each of the query fingerprints

For each fingerprint in the queries arena, find the fingerprints in this reader which are at least threshold sim-
ilar to the query fingerprint, and of those, select the top k hits. The hits are returned as a SearchResults,
where the hits in each SearchResult are sorted by similarity score.

Parameters

11.1. FPSReader 91

chemfp Documentation, Release 1.4

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResults

11.2 FPSWriter

class chemfp.fps_io.FPSWriter

Write fingerprints in FPS format.

This is a subclass of chemfp.FingerprintWriter.

Instances have the following attributes:

• metadata - a chemfp.Metadata instance

• closed - False when the file is open, else True

• location - a chemfp.io.Location instance

An FPSWriter is its own context manager, and will close the output file on context exit.

The Location instance supports the “recno”, “output_recno”, and “lineno” properties.

write_fingerprint(id, fp)
Write a single fingerprint record with the given id and fp

Parameters

• id (string) – the record identifier

• fp (bytes) – the fingerprint

write_fingerprints(id_fp_pairs)
Write a sequence of fingerprint records

Parameters id_fp_pairs – An iterable of (id, fingerprint) pairs.

close()
Close the writer

This will set self.closed to False.

92 Chapter 11. chemfp.fps_io module

CHAPTER 12

chemfp.io module

This module implements a single public class, Location, which tracks parser state information, including the loca-
tion of the current record in the file. The other functions and classes are undocumented, should not be used, and may
change in future releases.

12.1 Location

class chemfp.io.Location

Get location and other internal reader and writer state information

A Location instance gives a way to access information like the current record number, line number,
and molecule object.:

>>> import chemfp
>>> with chemfp.read_molecule_fingerprints("RDKit-MACCS166",
... "ChEBI_lite.sdf.gz", id_tag="ChEBI ID") as
→˓reader:
... for id, fp in reader:
... if id == "CHEBI:3499":
... print("Record starts at line", reader.location.lineno)
... print("Record byte range:", reader.location.offsets)
... print("Number of atoms:", reader.location.mol.GetNumAtoms())
... break
...
[08:18:12] S group MUL ignored on line 103
Record starts at line 3599
Record byte range: (138171, 141791)
Number of atoms: 36

The supported properties are:

• filename - a string describing the source or destination

• lineno - the line number for the start of the file

93

chemfp Documentation, Release 1.4

• mol - the toolkit molecule for the current record

• offsets - the (start, end) byte positions for the current record

• output_recno - the number of records written successfully

• recno - the current record number

• record - the record as a text string

• record_format - the record format, like “sdf” or “can”

Most of the readers and writers do not support all of the properties. Unsupported properties return a
None. The filename is a read/write attribute and the other attributes are read-only.

If you don’t pass a location to the readers and writers then they will create a new one
based on the source or destination, respectively. You can also pass in your own Loca-
tion, created as Location(filename) if you have an actual filename, or Location.
from_source(source) or Location.from_destination(destination) if you have
a more generic source or destination.

__init__(filename=None)
Use filename as the location’s filename

from_source(cls, source)
Create a Location instance based on the source

If source is a string then it’s used as the filename. If source is None then the location filename is “<stdin>”.
If source is a file object then its name attribute is used as the filename, or None if there is no attribute.

from_destination(cls, destination)
Create a Location instance based on the destination

If destination is a string then it’s used as the filename. If destination is None then the location filename is
“<stdout>”. If destination is a file object then its name attribute is used as the filename, or None if there
is no attribute.

__repr__()
Return a string like ‘Location(“<stdout>”)’

first_line
Read-only attribute.

The first line of the current record

filename
Read/write attribute.

A string which describes the source or destination. This is usually the source or destination filename but
can be a string like “<stdin>” or “<stdout>”.

mol
Read-only attribute.

The molecule object for the current record

offsets
Read-only attribute.

The (start, end) byte offsets, starting from 0

start is the record start byte position and end is one byte past the last byte of the record.

output_recno
Read-only attribute.

94 Chapter 12. chemfp.io module

chemfp Documentation, Release 1.4

The number of records actually written to the file or string.

The value recno - output_recno is the number of records sent to the writer but which had an error
and could not be written to the output.

recno
Read-only attribute.

The current record number

For writers this is the number of records sent to the writer, and output_recno is the number of records
sucessfully written to the file or string.

record
Read-only attribute.

The current record as an uncompressed text string

record_format
Read-only attribute.

The record format name

where()
Return a human readable description about the current reader or writer state.

The description will contain the filename, line number, record number, and up to the first 40 characters of
the first line of the record, if those properties are available.

12.1. Location 95

chemfp Documentation, Release 1.4

96 Chapter 12. chemfp.io module

CHAPTER 13

License and advertisement

This program was developed by Andrew Dalke <dalke@dalkescientific.com>, Andrew Dalke Scientific, AB. It is
distributed free of charge under the “MIT” license, shown below.

Further chemfp development depends on funding from people like you. Asking for voluntary contributions almost
never works. Instead, starting with chemfp 1.1, there are two development tracks. You can download and use the
no-cost version or you can pay money to get access to the commercial version.

In both cases you get the software under the MIT license. I’ll stress that: even the commercial version of chemfp is
open source software. Once you have a copy there are very few restrictions on what you can do with it. (The one
exeception is we have signed a non-disclosure agreement which lets you evaluate the commercial version to decide if
you want to pay for it.)

The current commercial version is 3.2. It can handle more than 4GB of fingerprint data, it supports the FPB binary
fingerprint format for fast loading, it has an expanded API designed for web server and web services development (for
example, reading and writing from strings, not just files), it supports both Python 2.7 and Python 3.5 or later, and it
has faster similarity search performance.

If you pay for the commercial distribution then you will get the most recent version of chemfp, free upgrades for one
year, support, and a discount on renewing participation in the incentive program.

If you have questions about or with to purchase the commercial distribution, send an email to
sales@dalkescientific.com .

Copyright (c) 2010-2018 Andrew Dalke Scientific, AB (Gothenburg, Sweden)

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

97

mailto:dalke@dalkescientific.com
mailto:sales@dalkescientific.com

chemfp Documentation, Release 1.4

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright to portions of the code are held by other people or organizations, and may be under a different license. See
the specific code for details. These are:

• OpenMP, cpuid, POPCNT, and Lauradoux implementations by Kim Walisch, <kim.walisch@gmail.com>, un-
der the MIT license

• SSSE3.2 popcount implementation by Stanford University (written by Imran S. Haque
<ihaque@cs.stanford.edu>) under the BSD license

• heapq by the Python Software Foundation under the Python license

• TimSort code by Christopher Swenson under the MIT License

• tests/unittest2 by Steve Purcell, the Python Software Foundation, and others, under the Python license

• chemfp/rdmaccs.patterns and chemfp/rdmaccs2.patterns by Rational Discovery LLC, Greg Landrum, and Julie
Penzotti, under the 3-Clause BSD License

• chemfp/argparse.py by Steven J. Bethard under the Apache License 2.0

• chemfp/progressbar/ by Nilton Volpato under the LGPL 2.1 and/or BSD license

• chemfp/futures/ by Brian Quinlan under the Python license

(Note: the last three modules are not part of the public API and were removed in chemfp 3.1.)

98 Chapter 13. License and advertisement

mailto:kim.walisch@gmail.com
mailto:ihaque@cs.stanford.edu

CHAPTER 14

What’s new in 1.4

Released 19 March 2018

This version mostly contains bug fixes and internal improvements. The biggest additions are the fpcat command-line
program, support for Dave Cosgrove’s ‘flush’ fingerprint file format, and support for fromAtoms in some of the RDKit
fingerprints.

The configuration has changed to use setuptools.

Previously the command-line programs were installed as small scripts. Now they are created and installed using the
“console_scripts” entry_point as part of the install process. This is more in line with the modern way of installing
command-line tools for Python.

If these scripts are no longer installed correctly, please let me know.

The fpcat command-line tools was back-ported from chemfp 3.1. It can be used to merge a set of FPS files together,
and to convert to/from the flush file format. This version does not support the FPB file format.

If you have installed the chemfp_converters package then chemfp will use it to read and write fingerprint files in flush
format. It can be used as output from the *2fps programs, as input and output to fpcat,

Added fromAtoms support for the RDKit hash, torsion, Morgan, and pair fingerprints. This is primarily useful if you
want to generate the circular environment around specific atoms of a single molecule, and you know the atom indices.
If you pass in multiple molecules then the same indices will be used for all of them. Out-of-range values are ignored.

The command-line option is --from-atoms, which takes a comma-separated list of non-negative integer atom
indices. For examples:

--from-atoms 0
--from-atoms 29,30

The corresponding fingerprint type strings have also been updated. If fromAtoms is specified then the string fro-
mAtoms=i,j,k,. . . is added to the string. If it is not specified then the fromAtoms term is not present, in order to
maintain compability with older types strings. (The philosophy is that two fingerprint types are equivalent if and only
if their type strings are equivalent.)

The --from-atoms option is only useful when there’s a single query and when you have some other mechanism
to determine which subset of the atoms to use. For example, you might parse a SMILES, use a SMARTS pattern to

99

https://pypi.python.org/pypi/chemfp-converters/

chemfp Documentation, Release 1.4

find the subset, get the indices of the SMARTS match, and pass the SMILES and indices to rdk2fps to generate the
fingerprint for that substructure.

Be aware that the union of the fingerprint for --from-atoms X and the fingerprint for --from-atoms Y might
not be equal to the fingerprint for --from-atoms X,Y. However, if a bit is present in the union of the X and Y
fingerprints then it will be present in the X,Y fingerprint.

Why? The fingerprint implementation first generates a sparse count fingerprint, then converts that to a bitstring finger-
print. The conversion is affected by the feature count. If a feature is present in both X and Y then X,Y fingerprint may
have additional bits sets over the individual fingerprints.

The ob2fps, rdk2fps, and oe2fps programs now also include the chemfp version information on the software line of
the metadata. This improves data provenance because the fingerprint output might be affected by a bug in chemfp.

The Metadata.date attribute is now always a datetime instance, and not a string. If you pass a string into the
Metadata constructor, like Metadata(date=”datestr”), then the date will be converted to a datetime instance. Use
“metadata.datestamp” to get the ISO string representation of the Metadata date.

14.1 Bug fixes

Fixed a bug where a k=0 similarity search using an FPS file as the targets caused a segfault. The code assumed that k
would be at least 1. With the fix, a k=0 search will read the entire file, checking for format errors, and return no hits.

Fixed a bug where only the first ~100 queries against an FPS target search would return the correct ids. (Forgot to
include the block offset when extracting the ids.)

Fix a bug where if the query fingerprint had 1 bit set and the threshold was 0.0 then the sublinear bounds for the
Tanimoto searches (used when there is a popcount index) failed to check targets with 0 bits set.

100 Chapter 14. What’s new in 1.4

CHAPTER 15

What’s new in 1.3

Released 18 September 2017

This release has dropped support for Python 2.5 and Python 2.6. It has been over 7 years since Python 2.7 was released,
so if you’re using an older Python, perhaps it’s time to upgrade?

15.1 Toolkit changes

RDKit, OEGraphSim, Open Babel, and CDK did not implement MACCS key 44 (“OTHER”) because it wasn’t de-
fined. Then Accelrys published a white paper which defined that term. All of the toolkits have updated their im-
plementations. The corresponding chemfp fingerprint types are RDKit-MACCS166/2, OpenEye-MACCS166/3, and
OpenBabel-MACCS/2. I have also updated chemfp’s own RDMACCS definitions to include key 44, and changed the
versions from /1 to /2.

This release supports OEChem v2 and OEGraphSim v2 and drops support for OEGraphSim v1, which OpenEye
replaced in 2010. It also drops support for the old OEBinary format.

Several years ago, RDKit changed its hash fingerprint algorithm. The new chemfp fingerprint type is “RDKit-
Fingerprint/2”.

WARNING! In chemfp 1.1 the default for the RDKit-Fingerprint setting nBitsPerHash was 4. It should have been 2
to match RDKit’s own default. I have changed the default to 2, but it means that your fingerprints will likely change.

Chemfp now supports the experimental RDKit substructure fingerprint. The chemfp type name is “RDKit-Pattern”.
There are four known versions. RDKit-Pattern/1 is many years old, RDKit-Pattern/2 was in place for several years
up to 2017, RDKit-Pattern/3 was only in the 2017.3 release, and RDKit-Pattern/4 will be in the 2017.9 release. The
corresponding rdkit2fps flag is --pattern.

RDKit has an adapter to use the third-party Avalon chemistry toolkit to create substructure fingerprints. Avalon support
used to require special configuration but it’s now part of the standard RDKit build process. Chemfp now supports the
Avalon fingerprints, as the type “RDKit-Avalon/1”. The corresponding rdkit2fps flag is --avalon.

Updated the #software line to include “chemfp/1.3” in addition to the toolkit information. This helps distinguish
between, say, two different programs which generate RDKit Morgan fingerprints. It’s also possible that a chemfp bug
can affect the fingerprint output, so the extra term makes it easier to identify a bad dataset.

101

chemfp Documentation, Release 1.4

15.2 Performance

The k-nearest arena search, which is used in NxM searches, is now parallelized.

The FPS reader is now much faster. As a result, simsearch for a single query (which uses --scan mode) is about
40% faster, and the time for chemfp.load_fingerprints() to create an areana is about 15% faster.

Similarity search performance for the MACCS keys, on a machine which supports the POPCNT instruction, is now
about 20-40% faster, depending on the type of search.

15.3 Command-line tools

In chemfp 1.1 the default error handler for ob2fps, oe2fps, and rdkit2fps was “strict”. If chemfp detected that a toolkit
could not parse a structure, it would print an error message and stop processing. This is not what most people wanted.
They wanted the processing to keep on going.

This was possible by specifying the --errors values “report” or “ignore”, but that was extra work, and confusing.

In chemfp 1.3, the default --errors value is “ignore”, which means chemfp will ignore any problems, not report a
problem, and go on to the next record.

However, if the record identifier is missing (for example, if the SD title line is blank), then this will be always be
reported to stderr even under the “ignore” option. If --errors is “strict” then processing will stop if a record does
not contain an identifier.

Added --version. (Suggested by Noel O’Boyle.)

The ob2fps --help now includes a description of the FP2, FP3, FP4, and MACCS options.

15.4 API

Deprecated read_structure_fingerprints(). Instead, call the new function
read_molecule_fingerprints(). Chemfp 2.0 changed the name to better fit its new toolkit API. This
change in chemfp 1.3 helps improve forward compatibility.

The chemfp.search module implements two functions to help with substructure fingerprint screening. The function
contains_fp() takes a query fingerprint and finds all of the target fingerprints which contain it. (A fingerprint x
“contains” y if all the on-bits in y are also on-bits in x.) The function contains_arena() does the same screening
for each fingerprint in a query arena.

The new SearchResults.shape attribute is a 2-element tuple where the first is the size of the query arena and
the second is the size of the target arena. The new SearchResults.to_csr() method converts the similarity
scores in the SearchResults to a SciPy compressed sparse row matrix. This can be passed to some of the scikit-learn
clustering algorithms.

Backported the FPS reader. This fixed a number of small bugs, like reporting the wrong record line number when
there was a missing terminal newline. It also added some new features like a context manager.

Backported the FPS writer from Python 3.0. While it is not hard to write an FPS file yourself, the new API should
make it even easier. Among other things, it understands how to write the chemfp Metadata as the header and it
implements a context manager. Here’s an example of using it to find fingerprints with at least 225 of the 881 bits set
and save them in another file:

import chemfp
from chemfp import bitops
with chemfp.open("pubchem_queries.fps") as reader:

102 Chapter 15. What’s new in 1.3

chemfp Documentation, Release 1.4

with chemfp.open_fingerprint_writer(
"subset.fps", metadata=reader.metadata) as writer:

for id, fp in reader:
if bitops.byte_popcount(fp) >= 225:

writer.write_fingerprint(id, fp)

The new FPS reader and writer, along with the chemistry toolkit readers, support the Location API as a way to get
information about the internal state in the readers or writers. This is another backport from chemfp 3.0.

Backported bitops functions from chemfp 3.0. The new functions are: hex_contains(),
hex_contains_bit(), hex_intersect(), hex_union(), hex_difference(),
byte_hex_tanimoto(), byte_contains_bit(), byte_to_bitlist(), byte_from_bitlist(),
hex_to_bitlist(), hex_from_bitlist(), hex_encode(), hex_encode_as_bytes(),
hex_decode().

The last three functions related to hex encoding and decoding are important if you want to write code which is for-
ward compatible for Python 3. Under Python 3, the simple fp.encode(“hex”) is no longer supported. Instead, use
bitops.hex_encode(“fp”).

Note that the chemfp 1.x series is unlikely to become Python 3 compatible. For Python 3 support, consider purchasing
a copy of chemfp 3.1.

15.5 Important bug fixes

Fix: As described above, the RDKit-Fingerprint nBitsPerHash default changed from 4 to 2 to match the RDKit default
value.

Fix: Some of the Tanimoto calculations stored intermediate values as a double. As a result of incorrectly ordered
operations, some Tanimoto scores were off by 1 ulp (the last bit in the double). They are now exactly correct.

Fix: if the query fingerprint had 1 bit set and the threshold was 0.0 then the sublinear bounds for the Tanimoto searches
(used when there is a popcount index) failed to check targets with 0 bits set.

Fix: If a query had 0 bits then the k-nearest code for a symmetric arena returned 0 matches, even when the threshold
was 0.0. It now returns the first k targets.

Fix: There was a bug in the sublinear range checks which only occurred in the symmetric searches when the batch_size
is larger than the number of records and with a popcount just outside of the expected range.

15.6 Configuration

The configuration of the –with-* or –without-* options (for OpenMP and SSSE3) support, can now be specified via
environment variables. In the following, the value “0” means disable (same as “–without-*”) and “1” means enable
(same as “–with-*”):

CHEMFP_OPENMP - compile for OpenMP (default: "1")
CHEMFP_SSSE3 - compile SSSE3 popcount support (default: "1")
CHEMFP_AVX2 - compile AVX2 popcount support (default: "0")

This makes it easier to do a “pip install” directly on the tar.gz file or use chemfp under an automated testing system
like tox, even when the default options are not appropriate. For example, the default C compiler on Mac OS X doesn’t
support OpenMP. If you want OpenMP support then install gcc and specify it with the “CC”. If you don’t want
OpenMP support then you can do:

15.5. Important bug fixes 103

chemfp Documentation, Release 1.4

CHEMFP_OPENMP=0 pip install chemfp-1.3.tar.gz

104 Chapter 15. What’s new in 1.3

CHAPTER 16

Future

The chemfp code base is solid and in use at many companies, some of whom have paid for the commercial version. It
has great support for fingerprint generation, fast similarity search, and multiple cheminformatics toolkits.

There are two tracks for improvements. Most of the new feature development is done in the commerical version of
chemfp. I make my living in part by selling software, and few people will pay for software they can get for free.

The chemfp 1.x series is primarily in maintenance mode. I will track changes to the fingerprint types and add any new
fingerprint types which might come along. I’ll also backport some of the features from the commercial version. For
example, I expect chemfp 1.4 will include the text toolkit API from chemfp 2.1, and identifiers will be returned as
Unicode strings instead of byte strings.

I will also accept contributions to chemfp. These must be under the MIT license or similarly unrestrictive license so I
can include it in both the no-cost and commercial versions of chemfp.

105

chemfp Documentation, Release 1.4

106 Chapter 16. Future

CHAPTER 17

Thanks

In no particular order, the following contributed to chemfp in some way: Noel O’Boyle, Geoff Hutchison, the Open
Babel developers, Greg Landrum, OpenEye, Roger Sayle, Phil Evans, Evan Bolton, Wolf-Dietrich Ihlenfeldt, Rajarshi
Guha, Dmitry Pavlov, Roche, Kim Walisch, Daniel Lemire, Nathan Kurz, Chris Morely, Jörg Kurt Wegner, Phil Evans,
Björn Grüning, Andrew Henry, Brian McClain, Pat Walters, Brian Kelley, and Lionel Uran Landaburu.

Thanks also to my wife, Sara Marie, for her many years of support.

107

chemfp Documentation, Release 1.4

108 Chapter 17. Thanks

CHAPTER 18

Indices and tables

• genindex

• modindex

• search

109

chemfp Documentation, Release 1.4

110 Chapter 18. Indices and tables

Python Module Index

c
chemfp, 47
chemfp.arena, 67
chemfp.bitops, 83
chemfp.encodings, 85
chemfp.fps_io, 87
chemfp.io, 93
chemfp.search, 71

111

chemfp Documentation, Release 1.4

112 Python Module Index

Index

Symbols
–with-openmp, –without-openmp

command line option, 4
–with-ssse3, –without-ssse3

command line option, 4
__getitem__() (chemfp.arena.FingerprintArena method),

68
__getitem__() (chemfp.search.SearchResults method), 78
__init__() (chemfp.FingerprintIterator method), 57
__init__() (chemfp.Fingerprints method), 57
__init__() (chemfp.io.Location method), 94
__iter__() (chemfp.FingerprintIterator method), 57
__iter__() (chemfp.FingerprintReader method), 56
__iter__() (chemfp.arena.FingerprintArena method), 68
__iter__() (chemfp.fps_io.FPSReader method), 89
__iter__() (chemfp.search.SearchResult method), 80
__iter__() (chemfp.search.SearchResults method), 78
__len__() (chemfp.arena.FingerprintArena method), 68
__len__() (chemfp.search.SearchResult method), 80
__len__() (chemfp.search.SearchResults method), 78
__repr__() (chemfp.Metadata method), 55
__repr__() (chemfp.io.Location method), 94
__str__() (chemfp.Metadata method), 55

A
aromaticity (chemfp.Metadata attribute), 55

B
byte_contains() (in module chemfp.bitops), 83
byte_contains_bit() (in module chemfp.bitops), 83
byte_difference() (in module chemfp.bitops), 83
byte_from_bitlist() (in module chemfp.bitops), 83
byte_hex_tanimoto() (in module chemfp.bitops), 83
byte_intersect() (in module chemfp.bitops), 83
byte_intersect_popcount() (in module chemfp.bitops), 83
byte_popcount() (in module chemfp.bitops), 83
byte_tanimoto() (in module chemfp.bitops), 83
byte_to_bitlist() (in module chemfp.bitops), 83
byte_union() (in module chemfp.bitops), 83

C
category (chemfp.ChemFPProblem attribute), 58
check_fingerprint_problems() (in module chemfp), 59
check_metadata_problems() (in module chemfp), 59
chemfp (module), 47
chemfp.arena (module), 67
chemfp.bitops (module), 83
chemfp.encodings (module), 85
chemfp.fps_io (module), 87
chemfp.io (module), 93
chemfp.search (module), 71
ChemFPError (class in chemfp), 54
ChemFPProblem (class in chemfp), 58
clear() (chemfp.search.SearchResult method), 80
clear_all() (chemfp.search.SearchResults method), 79
close() (chemfp.FingerprintIterator method), 57
close() (chemfp.FingerprintWriter method), 58
close() (chemfp.fps_io.FPSReader method), 90
close() (chemfp.fps_io.FPSWriter method), 92
closed (chemfp.fps_io.FPSReader attribute), 89
command line option

–with-openmp, –without-openmp, 4
–with-ssse3, –without-ssse3, 4

contains_arena() (in module chemfp.search), 78
contains_fp() (in module chemfp.search), 77
copy() (chemfp.arena.FingerprintArena method), 69
copy() (chemfp.Metadata method), 55
count() (chemfp.search.SearchResult method), 81
count_all() (chemfp.search.SearchResults method), 79
count_tanimoto_hits() (in module chemfp), 60
count_tanimoto_hits_arena() (chemfp.fps_io.FPSReader

method), 90
count_tanimoto_hits_arena() (in module chemfp.search),

71
count_tanimoto_hits_fp()

(chemfp.arena.FingerprintArena method),
69

count_tanimoto_hits_fp() (chemfp.fps_io.FPSReader
method), 90

113

chemfp Documentation, Release 1.4

count_tanimoto_hits_fp() (in module chemfp.search), 71
count_tanimoto_hits_symmetric() (in module chemfp),

61
count_tanimoto_hits_symmetric() (in module

chemfp.search), 72
cumulative_score() (chemfp.search.SearchResult

method), 81
cumulative_score_all() (chemfp.search.SearchResults

method), 79

D
date (chemfp.Metadata attribute), 55
datestamp (chemfp.Metadata attribute), 55
description (chemfp.ChemFPProblem attribute), 59

E
error_level (chemfp.ChemFPProblem attribute), 58

F
filename (chemfp.io.Location attribute), 94
fill_lower_triangle() (in module chemfp.search), 76
FingerprintArena (class in chemfp.arena), 67
FingerprintIterator (class in chemfp), 57
FingerprintReader (class in chemfp), 56
Fingerprints (class in chemfp), 57
FingerprintWriter (class in chemfp), 58
first_line (chemfp.io.Location attribute), 94
FPSReader (class in chemfp.fps_io), 89
FPSWriter (class in chemfp.fps_io), 92
from_base64() (in module chemfp.encodings), 86
from_binary_lsb() (in module chemfp.encodings), 85
from_binary_msb() (in module chemfp.encodings), 85
from_cactvs() (in module chemfp.encodings), 86
from_daylight() (in module chemfp.encodings), 87
from_destination() (chemfp.io.Location method), 94
from_hex() (in module chemfp.encodings), 86
from_hex_lsb() (in module chemfp.encodings), 86
from_hex_msb() (in module chemfp.encodings), 86
from_on_bit_positions() (in module chemfp.encodings),

87
from_source() (chemfp.io.Location method), 94

G
get_by_id() (chemfp.arena.FingerprintArena method), 68
get_fingerprint() (chemfp.arena.FingerprintArena

method), 68
get_fingerprint_by_id() (chemfp.arena.FingerprintArena

method), 68
get_fingerprint_type() (chemfp.arena.FingerprintArena

method), 68
get_fingerprint_type() (chemfp.FingerprintReader

method), 56
get_fingerprint_type() (chemfp.fps_io.FPSReader

method), 90

get_ids() (chemfp.search.SearchResult method), 80
get_ids_and_scores() (chemfp.search.SearchResult

method), 81
get_index_by_id() (chemfp.arena.FingerprintArena

method), 68
get_indices() (chemfp.search.SearchResult method), 80
get_indices_and_scores() (chemfp.search.SearchResult

method), 81
get_max_threads() (in module chemfp), 63
get_num_threads() (in module chemfp), 63
get_scores() (chemfp.search.SearchResult method), 80

H
hex_contains() (in module chemfp.bitops), 83
hex_contains_bit() (in module chemfp.bitops), 84
hex_decode() (in module chemfp.bitops), 84
hex_difference() (in module chemfp.bitops), 84
hex_encode() (in module chemfp.bitops), 84
hex_encode_as_bytes() (in module chemfp.bitops), 84
hex_from_bitlist() (in module chemfp.bitops), 84
hex_intersect() (in module chemfp.bitops), 84
hex_intersect_popcount() (in module chemfp.bitops), 84
hex_isvalid() (in module chemfp.bitops), 84
hex_popcount() (in module chemfp.bitops), 84
hex_tanimoto() (in module chemfp.bitops), 84
hex_to_bitlist() (in module chemfp.bitops), 84
hex_union() (in module chemfp.bitops), 84

I
ids (chemfp.arena.FingerprintArena attribute), 67
iter_arenas() (chemfp.arena.FingerprintArena method),

69
iter_arenas() (chemfp.FingerprintReader method), 56
iter_arenas() (chemfp.fps_io.FPSReader method), 89
iter_ids() (chemfp.search.SearchResult method), 80
iter_ids() (chemfp.search.SearchResults method), 79
iter_ids_and_scores() (chemfp.search.SearchResults

method), 79
iter_indices() (chemfp.search.SearchResults method), 78
iter_indices_and_scores() (chemfp.search.SearchResults

method), 79
iter_scores() (chemfp.search.SearchResults method), 79

K
knearest_tanimoto_search() (in module chemfp), 62
knearest_tanimoto_search_arena()

(chemfp.fps_io.FPSReader method), 91
knearest_tanimoto_search_arena() (in module

chemfp.search), 76
knearest_tanimoto_search_fp()

(chemfp.arena.FingerprintArena method),
70

knearest_tanimoto_search_fp()
(chemfp.fps_io.FPSReader method), 91

114 Index

chemfp Documentation, Release 1.4

knearest_tanimoto_search_fp() (in module
chemfp.search), 76

knearest_tanimoto_search_symmetric() (in module
chemfp), 63

knearest_tanimoto_search_symmetric() (in module
chemfp.search), 77

L
load_fingerprints() (in module chemfp), 52
location (chemfp.fps_io.FPSReader attribute), 89
location (chemfp.ParseError attribute), 54
Location (class in chemfp.io), 93

M
metadata (chemfp.arena.FingerprintArena attribute), 67
metadata (chemfp.fps_io.FPSReader attribute), 89
Metadata (class in chemfp), 55
mol (chemfp.io.Location attribute), 94
msg (chemfp.ParseError attribute), 54

N
num_bits (chemfp.Metadata attribute), 55
num_bytes (chemfp.Metadata attribute), 55

O
offsets (chemfp.io.Location attribute), 94
open() (in module chemfp), 51
open_fingerprint_writer() (in module chemfp), 53
output_recno (chemfp.io.Location attribute), 94

P
ParseError (class in chemfp), 54
partial_count_tanimoto_hits_symmetric() (in module

chemfp.search), 72
partial_threshold_tanimoto_search_symmetric() (in mod-

ule chemfp.search), 75

R
read_molecule_fingerprints() (in module chemfp), 52
read_structure_fingerprints() (in module chemfp), 52
recno (chemfp.io.Location attribute), 95
record (chemfp.io.Location attribute), 95
record_format (chemfp.io.Location attribute), 95
reorder() (chemfp.search.SearchResult method), 81
reorder_all() (chemfp.search.SearchResults method), 80

S
save() (chemfp.arena.FingerprintArena method), 68
save() (chemfp.FingerprintReader method), 56
save() (chemfp.fps_io.FPSReader method), 90
SearchResult (class in chemfp.search), 80
SearchResults (class in chemfp.search), 78
set_num_threads() (in module chemfp), 63

severity (chemfp.ChemFPProblem attribute), 58
shape (chemfp.search.SearchResults attribute), 78
software (chemfp.Metadata attribute), 55
sources (chemfp.Metadata attribute), 55

T
threshold_tanimoto_search() (in module chemfp), 61
threshold_tanimoto_search_arena()

(chemfp.fps_io.FPSReader method), 91
threshold_tanimoto_search_arena() (in module

chemfp.search), 74
threshold_tanimoto_search_fp()

(chemfp.arena.FingerprintArena method),
70

threshold_tanimoto_search_fp()
(chemfp.fps_io.FPSReader method), 91

threshold_tanimoto_search_fp() (in module
chemfp.search), 73

threshold_tanimoto_search_symmetric() (in module
chemfp), 62

threshold_tanimoto_search_symmetric() (in module
chemfp.search), 74

to_csr() (chemfp.search.SearchResults method), 80
type (chemfp.Metadata attribute), 55

W
where() (chemfp.io.Location method), 95
write_fingerprint() (chemfp.FingerprintWriter method),

58
write_fingerprint() (chemfp.fps_io.FPSWriter method),

92
write_fingerprints() (chemfp.FingerprintWriter method),

58
write_fingerprints() (chemfp.fps_io.FPSWriter method),

92

Index 115

	Installing
	Configuration options

	Working with the command-line tools
	Generating fingerprint files from PubChem SD files
	k-nearest neighbor search
	Threshold search
	Combined k-nearest and threshold search
	NxN (self-similar) searches
	Using a toolkit to process the ChEBI dataset
	Alternate error handlers
	Alternate fingerprint file formats
	Convert formats with fpcat
	Merge multiple fingerprint files with fpcat
	chemfp’s two cross-toolkit substructure fingerprints

	Help for the command-line tools
	ob2fps command-line options
	oe2fps command-line options
	rdkit2fps command-line options
	sdf2fps command-line options
	simsearch command-line options
	fpcat command-line options

	The chemfp Python library
	Byte and hex fingerprints
	Fingerprint collections and metadata
	FingerprintArena
	How to use query fingerprints to search for similar target fingerprints
	How to search an FPS file
	FingerprintArena searches returning indices instead of ids
	Computing a distance matrix for clustering
	Convert SearchResults to a SciPy csr matrix
	Taylor-Butina clustering
	Reading structure fingerprints using a toolkit
	Select a random fingerprint sample
	Look up a fingerprint with a given id
	Sorting search results
	Working with raw scores and counts in a range

	chemfp API
	chemfp top-level module
	ChemFPError
	ParseError
	Metadata
	FingerprintReader
	FingerprintIterator
	Fingerprints
	FingerprintWriter
	ChemFPProblem
	Open Babel fingerprints
	OpenEye fingerprints
	RDKit fingerprints

	chemfp.arena module
	FingerprintArena

	chemfp.search module
	SearchResults
	SearchResult

	chemfp.bitops module
	chemfp.encodings
	chemfp.fps_io module
	FPSReader
	FPSWriter

	chemfp.io module
	Location

	License and advertisement
	What’s new in 1.4
	Bug fixes

	What’s new in 1.3
	Toolkit changes
	Performance
	Command-line tools
	API
	Important bug fixes
	Configuration

	Future
	Thanks
	Indices and tables
	Python Module Index

