
chemfp Documentation
Release 3.1

Andrew Dalke

Sep 18, 2017

Contents

1 List of chapters 3
1.1 Installing . 3

1.1.1 Configuration options . 4
1.2 Working with the command-line tools . 5

1.2.1 Generate fingerprint files from PubChem SD tags . 5
1.2.2 k-nearest neighbor search . 6
1.2.3 Threshold search . 6
1.2.4 Combined k-nearest and threshold search . 7
1.2.5 NxN (self-similar) searches . 8
1.2.6 Using a toolkit to process the ChEBI dataset . 8
1.2.7 Alternate error handlers . 12
1.2.8 chemfp’s two cross-toolkit substructure fingerprints . 13
1.2.9 Generate binary FPB files from a structure file . 14
1.2.10 Convert between FPS and FPB formats . 15
1.2.11 Specify the fpcat output format . 16
1.2.12 Similarity search with the FPB format . 16
1.2.13 Converting large data sets to FPB format . 17
1.2.14 Generate fingerprints in parallel and merge to FPB format 17

1.3 Help for the command-line tools . 19
1.3.1 fpcat command-line options . 19
1.3.2 ob2fps command-line options . 20
1.3.3 oe2fps command-line options . 22
1.3.4 rdkit2fps command-line options . 25
1.3.5 sdf2fps command-line options . 27
1.3.6 simsearch command-line options . 28

1.4 Fingerprints and fingerprint search examples . 29
1.4.1 Python 2 vs. Python 3 . 29
1.4.2 Unicode and byte strings . 30
1.4.3 Hex representation of a binary fingerprint . 30
1.4.4 Byte and hex fingerprints . 31
1.4.5 Fingerprint reader and metadata . 35
1.4.6 Working with a FingerprintArena . 36
1.4.7 Save a fingerprint arena . 38
1.4.8 How to use query fingerprints to search for similar target fingerprints 38
1.4.9 How to search an FPS file . 40
1.4.10 How do to a Tversky search using the Dice weights . 41

i

1.4.11 FingerprintArena searches returning indices instead of ids 42
1.4.12 Computing a distance matrix for clustering . 45
1.4.13 Convert SearchResults to a SciPy csr matrix . 46
1.4.14 Taylor-Butina clustering . 47
1.4.15 Configuring OpenMP threads . 49
1.4.16 OpenMP and multi-threaded applications . 50
1.4.17 Fingerprint Substructure Screening (experimental) . 51
1.4.18 Substructure screening with RDKit . 52
1.4.19 Reading structure fingerprints using a toolkit . 58
1.4.20 Select a random fingerprint sample . 59
1.4.21 Don’t reorder an arena by popcount . 61
1.4.22 Look up a fingerprint with a given id . 62
1.4.23 Sorting search results . 63
1.4.24 Working with raw scores and counts in a range . 65
1.4.25 Cumulative search result counts and scores . 66
1.4.26 Writing fingerprints with a fingerprint writer . 69
1.4.27 Fingerprint readers and writers are context managers . 72
1.4.28 Write fingerprints to stdout or a file-like object . 72
1.4.29 Writing fingerprints to an FPB file . 74
1.4.30 Specify the output fingerprint format . 76
1.4.31 Merging multiple structure-based fingerprint sources . 77
1.4.32 Merging multiple fingerprint files . 78
1.4.33 Check for metadata compatibility problems . 82
1.4.34 How to write very large FPB files . 85
1.4.35 FPS fingerprint writer errors . 86
1.4.36 FPS fingerprint writer location . 87
1.4.37 MACCS dependency on hydrogens . 89
1.4.38 Create similarity search web service . 92

1.5 Fingerprint family and type examples . 95
1.5.1 Fingerprint families and types . 95
1.5.2 Fingerprint family . 96
1.5.3 Fingerprint family discovery . 98
1.5.4 get_fingerprint_type() and get_type() . 101
1.5.5 Create a fingerprint using text settings . 102
1.5.6 FingerprintType properties and methods . 103
1.5.7 Convert a structure record to a fingerprint . 104
1.5.8 Convert a structure record to an id and fingerprint . 105
1.5.9 Make a specialized id and molecule fingerprint parser . 106
1.5.10 Read a structure file and compute fingerprints . 107
1.5.11 Structure-based fingerprint reader location . 108
1.5.12 Read fingerprints from a string containing structures . 110
1.5.13 Structure-based fingerprint reader errors . 111
1.5.14 Experimental error handler . 111
1.5.15 Compute a fingerprint for a native toolkit molecule . 112
1.5.16 Fingerprint many native toolkit molecules . 113
1.5.17 Make a specialized molecule fingerprinter . 114

1.6 Toolkit API examples . 115
1.6.1 Get a chemfp toolkit . 115
1.6.2 Parse and create SMILES . 117
1.6.3 Canonical, non-isomeric, and arbitrary SMILES . 118
1.6.4 Use format to create a record in SDF format . 119
1.6.5 Use zlib record compression . 120
1.6.6 Get a list of available formats and distinguish between input and output formats 121
1.6.7 Determine the format for a given filename . 123

ii

1.6.8 Parse the id and the molecule at the same time . 124
1.6.9 Specify alternate error behavior . 125
1.6.10 Specify a SMILES delimiter through reader_args . 127
1.6.11 Specify an output SMILES delimiter through writer_args 128
1.6.12 RDKit-specific SMILES reader_args and writer_args . 129
1.6.13 OpenEye-specific SMILES reader_args and writer_args . 130
1.6.14 OpenEye-specific aromaticity . 133
1.6.15 Open Babel-specific SMILES reader_args and writer_args 134
1.6.16 Get the default reader_args or writer_args for a format . 136
1.6.17 Convert text settings into reader and writer arguments . 136
1.6.18 Multi-toolkit reader_args and writer_args . 137
1.6.19 Qualified reader and writer parameters names . 139
1.6.20 Qualified parameter priorities . 140
1.6.21 Qualified names and text settings . 141
1.6.22 Read molecules from an SD file or stdin . 142
1.6.23 Read ids and molecules from an SD file at the same time 143
1.6.24 Read ids and molecules using an SD tag for the id . 144
1.6.25 Read from a string instead of a file . 146
1.6.26 The reader may reuse molecule objects! . 147
1.6.27 Write molecules to a SMILES file . 148
1.6.28 Reader and writer context managers . 149
1.6.29 Write molecules to stdout in a specified format . 150
1.6.30 Write molecules to a string (and a bit of InChI) . 151
1.6.31 Handling errors when reading molecules from a string . 151
1.6.32 Handling errors when reading molecules from a file . 154
1.6.33 Ignore errors in create_string() and create_bytes() . 158
1.6.34 Ignore errors when writing molecules . 159
1.6.35 Reader and writer format metadata . 161
1.6.36 Location information: filename, record_format, recno and output_recno 162
1.6.37 Location information: record position and content . 164
1.6.38 Writing your own error handler (Experimental) . 166
1.6.39 A Babel-like structure format converter . 168
1.6.40 argparse text settings to reader and writer args . 174
1.6.41 Creating a specialized record parser . 178
1.6.42 Molecule API: Get and set the molecule id . 180
1.6.43 Molecule API: Copy a molecule . 182
1.6.44 Molecule API: Working with SD tags . 183
1.6.45 Add fingerprints to an SD file using a toolkit . 184

1.7 Text toolkit examples . 186
1.7.1 Toolkits may modify the molecular structure . 187
1.7.2 Toolkits may modify SDF syntax . 187
1.7.3 The text toolkit “molecules” . 189
1.7.4 The text toolkit implements the toolkit API . 191
1.7.5 Reading and adding SD tags with the text_toolkit . 192
1.7.6 Synchronizing readers from different toolkits through the text toolkit 193
1.7.7 Add multiple toolkit fingerprints to an SD file . 196
1.7.8 Text toolkit and SDF files . 198
1.7.9 Read id and tag value pairs from an SD file . 199
1.7.10 Extract the id and atom and bond counts from an SD file 199
1.7.11 SDF-specific parser parameters . 201
1.7.12 Working with SD records as strings . 201
1.7.13 Unicode and other character encoding . 203
1.7.14 Mixed encodings and raw bytes . 206

1.8 chemfp API . 208

iii

1.9 chemfp top-level module . 208
1.9.1 ChemFPError . 212
1.9.2 ParseError . 212
1.9.3 Metadata . 212
1.9.4 FingerprintReader . 213
1.9.5 FingerprintIterator . 214
1.9.6 Fingerprints . 215
1.9.7 FingerprintWriter . 215
1.9.8 ChemFPProblem . 216

1.10 chemfp.types - fingerprint families and types . 228
1.10.1 Fingerprint family class . 228
1.10.2 FingerprintFamily . 228
1.10.3 Base fingerprint type . 231
1.10.4 FingerprintType . 231
1.10.5 Open Babel fingerprints . 236
1.10.6 OpenBabelFP2FingerprintType_v1 . 236
1.10.7 OpenBabelFP3FingerprintType_v1 . 237
1.10.8 OpenBabelFP4FingerprintType_v1 . 237
1.10.9 OpenBabelMACCSFingerprintType_v1 . 237
1.10.10 OpenBabelMACCSFingerprintType_v2 . 237
1.10.11 SubstructOpenBabelFingerprinter_v1 . 237
1.10.12 RDMACCSOpenBabelFingerprinter_v1 . 238
1.10.13 RDMACCSOpenBabelFingerprinter_v2 . 238
1.10.14 OpenEye fingerprints . 238
1.10.15 OpenEyeCircularFingerprintType_v2 . 238
1.10.16 OpenEyeMACCSFingerprintType_v2 . 239
1.10.17 OpenEyeMACCSFingerprintType_v3 . 239
1.10.18 OpenEyePathFingerprintType_v2 . 239
1.10.19 OpenEyeTreeFingerprintType_v2 . 240
1.10.20 SubstructOpenEyeFingerprinter_v1 . 240
1.10.21 RDMACCSOpenEyeFingerprinter_v1 . 240
1.10.22 RDMACCSOpenEyeFingerprinter_v2 . 240
1.10.23 RDKit fingerprints . 241
1.10.24 RDKitFingerprintType_v1 . 241
1.10.25 RDKitFingerprintType_v2 . 241
1.10.26 RDKitMACCSFingerprintType_v1 . 242
1.10.27 RDKitMACCSFingerprintType_v2 . 242
1.10.28 RDKitMorganFingerprintType_v1 . 242
1.10.29 RDKitAtomPairFingerprint_v1 . 242
1.10.30 RDKitAtomPairFingerprint_v2 . 243
1.10.31 RDKitTorsionFingerprintType_v1 . 243
1.10.32 RDKitTorsionFingerprintType_v2 . 243
1.10.33 RDKitPatternFingerprint_v1 . 243
1.10.34 RDKitPatternFingerprint_v2 . 244
1.10.35 RDKitPatternFingerprint_v3 . 244
1.10.36 RDKitAvalonFingerprintType_v1 . 244
1.10.37 SubstructRDKitFingerprintType_v1 . 244
1.10.38 RDMACCSRDKitFingerprinter_v1 . 244
1.10.39 RDMACCSRDKitFingerprinter_v2 . 245

1.11 chemfp.arena module . 245
1.11.1 FingerprintArena . 245

1.12 chemfp.search module . 249
1.12.1 SearchResults . 262
1.12.2 SearchResult . 264

iv

1.13 chemfp.bitops module . 266
1.14 chemfp.encodings . 268
1.15 chemfp.fps_io module . 270

1.15.1 FPSReader . 270
1.15.2 FPSWriter . 273

1.16 chemfp.fpb_io module . 274
1.16.1 OrderedFPBWriter . 274
1.16.2 write_fingerprint . 275
1.16.3 write_fingerprints . 275
1.16.4 close . 275
1.16.5 InputOrderFPBWriter . 275
1.16.6 write_fingerprint . 275
1.16.7 write_fingerprints . 276
1.16.8 close . 276

1.17 chemfp toolkit API . 276
1.17.1 name . 276
1.17.2 software . 276
1.17.3 is_licensed . 276
1.17.4 get_formats . 277
1.17.5 get_input_formats . 277
1.17.6 get_output_formats . 277
1.17.7 get_format . 277
1.17.8 get_input_format . 277
1.17.9 get_output_format . 277
1.17.10 get_input_format_from_source . 277
1.17.11 get_output_format_from_destination . 278
1.17.12 read_molecules . 278
1.17.13 read_molecules_from_string . 278
1.17.14 read_ids_and_molecules . 278
1.17.15 read_ids_and_molecules_from_string . 278
1.17.16 make_id_and_molecule_parser . 278
1.17.17 parse_molecule . 279
1.17.18 parse_id_and_molecule . 279
1.17.19 create_string . 279
1.17.20 create_bytes . 279
1.17.21 open_molecule_writer . 279
1.17.22 open_molecule_writer_to_string . 279
1.17.23 open_molecule_writer_to_bytes . 280
1.17.24 copy_molecule . 280
1.17.25 add_tag . 280
1.17.26 get_tag . 280
1.17.27 get_tag_pairs . 280
1.17.28 get_id . 280
1.17.29 set_id . 280

1.18 chemfp.base_toolkit . 281
1.18.1 FormatMetadata . 281
1.18.2 FormatMetadata . 281
1.18.3 Toolkit readers . 281
1.18.4 BaseMoleculeReader . 282
1.18.5 Toolkit writers . 283
1.18.6 BaseMoleculeWriter . 284
1.18.7 Format . 285
1.18.8 Format . 285

1.19 chemfp.openbabel_toolkit module . 288

v

1.19.1 name . 288
1.19.2 software . 288
1.19.3 is_licensed (openbabel_toolkit) . 289
1.19.4 get_formats (openbabel_toolkit) . 289
1.19.5 get_input_formats (openbabel_toolkit) . 289
1.19.6 get_output_formats (openbabel_toolkit) . 289
1.19.7 get_format (openbabel_toolkit) . 289
1.19.8 get_input_format (openbabel_toolkit) . 289
1.19.9 get_output_format (openbabel_toolkit) . 290
1.19.10 get_input_format_from_source (openbabel_toolkit) . 290
1.19.11 get_output_format_from_destination (openbabel_toolkit) 290
1.19.12 read_molecules (openbabel_toolkit) . 291
1.19.13 read_molecules_from_string (openbabel_toolkit) . 292
1.19.14 read_ids_and_molecules (openbabel_toolkit) . 292
1.19.15 read_ids_and_molecules_from_string (openbabel_toolkit) 293
1.19.16 make_id_and_molecule_parser (openbabel_toolkit) . 294
1.19.17 parse_molecule (openbabel_toolkit) . 294
1.19.18 parse_id_and_molecule (openbabel_toolkit) . 295
1.19.19 create_string (openbabel_toolkit) . 295
1.19.20 create_bytes (openbabel_toolkit) . 296
1.19.21 open_molecule_writer (openbabel_toolkit) . 296
1.19.22 open_molecule_writer_to_string (openbabel_toolkit) . 297
1.19.23 open_molecule_writer_to_bytes (openbabel_toolkit) . 298
1.19.24 copy_molecule (openbabel_toolkit) . 298
1.19.25 add_tag (openbabel_toolkit) . 298
1.19.26 get_tag (openbabel_toolkit) . 299
1.19.27 get_tag_pairs (openbabel_toolkit) . 299
1.19.28 get_id (openbabel_toolkit) . 299
1.19.29 set_id (openbabel_toolkit) . 299

1.20 chemfp.openeye_toolkit module . 300
1.20.1 name . 300
1.20.2 software . 300
1.20.3 is_licensed (openeye_toolkit) . 300
1.20.4 get_formats (openeye_toolkit) . 300
1.20.5 get_input_formats (openeye_toolkit) . 300
1.20.6 get_output_formats (openeye_toolkit) . 300
1.20.7 get_format (openeye_toolkit) . 301
1.20.8 get_input_format (openeye_toolkit) . 301
1.20.9 get_output_format (openeye_toolkit) . 301
1.20.10 get_input_format_from_source (openeye_toolkit) . 301
1.20.11 get_output_format_from_destination (openeye_toolkit) . 302
1.20.12 read_molecules (openeye_toolkit) . 302
1.20.13 read_molecules_from_string (openeye_toolkit) . 303
1.20.14 read_ids_and_molecules (openeye_toolkit) . 304
1.20.15 read_ids_and_molecules_from_string (openeye_toolkit) 305
1.20.16 make_id_and_molecule_parser (openeye_toolkit) . 305
1.20.17 parse_molecule (openeye_toolkit) . 306
1.20.18 parse_id_and_molecule (openeye_toolkit) . 306
1.20.19 create_string (openeye_toolkit) . 307
1.20.20 create_bytes (openeye_toolkit) . 307
1.20.21 open_molecule_writer (openeye_toolkit) . 308
1.20.22 open_molecule_writer_to_string (openeye_toolkit) . 309
1.20.23 open_molecule_writer_to_bytes (openeye_toolkit) . 310
1.20.24 copy_molecule (openeye_toolkit) . 310

vi

1.20.25 add_tag (openeye_toolkit) . 310
1.20.26 get_tag (openeye_toolkit) . 311
1.20.27 get_tag_pairs (openeye_toolkit) . 311
1.20.28 get_id (openeye_toolkit) . 311
1.20.29 set_id (openeye_toolkit) . 311

1.21 chemfp.rdkit_toolkit module . 311
1.21.1 name . 311
1.21.2 software . 312
1.21.3 is_licensed (rdkit_toolkit) . 312
1.21.4 get_formats (rdkit_toolkit) . 312
1.21.5 get_input_formats (rdkit_toolkit) . 312
1.21.6 get_output_formats (rdkit_toolkit) . 312
1.21.7 get_format (rdkit_toolkit) . 312
1.21.8 get_input_format (rdkit_toolkit) . 313
1.21.9 get_output_format (rdkit_toolkit) . 313
1.21.10 get_input_format_from_source (rdkit_toolkit) . 313
1.21.11 get_output_format_from_destination (rdkit_toolkit) . 313
1.21.12 read_molecules (rdkit_toolkit) . 314
1.21.13 read_molecules_from_string (rdkit_toolkit) . 315
1.21.14 read_ids_and_molecules (rdkit_toolkit) . 316
1.21.15 read_ids_and_molecules_from_string (rdkit_toolkit) . 316
1.21.16 make_id_and_molecule_parser (rdkit_toolkit) . 317
1.21.17 parse_molecule (rdkit_toolkit) . 317
1.21.18 parse_id_and_molecule (rdkit_toolkit) . 318
1.21.19 create_string (rdkit_toolkit) . 318
1.21.20 create_bytes (rdkit_toolkit) . 319
1.21.21 open_molecule_writer (rdkit_toolkit) . 319
1.21.22 open_molecule_writer_to_string (rdkit_toolkit) . 320
1.21.23 open_molecule_writer_to_bytes (rdkit_toolkit) . 321
1.21.24 copy_molecule (rdkit_toolkit) . 321
1.21.25 add_tag (rdkit_toolkit) . 322
1.21.26 get_tag (rdkit_toolkit) . 322
1.21.27 get_tag_pairs (rdkit_toolkit) . 322
1.21.28 get_id (rdkit_toolkit) . 322
1.21.29 set_id (rdkit_toolkit) . 322

1.22 chemfp.text_toolkit module . 323
1.22.1 name . 323
1.22.2 software . 323
1.22.3 is_licensed (text_toolkit) . 323
1.22.4 get_formats (text_toolkit) . 324
1.22.5 get_input_formats (text_toolkit) . 324
1.22.6 get_output_formats (text_toolkit) . 324
1.22.7 get_format (text_toolkit) . 324
1.22.8 get_input_format (text_toolkit) . 324
1.22.9 get_output_format (text_toolkit) . 325
1.22.10 get_input_format_from_source (text_toolkit) . 325
1.22.11 get_output_format_from_destination (text_toolkit) . 325
1.22.12 read_molecules (text_toolkit) . 326
1.22.13 read_molecules_from_string (text_toolkit) . 327
1.22.14 read_ids_and_molecules (text_toolkit) . 327
1.22.15 read_ids_and_molecules_from_string (text_toolkit) . 328
1.22.16 make_id_and_molecule_parser (text_toolkit) . 329
1.22.17 parse_molecule (text_toolkit) . 329
1.22.18 parse_id_and_molecule (text_toolkit) . 330

vii

1.22.19 create_string (text_toolkit) . 330
1.22.20 create_bytes (text_toolkit) . 331
1.22.21 open_molecule_writer (text_toolkit) . 331
1.22.22 open_molecule_writer_to_string (text_toolkit) . 332
1.22.23 open_molecule_writer_to_bytes (text_toolkit) . 333
1.22.24 copy_molecule (text_toolkit) . 333
1.22.25 add_tag (text_toolkit) . 333
1.22.26 get_tag (text_toolkit) . 334
1.22.27 get_tag_pairs (text_toolkit) . 334
1.22.28 get_id (text_toolkit) . 334
1.22.29 set_id (text_toolkit) . 334
1.22.30 read_sdf_records (text_toolkit) . 335
1.22.31 read_sdf_ids_and_records (text_toolkit) . 336
1.22.32 read_sdf_ids_and_values (text_toolkit) . 336
1.22.33 read_sdf_records_from_string (text_toolkit) . 337
1.22.34 read_sdf_ids_and_records_from_string (text_toolkit) . 338
1.22.35 read_sdf_ids_and_values_from_string (text_toolkit) . 339
1.22.36 get_sdf_tag (text_toolkit) . 339
1.22.37 add_sdf_tag (text_toolkit) . 340
1.22.38 get_sdf_tag_pairs (text_toolkit) . 340
1.22.39 get_sdf_id (text_toolkit) . 340
1.22.40 set_sdf_id (text_toolkit) . 340

1.23 chemfp._text_toolkit module (private) . 341
1.23.1 TextRecord . 341
1.23.2 SDFRecord . 342
1.23.3 SmiRecord . 342
1.23.4 CanRecord . 342
1.23.5 UsmRecord . 343
1.23.6 SmiStringRecord . 343
1.23.7 CanStringRecord . 343
1.23.8 UsmStringRecord . 343

1.24 chemfp.io module . 343
1.24.1 Location . 343

2 License and advertisement 347

3 What’s new in version 3.1 349

4 What’s new in version 3.0.1 351

5 What’s new in version 3.0 353

6 What’s new in version 2.1 355

7 What’s new in version 2.0 357

8 Future 359

9 Thanks 361

10 Indices and tables 363

Python Module Index 365

viii

chemfp Documentation, Release 3.1

chemfp is a set of tools for working with cheminformatics fingerprints.

This is the documentation for the commerical version of chemfp. The documentation for chemfp 1.3, the no-cost
version of chemfp, is available from http://chemfp.readthedocs.io/en/chemfp-1.3/.

Most people will use the command-line programs to generate and search fingerprint files. ob2fps, oe2fps, and rdkit2fps
use respectively the Open Babel, OpenEye, and RDKit chemistry toolkits to convert structure files into fingerprint files.
sdf2fps extracts fingerprints encoded in SD tags to make the fingerprint file. simsearch finds targets in a fingerprint
file which are sufficiently similar to the queries. fpcat converts between FPS and FPB formats and merges multiple
fingerprint files into one.

The programs are built using the chemfp Python library API. The search capabilities are part of the public API, as well
as a cross-toolkit API for reading and writing molecules from structure files or strings, and for computing molecular
fingerprints.

Remember: chemfp cannot generate fingerprints from a structure file without a third-party chemistry toolkit.

Chemfp 3.1 was released on 18 September 2017. It supports Python 2.7 and 3.5+ and can be used with any recent
version of OEChem/OEGraphSim, Open Babel, or RDKit.

Contents 1

http://chemfp.com/
http://chemfp.readthedocs.io/en/chemfp-1.3/
http://openbabel.org/
http://www.eyesopen.com/
http://www.rdkit.org/

chemfp Documentation, Release 3.1

2 Contents

CHAPTER 1

List of chapters

Installing

Chemfp requires that Python and a C compiler be installed in your machines. Since chemfp doesn’t run on Microsoft
Windows (for tedious technical reasons), then your machine likely already has both Python and a C compiler installed.
In case you don’t have Python, or you want to install a newer version, you can download a copy of Python from
http://www.python.org/download/ . If you don’t have a C compiler, .. well, do I really need to give you a pointer for
that?

You may use chemfp 3.1 with either Python 2.7, or Python 3.5 or newer. If you want to run on Python 2.6 then you’ll
need to use chemfp 2.1.

The core chemfp functionality does not depend on a third-party library but you will need a chemistry toolkit in order
to generate new fingerprints from structure files. chemfp supports the free Open Babel and RDKit toolkits and the
proprietary OEChem toolkit. Make sure you install the Python libraries for the toolkit(s) you select.

The easiest way to install chemfp is with the pip installer. This comes with Python 2.7.9 or later, and with Python 3.4
and later so it may already be installed. To install the tar.gz file with pip:

pip install chemfp-3.1.tar.gz

Otherwise you can use Python’s standard “setup.py”. Read http://docs.python.org/install/index.html for details of how
to use it. The short version is to do the following:

tar xf chemfp-3.1.tar.gz
cd chemfp-3.1
python setup.py build
python setup.py install

The last step may need a sudo if you otherwise cannot write to your Python site-package. Another option is to use a
virtual environment.

3

http://www.python.org/download/
https://pip.pypa.io/
http://docs.python.org/install/index.html
https://pypi.python.org/pypi/virtualenv

chemfp Documentation, Release 3.1

Configuration options

The setup.py file has several compile-time options which can be set either from the python setup.py build
command-line or through environment variables. The environment variable solution is the easiest way to change the
settings under pip.

--with-openmp, --without-openmp

Chemfp uses OpenMP to parallelize multi-query searches. The default is --with-openmp. If you have a very old
version of gcc, or an older version of clang, or are on a Mac where the clang version doesn’t support OpenMP, then
you will need to use --without-openmp to tell setup.py to compile without OpenMP:

python setup.py build --without-openmp

You can also set the environment variable CHEMFP_OPENMP to “1” to compile with OpenMP support, or to “0” to
compile without OpenMP support:

CHEMFP_OPENMP=0 pip install chemfp-3.1.tar.gz

Note: you can use the environment variable CC to change the C compiler. For example, the clang compiler on Mac
doesn’t support OpenMP so I installed gcc-7 and compile using:

CC=gcc-7 pip install chemfp-3.1.tar.gz

--with-ssse3, --without-ssse3

Chemfp by default compiles with SSSE3 support, which was first available in 2006 so almost certainly available on
your Intel-like processor. In case I’m wrong (are you compiling for ARM? If so, send my any compiler patches), you
can disable SSSE3 support using the --without-ssse3, or set the environment variable CHEMFP_SSSE3 to “0”.

Compiling with SSSE3 support has a very odd failure case. If you compile with the SSSE3 flag enabled, then take the
binary to a machine without SSSE3 support, then it will crash because all of the code will be compiled to expect the
SSSE3 instruction set even though only one file, popcount_SSSE3.c, should be compiledthat way.

The solution is to compile popcount_SSSE3.c with the SSSE3 flag enabled and all of the other files without that
flag. Unfortunately, Python’s setup.py doesn’t make that easy to do. If this is a problem for you, take a look at
filter_gcc in the chemfp distribution. It’s used like this:

CC=$PWD/filter_gcc python setup.py build

It’s a bit of a hack so contact me if you have problems.

--with-avx2, --without-avx2

Chemfp 3.0 added support for the AVX2 instruction set. This can be 15% faster than the POPCNT instruction for large
(ie, 2048 bit or greater) fingerprints. By default it is disabled. Use --with-avx2 or set the environment variable
CHEMFP_AVX2 to “1” to enable it.

While 15% faster sounds great, I have only tested the AVX2 support in one machine environment. I expect that it will
have similar portability problems as the SSSE3 code had, that is, if the code is compiled with the AVX2 compilation
flag then it’s free to assume that some other instruction sets, like SSE4.2, are also available. Because of the way
Python’s setup.py works, all of the code will be compiled to use these more advanced instructions. If chemfp is then
run on a machine without those instructions, it will cause the program to crash with an illegal instruction.

Chemfp does check that the chip implements AVX2 before calling the functions which are explicitly written with
AVX2. The problem is that other parts of the code may be affected, at the compiler’s disgression. I have no way of
knowing.

A solution is to modify the filter_gcc option I mentioned earlier. Let me know if this is something you want me
to work on with you.

4 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Working with the command-line tools

The sections in this chapter describe examples of using the command-line tools to generate fingerprint files and to do
similarity searches of those files.

Generate fingerprint files from PubChem SD tags

In this section you’ll learn how to create a fingerprint file from an SD file which contains pre-computed CACTVS
fingerprints. You do not need a chemistry toolkit for this section.

PubChem is a great resource of publically available chemistry information. The data is available for ftp download.
We’ll use some of their SD formatted files. Each record has a PubChem/CACTVS fingerprint field, which we’ll extract
to generate an FPS file.

Start by downloading the files Compound_027575001_027600000.sdf.gz and Com-
pound_014550001_014575000.sdf.gz. At the time of writing (April 2017) they contain 384 and 5167 records,
respectively. (I chose smaller than average files so they would be easier to open and review.)

Next, convert the files into fingerprint files. On the command line do the following two commands:

sdf2fps --pubchem Compound_027575001_027600000.sdf.gz -o pubchem_queries.fps
sdf2fps --pubchem Compound_014550001_014575000.sdf.gz -o pubchem_targets.fps

Congratulations, that was it!

If you’re curious about what an FPS file looks like, here are the first 10 lines of pubchem_queries.fps, with some of
the lengthy fingerprint lines replaced with an ellipsis:

#FPS1
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_027575001_027600000.sdf.gz
#date=2017-09-16T21:25:08
075e1c00020800000000 ... 1fd7e91913047100000402002001000000020100900000000000000000
→˓27575190
035e1c00620000000000 ... 1f97e11913047100000800402000080000040020100004000000000000
→˓27575192
075e1c00020000000000 ... 1f97e11913057101000002006800000000000100340000000000000000
→˓27575198
075e1c00024000000000 ... 1f97e11913047100000000002000000000000000100000000000000000
→˓27575208

How does this work? Each PubChem record contains the precomputed CACTVS substructure keys in the PUB-
CHEM_CACTVS_SUBSKEYS tag. Here’s what it looks like for record 27575190, which is the first record in Com-
pound_027575001_027600000.sdf.gz:

> <PUBCHEM_CACTVS_SUBSKEYS>
AAADceB6OABAEAAAAAAAAAAAAAAAAAAAAAAwYAAAAAAAAAABQAAAHgRQAAABrAil2AKyyYLABAqIAiXS
WHLCAAAlChQIiBlAbOgKJjLgtZ2HMQhk1AH465eYyCCOAAAgQAAEgAAAAECAAAkAAAAAAAAAAA==

The --pubchem flag tells sdf2fps to get the value of that tag and decode it to get the fingerprint. It also adds a few
metadata fields to the fingerprint file header.

The order of the FPS fingerprints are the same as the order of the corresponding record in the SDF. You can see that in
the output, where 27575190 is the first record in the FPS fingerprints.

1.2. Working with the command-line tools 5

http://pubchem.ncbi.nlm.nih.gov/
ftp://ftp.ncbi.nlm.nih.gov
http://en.wikipedia.org/wiki/Structure_Data_File#SDF
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz

chemfp Documentation, Release 3.1

If you store records in an SD file then you almost certainly don’t use the same fingerprint encoding as PubChem.
sdf2fps can decode from a number of encodings, like hex and base64. Use --help to see the list of available
decoders.

k-nearest neighbor search

In this section you’ll learn how to search a fingerprint file to find the k-nearest neighbors. You will need the FPS
fingerprint files generated in Generate fingerprint files from PubChem SD tags but you do not need a chemistry toolkit.

We’ll use the pubchem_queries.fps as the queries for a k=2 nearest neighor similarity search of the target file
puchem_targets.gps:

simsearch -k 2 -q pubchem_queries.fps pubchem_targets.fps

That’s all! You should get output which starts:

#Simsearch/1
#num_bits=881
#type=Tanimoto k=2 threshold=0.0
#software=chemfp/3.1
#queries=pubchem_queries.fps
#targets=pubchem_targets.fps
#query_sources=Compound_027575001_027600000.sdf.gz
#target_sources=Compound_014550001_014575000.sdf.gz
2 27575190 14555201 0.7236 14566941 0.7105
2 27575192 14555203 0.7158 14555201 0.7114
2 27575198 14555201 0.7286 14569555 0.7259
2 27575208 14555201 0.7701 14566941 0.7584

Here’s how to interpret the output. The lines starting with ‘#’ are header lines. It contains metadata information
describing that this is a similarity search report. You can see the search parameters, the name of the tool which did the
search, and the filenames which went into the search.

After the ‘#’ header lines come the search results, with one result per line. There are in the same order as the query
fingerprints. Each result line contains tab-delimited columns. The first column is the number of hits. The second
column is the query identifier used. The remaining columns contain the hit data, with alternating target id and its
score.

For example, the first result line contains the 2 hits for the query 27575190. The first hit is the target id 14555201 with
score 0.7236 and the second hit is 14566941 with score 0.7105. Since this is a k-nearest neighor search, the hits are
sorted by score, starting with the highest score. Do be aware that ties are broken arbitrarily.

Threshold search

In this section you’ll learn how to search a fingerprint file to find all of the neighbors at or above a given threshold.
You will need the FPS fingerprint files generated in Generate fingerprint files from PubChem SD tags but you do not
need a chemistry toolkit.

Let’s do a threshold search and find all hits which are at least 0.738 similar to the queries:

simsearch --threshold 0.738 -q pubchem_queries.fps pubchem_targets.fps

The first 14 lines of output from this are:

#Simsearch/1
#num_bits=881

6 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

#type=Tanimoto k=all threshold=0.738
#software=chemfp/3.1
#queries=pubchem_queries.fps
#targets=pubchem_targets.fps
#query_sources=Compound_027575001_027600000.sdf.gz
#target_sources=Compound_014550001_014575000.sdf.gz
0 27575190
0 27575192
0 27575198
3 27575208 14566941 0.7584 14566938 0.7542 14555201 0.
→˓7701
3 27575221 14566941 0.7473 14566938 0.7432 14555201 0.
→˓7592
3 27575223 14566941 0.7473 14566938 0.7432 14555201 0.
→˓7592

Take a look at the last line, which contains the 3 hits for the query id 27575223. As before, the hit information
alternates between the target ids and the target scores, but unlike the k-nearest search, the threshold search hits are not
in a particular order. You can see that here with the scores 0.7473, 0.7432, 0.7592, which are in neither increasing nor
decreasing order.

Combined k-nearest and threshold search

In this section you’ll learn how to search a fingerprint file to find the k-nearest neighbors, where all of the hits must be
at or above given threshold. You will need the fingerprint files generated in Generate fingerprint files from PubChem
SD tags but you do not need a chemistry toolkit.

You can combine the -k and --threshold queries to find the k-nearest neighbors which are all above a given
threshold:

simsearch -k 3 --threshold 0.7 -q pubchem_queries.fps pubchem_targets.fps

This find the nearest 3 structures, which all must be at least 0.7 similar to the query fingerprint. The output from the
above starts:

#Simsearch/1
#num_bits=881
#type=Tanimoto k=3 threshold=0.7
#software=chemfp/3.1
#queries=pubchem_queries.fps
#targets=pubchem_targets.fps
#query_sources=Compound_027575001_027600000.sdf.gz
#target_sources=Compound_014550001_014575000.sdf.gz
3 27575190 14555201 0.7236 14566941 0.7105 14566938 0.
→˓7068
2 27575192 14555203 0.7158 14555201 0.7114
3 27575198 14555201 0.7286 14569555 0.7259 14553070 0.
→˓7065
3 27575208 14555201 0.7701 14566941 0.7584 14566938 0.
→˓7542
3 27575221 14555201 0.7592 14566941 0.7473 14566938 0.
→˓7432
3 27575223 14555201 0.7592 14566941 0.7473 14566938 0.
→˓7432
2 27575240 14555201 0.7150 14566941 0.7016

1.2. Working with the command-line tools 7

chemfp Documentation, Release 3.1

2 27575250 14555203 0.7128 14555201 0.7085
3 27575257 14572463 0.7468 14563588 0.7250 14561245 0.
→˓7219

The output format is identical to the previous two search examples, and because this is a k-nearest search, the hits are
sorted from highest score to lowest.

NxN (self-similar) searches

In this section you’ll learn how to use the same fingerprints as both the queries and targets, that is, a self-similarity
search. You will need the pubchem_queries.fps fingerprint file generated in Generate fingerprint files from PubChem
SD tags but you do not need a chemistry toolkit.

Use the --NxN option if you want to use the same set of fingerprints as both the queries and targets. Using the
pubchem_queries.fps from the previous sections:

simsearch -k 3 --threshold 0.7 --NxN pubchem_queries.fps

This code is very fast because there are so few fingerprints. For larger files the --NxN will be about twice as fast and
use half as much memory compared to:

simsearch -k 3 --threshold 0.7 -q pubchem_queries.fps pubchem_queries.fps

In addition, the --NxN option excludes matching a fingerprint to itself (the diagonal term).

Using a toolkit to process the ChEBI dataset

In this section you’ll learn how to create a fingerprint file from a structure file. The structure processing and fingerprint
generation are done with a third-party chemisty toolkit. chemfp supports Open Babel, OpenEye, and RDKit. (OpenEye
users please note that you will need an OEGraphSim license to use the OpenEye-specific fingerprinters.)

We’ll work with data from ChEBI, which are “Chemical Entities of Biological Interest”. They distribute their
structures in several formats, including as an SD file. For this section, download the “lite” version from ftp:
//ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz . It contains the same structure data as the complete ver-
sion but many fewer tag data fields. For ChEBI 155 this file contains 95,955 records and the compressed file is 28MB.

Unlike the PubChem data set, the ChEBI data set does not contain fingerprints so we’ll need to generate them using a
toolkit.

ChEBI record titles don’t contain the id

Strangely, the ChEBI dataset does not use the title line of the SD file to store the record id. A simple examination
shows that 47,376 of the title lines are empty, 39,615 have the title “null”, 4,499 have the title ” ”, 2,033 have the title
“ChEBI”, 45 of them are labeled “Structure #1”, and the others are usually compound names.

(I’ve asked ChEBI to fix this, to no success. Perhaps you have more influence?)

Instead, the record id is stored as value of the “ChEBI ID” tag, which looks like:

> <ChEBI ID>
CHEBI:776

By default the toolkit-based fingerprint generation tools use the title as the identifier, and print a warning and skip the
record if the identifier is missing. Here’s an example with rdkit2fps:

8 Chapter 1. List of chapters

http://www.ebi.ac.uk/chebi/
ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz
ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz

chemfp Documentation, Release 3.1

% rdkit2fps ChEBI_lite.sdf.gz
#FPS1
#num_bits=2048
#type=RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1
#software=RDKit/2017.09.1.dev1 chemfp/3.1
#source=ChEBI_lite.sdf.gz
#date=2017-09-14T21:17:44
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 1, record #1.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 62, record #2.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 100, record #3.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 135, record #4.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 201, record #5.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 236, record #6.
→˓Skipping.
[23:17:44] S group MUL ignored on line 103
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 264, record #7.
→˓Skipping.
[23:17:44] Unhandled CTAB feature: S group SRU on line: 31. Molecule skipped.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 435, record #9.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 519, record #10.
→˓Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 581, record #11.
→˓Skipping.
031087be231150242e714400920000a193c1080c02858a1116a68100a58806342840405253004080c8cc3c4811
4101b25081a10c025e634c08a1c00088102c0400121040a2080505188a9c0a150000028211219c1001000981c4
804417180aca0401408500180182210716db1580708a0b8a0802820532854411200c1101040404001118600d0a
518402385dc00011290602205a070480c148f240421000c321801922c7808740cd0b10ea4c40000403dc180121
94d8d120020150b3d00043a24370000201042881d15018c0e0901442881d68604c4a83808110c772a824051948
003c801360600221040010e20418381668404b0424ec130f05a090c94960e0 ChEBI
00008000000000000000002880000000000000000200000004008000000000000000200040000002000c000000
000000000080080000000200400100000000000000001000000400001000000000000000800000000000000100
00000801002000000001000000400004c000000000000000800004000000001102000000200004000000100300
08000000000000000000000000000000000820000404000000800000400000200c000008040000000000000000
200101008000000000000000000202000002008000000000000002000000000008000400000000000000000100
40000100020080000001000300280000002002000000000000000000000000 ChEBI

....

That output contains only two fingerprint records, both with the id “ChEBI”. The other records had no title and were
skipped, with a message sent to stderr describing the problem and the location of the record containing the problem.

(If the first 100 records have no identifiers then the command-line tools will exit even if --errors is ignore. This is
a safety mechanism. Let me know if it’s a problem.)

Instead, use the --id-tag option to specify of the name of the data tag containing the id. For this data set you’ll
need to write it as:

--id-tag "ChEBI ID"

The quotes are important because of the space in the tag name.

Here’s what that looks like:

1.2. Working with the command-line tools 9

chemfp Documentation, Release 3.1

% rdkit2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz | fold | head -20
[23:26:39] S group MUL ignored on line 103
[23:26:39] Unhandled CTAB feature: S group SRU on line: 31. Molecule skipped.
#FPS1
#num_bits=2048
#type=RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1
#software=RDKit/2017.09.1.dev1 chemfp/3.1
#source=ChEBI_lite.sdf.gz
#date=2017-09-14T21:26:39
10208220141258c184490038b4124609db0030024a0765883c62c9e1288a1dc224de62f445743b8b
30ad542718468104d521a214227b29ba3822fbf20e15491802a051532cd10d902c39b02b51648981
9c87eb41142811026d510a890a711cb02f2090ddacd990c5240cc282090640103d0a0a8b460184f5
11114e2a8060200804529804532313bb03912d5e2857a6028960189e370100052c63474748a1c000
8079f49c484ca04c0d0bcb2c64b72401042a1f82002b097e852830e5898302021a1203e412064814
a598741c014e9210bc30ab180f0162029d4c446aa01c34850071e4ff037a60e732fd85014344f82a
344aa98398654481b003a84f201f518f CHEBI:90
00000000080200412008000008000004000010100022008000400002000020100020006000800001
01000100080001000010000002002200000200000008000000400002100000000080000004401000
80200020800200002000001400022064000004244810000000000080000a80012002020004198002
00080200020020120040203001000802010100024211000004400000000100200003000001000100
0100021000a200601080002a00002020048004030000884084000008000002040200010800000000
2000010022000800002000020001400020800100025040000000200a080244000060008000000802
8100c801108000000041c00200800002 CHEBI:165

In addition to “ChEBI ID” there’s also a “ChEBI Name” tag which includes data values like “tropic acid” and “(+)-
guaia-6,9-diene”. Every ChEBI record has a unique name so the names could also be used as the primary identifier
instead of its id.

The FPS fingerprint file format allows identifiers with a space, or comma, or anything other tab, newline, and a couple
of other bytes, so it’s no problem using those names directly.

To use the ChEBI Name as the primary chemfp identifier, specify:

--id-tag "ChEBI Name"

Generate fingerprints with Open Babel

If you have the Open Babel Python library installed then you can use ob2fps to generate fingerprints:

ob2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fps

This takes just under 3 minutes on my 7 year old desktop to process all of the records.

The default generates FP2 fingerprints, so the above is the same as:

ob2fps --FP2 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fps

ob2fps can generate several other types of fingerprints. (Use --help for a list.) For example, to generate the Open
Babel implementation of the MACCS definition specify:

ob2fps --MACCS --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

Generate fingerprints with OpenEye

If you have the OEChem Python library installed, with licenses for OEChem and OEGraphSim, then you can use
oe2fps to generate fingerprints:

10 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

oe2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o oe_chebi.fps

This takes about 40 seconds on my desktop and generates a number of warnings like “Stereochemistry corrected on
atom number 17 of”, “Unsupported Sgroup information ignored”, and “Invalid stereochemistry specified for atom
number 9 of”. Normally the record title comes after the ”... of”, but the title is blank for most of the records.

OEChem could not parse 7 of the 95,955 records. I looked at the failing records and noticed that all of them had 0
atoms and 0 bonds.

The default settings generate OEGraphSim path fingerprint with the values:

numbits=4096 minbonds=0 maxbonds=5
atype=Arom|AtmNum|Chiral|EqHalo|FCharge|HvyDeg|Hyb btype=Order|Chiral

Each of these can be changed through command-line options. Use --help for details.

oe2fps can generate several other types of fingerprints. For example, to generate the OpenEye implementation of the
MACCS definition specify:

oe2fps --maccs166 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

Use --help for a list of available oe2fps fingerprints or to see more configuration details.

Generate fingerprints with RDKit

If you have the RDKit Python library installed then you can use rdkit2fps to generate fingerprints. Based on the
previous examples you probably guessed that the command-line is:

rdkit2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o rdkit_chebi.fps

This takes 5.5 minutes on my desktop, and RDKit did not generate fingerprints for 1,101 of the 95,955 records. RDKit
logs warning and error messages to stderr. They look like:

[23:29:49] Explicit valence for atom # 6 N, 4, is greater than permitted
[23:29:49]

Post-condition Violation
Element '.' not found
Violation occurred on line 90 in file /Users/dalke/cvses/rdkit/Code/GraphMol/
→˓PeriodicTable.h
Failed Expression: anum > -1

[23:29:49] Unhandled CTAB feature: S group SRU on line: 52. Molecule skipped.

For example, RDKit is careful to check that structures make chemical sense. It rejects 4-valent nitrogen and refuses to
process that those structures, which is the reason for the first line of that output.

The default generates RDKit’s path fingerprints with parameters:

minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1

Each of those can be changed through command-line options. See rdkit2fps --help for details, where you’ll also
see a list of the other available fingerprint types.

For example, to generate the RDKit implementation of the MACCS definition use:

1.2. Working with the command-line tools 11

chemfp Documentation, Release 3.1

rdkit2fps --maccs166 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

while the following generates the Morgan/circular fingerprint with radius 3:

rdkit2fps --morgan --radius 3 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz

Alternate error handlers

In this section you’ll learn how to change the error handler for rdkit2fps using the --errors option.

By default the “<toolkit>2fps” programs “ignore” structures which could not be parsed into a molecule option. There
are two other options. They can “report” more information about the failure case and keep on processing, or they can
be “strict” and exit after reporting the error.

This is configured with the --errors option.

Here’s the rdkit2fps output using --errors report:

[00:52:39] S group MUL ignored on line 103
[00:52:39] Unhandled CTAB feature: S group SRU on line: 36. Molecule skipped.
ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 12036, record
→˓#179. Skipping.
[00:52:39] Explicit valence for atom # 12 N, 4, is greater than permitted
ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 16213, record
→˓#265. Skipping.

The first two lines come from RDKit. The third line is from chemfp, reporting which record could not be parsed. (The
record starts at line 12036 of the file and the SRU is on line 36 of the record, so the SRU is at line 12072.) The fourth
line is another RDKit error message, and the last line is another chemfp error message.

Here’s the rdkit2fps output using --errors strict:

[00:54:30] S group MUL ignored on line 103
[00:54:30] Unhandled CTAB feature: S group SRU on line: 36. Molecule skipped.
ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 12036, record
→˓#179. Exiting.

Because this is strict mode, processing exits at the first failure.

The ob2fps and oe2fps tools implement the --errors option, but they aren’t as useful as rdkit2fps because the
underlying APIs don’t give useful feedback to chemfp about which records failed. For example, the standard OEChem
file reader automatically skips records that it cannot parse. Chemfp can’t report anything when it doesn’t know there
was a failure.

The default error handler in chemfp 1.1 was “strict”. In practice this proved more annoying than useful because most
people want to skip the records which could not be processed. They would then contact me asking what was wrong,
or doing some pre-processing to remove the failure cases.

One of the few times when it is useful is for records which contain no identifier. When I changed the default from
“strict” to “ignore” and tried to process ChEBI, I was confused at first about why the output file was so small. Then
I realized that it’s because the many records without a title were skipped, and there was no feedback about skipping
those records.

I changed the code so missing identifiers are always reported, even if the error setting is “ignore”. Missing identifiers
will still stop processing if the error setting is “strict”.

12 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

chemfp’s two cross-toolkit substructure fingerprints

In this section you’ll learn how to generate the two substructure-based fingerprints which come as part of chemfp.
These are based on cross-toolkit SMARTS pattern definitions and can be used with Open Babel, OpenEye, and RD-
Kit. (For OpenEye users, these fingerprints use the base OEChem library but do not use the separately licensed
OEGraphSim library.)

chemfp implements two platform-independent fingerprints where were originally designed for substructure filters but
which are also used for similarity searches. One is based on the 166-bit MACCS implementation in RDKit and the
other comes from the 881-bit PubChem/CACTVS substructure fingerprints.

The chemfp MACCS definition is called “rdmaccs” because it closely derives from the MACCS SMARTS patterns
used in RDKit. (These pattern definitions are also used in Open Babel and the CDK, while OpenEye has a completely
independent implementation.)

Here are example of the respective rdmaccs fingerprint for phenol using each of the toolkits.

Open Babel:

% echo "c1ccccc1O phenol" | ob2fps --in smi --rdmaccs
#FPS1
#num_bits=166
#type=RDMACCS-OpenBabel/2
#software=OpenBabel/2.4.1 chemfp/3.1
#date=2017-09-09T00:40:48
00000000000000000000000000000140004480101e phenol

OpenEye:

#FPS1
#num_bits=166
#type=RDMACCS-OpenEye/2
#software=OEChem/2.1.3 (20170828) chemfp/3.1
#date=2017-09-09T00:41:21
00000000000000000000000000000140004480101e phenol

RDKit:

#FPS1
#num_bits=166
#type=RDMACCS-RDKit/2
#software=RDKit/2017.09.1 chemfp/3.1
#date=2017-09-09T00:42:32
00000000000000000000000000000140004480101e phenol

For more complex molecules it’s possible that different toolkits produce different fingerprint rdmaccs, even though the
toolkits use the same SMARTS definitions. Each toolkit has a different understanding of chemistry. The most notable
is the different definition of aromaticity, so the bit for “two or more aromatic rings” will be toolkit dependent.

substruct fingerprints

chemp also includes a “substruct” substructure fingerprint. This is an 881 bit fingerprint derived from the Pub-
Chem/CACTVS substructure keys. They do not match the CACTVS fingerprints exactly, in part due to differences in
ring perception. Some of the substruct bits will always be 0. With that caution in mind, if you want to try them out,
use the --substruct option.

1.2. Working with the command-line tools 13

chemfp Documentation, Release 3.1

The term “substruct” is a horribly generic name. If you can think of a better one then let me know. Until chemfp 3.0
I said these fingerprints were “experimental”, in that I hadn’t fully validated them against PubChem/CACTVS and
could not tell you the error rate. I still haven’t done that.

What’s changed is that I’ve found out over the years that people are using the substruct fingerprints, even without full
validatation. That surprised me, but use is its own form of validation. I still would like to validate the fingerprints, but
it’s slow, tedious work which I am not really interested in doing. Nor does it earn me any money. Plus, if the validation
does lead to any changes, it’s easy to simply change the version number.

Generate binary FPB files from a structure file

In this section you’ll learn how to generate an FPB file instead of an FPS file. You will need the the ChEBI file from
Using a toolkit to process the ChEBI dataset and a chemistry toolkit. The FPB format was introduced with chemfp-2.0.

The FPB format was designed so the fingerprints can be memory-mapped directly to chemfp’s internal data structures.
This makes it very fast to load, but unlike the FPS format, it’s not so easy to write with your own code. You should
think of the FPB format as an binary application format, for chemfp-based tools, while the FPS format is a text-based
format for data exchange between diverse programs.

The easiest way to generate an FPB file from the command line is to use the ”.fpb” extension instead of ”.fps” or
”.fps.gz”. Here are examples using each of the toolkits.

Open Babel:

% ob2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fpb

OpenEye:

% oe2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o oe_chebi.fpb

RDKit:

% rdkit2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o rdkit_chebi.fpb

The binary format isn’t human-readable. Use fpcat command-line options to see what’s inside:

% fpcat oe_chebi.fpb | head -8
#FPS1
#num_bits=4096
#type=OpenEye-Path/2 numbits=4096 minbonds=0 maxbonds=5
→˓atype=Arom|AtmNum|Chiral|EqHalo|FCharge|HvyDeg|Hyb btype=Order|Chiral
#software=OEGraphSim/2.3.1 (20170828) chemfp/3.1
000 ... many zeros ... 000 CHEBI:15378
000 ... many zeros ... 000 CHEBI:16042
000 ... many zeros ... 000 CHEBI:17792
000 ... many zeros ... 000 CHEBI:18140

....
182 ... hex values ... c0c CHEBI:60493

By default the fingerprints are ordered from smallest popcount to largest, which you can see in the output. A pre-
ordered index is faster to search because the target popcounts are pre-computed and because it enables sublinear
search.

If you want to preserve the input order then you’ll need to pipe the FPS output to fpcat and use its
--preserve-order flag. See the next section for an example.

14 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Convert between FPS and FPB formats

In this section you’ll learn how to convert an FPS file into an FPB file and back, and you’ll learn how to control the
fingerprint ordering. You will need the FPS files generated in Generate fingerprint files from PubChem SD tags but
you do not need a chemistry toolkit. The FPB format was introduced with chemfp-2.0.

If you already have an FPS file then you can convert it directly into an FPB file, and without using a chemistry toolkit.
The fpcat program converts from one format to the other.

In an earlier section I generated the files pubchem_queries.fps and pubchem_targets.fps . I’ll convert each to FPB
format:

% fpcat pubchem_targets.fps -o pubchem_targets.fpb
% fpcat pubchem_queries.fps -o pubchem_queries.fpb

The FPB format is a binary format which is difficult to read directly. The easiest way to see what’s inside is to use
fpcat. If you don’t specify an output filename then it sends the results to stdout in FPS format:

% fpcat pubchem_queries.fpb | head -5
#FPS1
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
071e0c000000000000000000000000000080c16030000c0600000000000000000000005800000000
00f02001010040000000000010000108000000000000000000008000000000004800000000000000
0000000080901103f101000000000000000100200000040080000010000000 27581954

The keen-eyed reader might have noticed that the conversion does not have a “source” or “date” field. I haven’t figured
out if this is a bug. Should I keep the original date and structure file source, or use the current date and FPS file source?
Let me know if this is important to you.

By default fpcat reorders the fingerprints in the FPB file by population count. This improves the similarity search
performance, but it means that the order of the FPB file is likely different than the original FPS format. You can get a
sense of this by looking at the first fingerprint in the original pubchem_queries.fps file:

% grep -v # pubchem_queries.fps | head -1
075e1c000208000000000000000000000000000000000c06000000000000008002000078200a0000
803510a51b404d93410320501140a44b1a4e430000a4502810119802361750644c07adb9e18c1026
2b801fd7e91913047100000402002001000000020100900000000000000000 27575190

If you want the FPB file to store the fingerprints in input order instead of the popcount order needed for optimized
similarity search, then use the --preserve-order flag:

% fpcat pubchem_queries.fps --preserve-order -o input_order.fpb
% fpcat input_order.fpb | grep -v # | head -1
075e1c000208000000000000000000000000000000000c06000000000000008002000078200a0000
803510a51b404d93410320501140a44b1a4e430000a4502810119802361750644c07adb9e18c1026
2b801fd7e91913047100000402002001000000020100900000000000000000 27575190

On the flip side, fpcat by default preserves the input order when it creates FPS output. If you instead want to the output
FPS file to be in popcount order then use the --reorder flag:

% fpcat --reorder pubchem_queries.fps | grep -v # | head -1
071e0c000000000000000000000000000080c16030000c0600000000000000000000005800000000
00f02001010040000000000010000108000000000000000000008000000000004800000000000000
0000000080901103f101000000000000000100200000040080000010000000 27581954

1.2. Working with the command-line tools 15

chemfp Documentation, Release 3.1

Specify the fpcat output format

In this section you’ll learn how to specify the output format for fpcat using a command-line option instead of the
filename extension. You will need the pubchem_queries.fpb file from Generate fingerprint files from PubChem SD
tags.

If you do not specify an output filename then fpcat will output the fingerprints in FPS format to stdout. If you specify a
filename then by default it will look at the extension to determine if the output should be an FPB (”.fpb”), FPS (”.fps”),
or gzip compressed FPS (”.fps.gz”) file. The FPS format is used for unrecognized extensions.

In a few rare cases you may want to use a format which doesn’t match the default. To be honest, the examples I can
think of aren’t that realistic, but let’s suppose you want to output the contents of an FPB file to stdout in gzip’ed FPS
format, and count the number of bytes in compressed output. I’ll use the use the –out flag to change the format to
‘fps.gz’ from the default of ‘fps’, then compare the resulting size with the uncompressed form:

% fpcat pubchem_queries.fpb --out fps.gz | wc -c
11930
% fpcat pubchem_queries.fpb --out fps | wc -c
89170

It’s not that useful because you could pipe the uncompressed output to gzip, which is also likely faster:

% fpcat pubchem_queries.fpb --out fps | gzip -c -9 | wc -c
11921

By the way, it is not possible to write an FPB file to stdout. In fact, the output file must be seek-able, which means it
can’t be a named pipe either.

Similarity search with the FPB format

In this section you’ll learn how to do a similarity search using an FPB as the target. You will need the FPB files from
Generate fingerprint files from PubChem SD tags but you do not need a chemistry toolkit.

Simsearch, like all of the tools starting with chemfp-2.0, understands both FPS and FPB files:

% simsearch -k 3 --threshold 0.7 -q pubchem_queries.fpb pubchem_targets.fpb | head
#Simsearch/1
#num_bits=881
#type=Tanimoto k=3 threshold=0.7
#software=chemfp/3.1
#queries=pubchem_queries.fpb
#targets=pubchem_targets.fpb
3 27581954 14565747 0.7833 14563541 0.7333 14573233 0.
→˓7258
3 27581957 14565747 0.7833 14563541 0.7333 14573233 0.
→˓7258
3 27580389 14568366 0.8468 14568369 0.8393 14560737 0.
→˓8374
2 27584917 14563095 0.7795 14563096 0.7795

By default simsearch uses the query and target filename extensions to figure out if the file is in FPS or FPB format.

If you don’t want it to auto-detect the format then use the --query-format and --target-format options to
tell it the format to use. The values can be one of “fps”, “fps.gz” and “fpb”.

16 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Converting large data sets to FPB format

In this section you’ll learn how to generate an FPB file on computers with relatively limited memory. To be realistic,
this example uses the complete PubChem data set, and extracts the CACTVS/PubChem fingerprints which are in each
record. You do not need a chemistry toolkit for this section.

The most direct way to extract the PubChem fingerprints from a PubChem distribution is to use sdf2fps:

sdf2fps --pubchem pubchem/Compound_*.sdf.gz -o pubchem.fpb

This uses the default FPB writer options, which stores all of the fingerprints in memory, sorts them, and saves the
result to the output file. This may use about 2-3 times as much memory as the final FPB output size, which is a bit
unfortunate if you want to generate a 7 GB FPB file on a 12 GB machine.

(Note: see the next section for a two-stage solution that lets you parallelize fingerprint generation.)

The “*2fps” command-line tools do not have a way to change the default writer options, although fpcat does. The
--max-spool-size option sets a rough upper bound to the amount of memory to use. When enabled, the writer
breaks the input into parts and creates a temporary FPB file for each part. At the end, it merges the sorted data from
the temporary FPB files to get the final FPB file. Note that the specified spool size is only approximate and is not a
hard limit on the maximum amount of memory to use. You may need to experiment a bit if you have tight constraints.

The value must be a size in bytes, though suffixes like M or MB for megabyte and T or TB for terabyte are also
allowed. These are in base-10 units, so 1 MB = 1,000,000 bytes. Spaces are not allowed between the number and the
suffix, so “200MB” is okay but “200 MB” is not. The size must be at least 20 MB.

Here is an example of how to convert the CACTVS fingerprints from all of PubChem to an FPB file, using a relatively
small limit of 200 MB:

sdf2fps --pubchem pubchem/Compound_*.sdf.gz | fpcat --max-spool-size 200MB -o pubchem.
→˓fpb

This will take a while! The sdf2fps alone takes almost 45 minutes on my desktop, of which 50% of the time was to
decompress the files.

The temporary files will be placed under the appropriate temporary directory for your operating system. If that disk
isn’t large enough for the intermediate files then use the --tmpdir option of fpcat to specify an alternate directory:

fpcat --max-spool-size 1GB pubchem.fps -o pubchem.fpb

Another option is to specify the directory location using the TMPDIR, TEMP, or TMP environment variables, which
are resolved in that order. The details are described in the Python documentation for tempfile.tempdir.

Generate fingerprints in parallel and merge to FPB format

In this section you’ll learn how to merge multiple sorted fingerprints into a single FPB file.

The previous section used a single shell command to extract the PubChem/CACTVS fingerprints from PubChem and
generate an FPB file. This is easy to write and understand, but more complex versions may be more appropriate.

For one, I have four cores on my desktop computer, and I want to use them to process the PubChem files in parallel.
The previous section was only single threaded.

I have all my PubChem files in ~/pubchem/. For each “Compound_*.sdf.gz” file in that directory I want to extract
the CACTVS/PubChem fingerprints and create an intermediate FPS file in the local directory. That’s equivalent to
running the following commands:

1.2. Working with the command-line tools 17

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/
https://docs.python.org/2/library/tempfile.html#tempfile.tempdir

chemfp Documentation, Release 3.1

sdf2fps --pubchem ~/pubchem/Compound_000000001_000025000.sdf.gz \\
-o Compound_000000001_000025000.fps

sdf2fps --pubchem ~/pubchem/Compound_000025001_000050000.sdf.gz \\
-o Compound_000025001_000050000.fps

... 2146 more lines ...

except that I want to run four at a time.

This is what GNU Parallel was designed for. It’s a command-line tool which can parallelize the exection of other
command-lines.

I’ll start by explaining the core command-line substitution pattern:

sdf2fps --pubchem {} -o {/..}.fps'

The {}will be replaced with a filename, and {/..}will be replaced with the base filename, without the directory path
prefix or the two suffixes. That is, when {} is “/Users/dalke/pubchem/Compound_000000001_000025000.sdf.gz”
then {/..} will be “Compound_000000001_000025000”.

Since I want to generate an FPS file, I added the ”.fps” as a suffix to the second substitution parameter.

I then tell GNU parallel which command-line to use, along with a few other parameters. Here’s the full line, which I
split over two lines to make it more readable:

parallel --plus --no-notice --bar 'sdf2fps --pubchem {}
-o {/..}.fps' ::: ~/pubchem/Compound_*.sdf.gz

The --plus tells GNU parallel to recognize an expanded set of replacement strings. (“{/..}” is not part of the standard
set of patterns.)

The --no-notice tells it to not display the message about citing GNU parallel in scientific papers.

The --bar enables a progress bar, which looks like this:

26% 763:2148=1696s /Users/dalke/pubchem/Compound_019150001_019175000.sdf.gz

It’s 26% through processing the filenames, which is file 763 out of 2148, and there’s an estimated 1696 seconds
remaining.

Finally, the ”:::” indicates that the remaining options are the list of parameters to pass to the command-line template
for parallelization.

After about 30 minutes, I now have a large number of FPS files, which I want to merge into a single FPB file. I’ll use
fpcat:

fpcat --max-spool-size 2GB Compound*.fps -o pubchem.fpb

This took about 15 minutes. (It’s a bit odd that the overall performance wasn’t that much better than the single-threaded
code. It would probably be more clear with compute-intenstive fingerprints, instead of simple text extraction from an
SD tag.)

Note: I started this section as an example of when to use the --merge option to fpcat. When the fingerprints are in
popcount order then popcount sorted output is a merge sort of the inputs. This doesn’t need RAM or temporary disk
space for an intermediate sort. My thought was to save the intermediate fingerprints in FPB format instead of FPS,
which has a side-effect of sorting the fingerprints. Then I could simply merge the results.

I did this, and ran into two problems. There are 2912 files, and fpcat will open all of them in order to do the parallel
merge. I ran out of file descriptors, and had to increase the limit to 6000 (3000 is too small) before it would work.
In the future I’ll have to implement some sort of multi-layer merge for when there are too many files. However, even

18 Chapter 1. List of chapters

http://www.gnu.org/software/parallel/

chemfp Documentation, Release 3.1

with 6000 available descriptors, iterating over the FPB-backed FingerprintArena proved to be rather slow, and I’m not
yet sure way. I think it’s simply that I didn’t design that code for fast iteration.

Take home message? Use FPB files for now only as the last file format in your pipeline.

Help for the command-line tools

The chemfp command-line tools are:

• fpcat - merge multiple fingerprint files into one

• ob2fps - use Open Babel to generate fingerprints

• oe2fps - use OEChem/OEGraphSim to generate fingerprints

• rdkit2fps - use RDKit to generate fingerprints

• sdf2fps - extract fingerprints from an SD file

• simsearch - search a fingerprint file for similar fingerprints

fpcat command-line options

The following comes from fpcat --help:

usage: fpcat [-h] [--in FORMAT] [--merge] [-o FILENAME] [--out FORMAT]
[--reorder] [--preserve-order] [--alignment N]
[--show-progress] [--max-spool-size SIZE] [--tmpdir DIRNAME]
[--version]
[filename [filename ...]]

Combine multiple fingerprint files into a single file.

positional arguments:
filename input fingerprint filenames (default: use stdin)

optional arguments:
-h, --help show this help message and exit
--in FORMAT input fingerprint format. One of fps, fps.gz, or fpb.

(default guesses from filename or is fps)
--merge assume the input fingerprint files are in popcount

order and do a merge sort
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output fingerprint format. One of fps, fps.gz, or fpb.

(default guesses from output filename, or is 'fps')
--reorder reorder the output fingerprints by popcount (default

for FPB output)
--preserve-order save the output fingerprints in the same order as the

input (default for FPS output)
--alignment N alignment size when saving a FPB file (default=8)
--show-progress show progress
--max-spool-size SIZE

use temporary files for extra storage space for huge
FPB files (default uses RAM)

--tmpdir DIRNAME directory for the temporary files (default uses the
system temp directory)

--version show program's version number and exit

1.3. Help for the command-line tools 19

chemfp Documentation, Release 3.1

Examples:

fpcat can be used to convert between FPS and FPB formats. This is
handy if you want to see what's inside of an FPB file:

fpcat fingerprints.fpb

You can use also use fpcat to make an FPB file from an FPS file:

fpcat fingerprints.fps -o fingerprints.fpb

You might have generated a set of FPS file which you want to merge
into a single FPB. (For example, you might have used GNU parallel to
generate FPS files for each of the PubChem files, which you want to
merge into a single file.):

fpcat Compound_*.fps -o pubchem.fpb

By default the FPB format sorts the fingerprints by popcount. (Use
--preserve-order if you really want to preserve the input order.) The
sort overhead for PubChem uses about 10 GB of RAM. If you don't have
that much memory then ask fpcat to use less memory:

fpcat --max-spool-size 1GB Compound_*.fps -o pubchem.fpb

This will use about 2 GB of RAM and the --tmpdir for the rest. (Yes,
it would be nice if I could get those two memory size numbers to
match.)

The --merge option is experimental. Use it if the input fingerprints
are in popcount order, because sorted output is a simple merge sort of
the individual sorted inputs. However, this option opens all input
files at the same time, which may exceed your resource limit on file
descriptors. The current implementation also requires a lot of disk
seeks so is slow for many files.

ob2fps command-line options

The following comes from ob2fps --help:

usage: ob2fps [-h]
[--FP2 | --FP3 | --FP4 | --MACCS | --substruct | --rdmaccs | --rdmaccs/

→˓1]
[--id-tag NAME] [--in FORMAT] [-o FILENAME] [--out FORMAT]
[--errors {strict,report,ignore}] [-R NAME=VALUE]
[--delimiter {tab,whitespace,to-eol,space}] [--has-header]
[--version]
[filenames [filenames ...]]

Generate FPS or FPB fingerprints from a structure file using OpenBabel

positional arguments:
filenames input structure files (default is stdin)

optional arguments:

20 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

-h, --help show this help message and exit
--FP2 linear fragments up to 7 atoms
--FP3 SMARTS patterns specified in the file patterns.txt
--FP4 SMARTS patterns specified in the file

SMARTS_InteLigand.txt
--MACCS Open Babel's implementation of the MACCS 166 keys
--substruct ChemFP substructure fingerprints
--rdmaccs, --rdmaccs/2

166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs
--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default autodetects from the

filename extension)
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output structure format (default guesses from output

filename, or is 'fps')
--errors {strict,report,ignore}

how should structure parse errors be handled?
(default=ignore)

-R NAME=VALUE specify a reader argument
--delimiter {tab,whitespace,to-eol,space}

delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--has-header Skip the first line of a SMILES or InChI file Aliase
for '-R has_header=1'

--version show program's version number and exit

By default the Open Babel structure reader determines the file format
and compression type based on the filename extension. Unknown
filename extensions are treated as a uncompressed SMILES files.

If the data comes from stdin, or the guess based on extension name is
wrong, then use "--in FORMAT" option to change the default input format.
For examples:

--in smi
--in sdf.gz

The most commmon format names are :

File Type Valid FORMAT names
--------- ------------------
SMILES smi, can, usm - append ".gz" for gzip'ed files
InChI inchi - append ".gz" for gzip'ed files
SDF (native) sdf - gzip compression is handled automatically
SDF (chemfp) sdf - append ".gz" suffix for gzip'ed files
MOL2 mol2 - gzip compression is handled automatically
PDB pdb - " " " " "
MacroModel mmod - " " " " "

For a full list of formats, see http://openbabel.org/wiki/List_of_extensions .

Note: chemfp-2.0 removed the "ism" input format type. Use "smi" instead.

chemfp uses its own parsers to find SMILES and InChi records, which are
passed on to Open Babel for processing. These give chemfp better error
reporting and control. However, unlike the normal Open Babel parsers, they

1.3. Help for the command-line tools 21

chemfp Documentation, Release 3.1

do not automatically recognize gzip files, so the format name must include
the ".gz" suffix to read compressed formats.

By default chemfp uses Open Babel's native SDF reader. It also supports
an alternate implementation using chemfp's low-level SDF record parser.
To use chemfp's record parser, use the 'implementation' reader argument:

-R implementation=chemfp

All format support Open Babel's 'options' OBConversion argument. This is a
compact string like 'ab"btext"', which in this case sets option 'a' to
True, and option 'b' to text "btext".

You will need to consult the Open Babel documentation and implementation
for details on the options available to each format.

oe2fps command-line options

The following comes from oe2fps --help:

usage: oe2fps [-h] [--path] [--circular] [--tree] [--numbits INT]
[--minbonds INT] [--maxbonds INT] [--minradius INT]
[--maxradius INT] [--atype ATYPE] [--btype BTYPE] [--maccs166]
[--substruct] [--rdmaccs] [--rdmaccs/1] [--aromaticity NAME]
[--id-tag NAME] [--in FORMAT] [-o FILENAME] [--out FORMAT]
[--errors {strict,report,ignore}] [-R NAME=VALUE]
[--delimiter {tab,whitespace,to-eol,space}] [--version]
[filenames [filenames ...]]

Generate FPS or FPB fingerprints from a structure file using OEChem

positional arguments:
filenames input structure files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--aromaticity NAME use the named aromaticity model (same as '-R

aromaticity=NAME')
--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default guesses from filename)
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output structure format (default guesses from output

filename, or is 'fps')
--errors {strict,report,ignore}

how should structure parse errors be handled?
(default=ignore)

-R NAME=VALUE specify a reader argument
--delimiter {tab,whitespace,to-eol,space}

delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--version show program's version number and exit

path, circular, and tree fingerprints:
--path generate path fingerprints (default)
--circular generate circular fingerprints

22 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

--tree generate tree fingerprints
--numbits INT number of bits in the fingerprint (default=4096)
--minbonds INT minimum number of bonds in the path or tree

fingerprint (default=0)
--maxbonds INT maximum number of bonds in the path or tree

fingerprint (path default=5, tree default=4)
--minradius INT minimum radius for the circular fingerprint

(default=0)
--maxradius INT maximum radius for the circular fingerprint

(default=5)
--atype ATYPE atom type flags, described below (default=Default)
--btype BTYPE bond type flags, described below (default=Default)

166 bit MACCS substructure keys:
--maccs166 generate MACCS fingerprints

881 bit ChemFP substructure keys:
--substruct generate ChemFP substructure fingerprints

ChemFP version of the 166 bit RDKit/MACCS keys:
--rdmaccs, --rdmaccs/2

generate 166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs

ATYPE is one or more of the following, separated by the '|' character

Arom AtmNum Chiral EqArom EqHBAcc EqHBDon EqHalo FCharge HCount HvyDeg
Hyb InRing

The following shorthand terms and expansions are also available:
DefaultPathAtom = AtmNum|Arom|Chiral|FCharge|HvyDeg|Hyb|EqHalo
DefaultCircularAtom = AtmNum|Arom|Chiral|FCharge|HCount|EqHalo
DefaultTreeAtom = AtmNum|Arom|Chiral|FCharge|HvyDeg|Hyb

and 'Default' selects the correct value for the specified fingerprint.

Examples:
--atype Default
--atype "Arom|AtmNum|FCharge|HCount"
--atype Arom,AtmNum,FCharge,HCount

BTYPE is one or more of the following, separated by the '|' character

Chiral InRing Order

The following shorthand terms and expansions are also available:
DefaultPathBond = Order|Chiral
DefaultCircularBond = Order
DefaultTreeBond = Order

and 'Default' selects the correct value for the specified fingerprint.

Examples:
--btype Default
--btype Order|InRing

To simplify command-line use, a comma may be used instead of a '|' to
separate different fields. Example:

--atype AtmNum,HvyDegree

1.3. Help for the command-line tools 23

chemfp Documentation, Release 3.1

OEChem guesses the input structure format based on the filename
extension and assumes SMILES for structures read from stdin.
Use "--in FORMAT" to select an alternative, where FORMAT is one of:

File Type Valid FORMATs (use gz if compressed)
--------- ------------------------------------
SMILES smi, can, usm, smi.gz, can.gz, usm.gz
SDF sdf, mol, sdf.gz, mol.gz
SKC skc, skc.gz
CDK cdk, cdk.gz
MOL2 mol2, mol2.gz
PDB pdb, pdb.gz
MacroModel mmod, mmod.gz
OEBinary v2 oeb, oeb.gz
InChI inchi, inchi.gz

Note: chemfp-2.0 removed the "ism" input format type. Use "smi" instead.

Use the '-R' reader arguments option to pass in format-specific structure
reader arguments. The details depend on the specific format. All formats
handle the following two reader arguments:

aromaticity - one of 'openeye', 'daylight', 'tripos', 'mdl', or 'mmff'
(this can also be set via the older '--aromaticity' command-line option)

flavor - a '|' or ',' separated list of flavor names, or a numeric value.
A leading '-' means to remove the given flavor. Examples include:

o Canon,Strict -- the bitwise merger of the format's Canon and Strict values
o DEFAULT|-Kekule -- the format's DEFAULT flavor but without the Kekule bits

(every flavor has a DEFAULT)
o 42 -- the specific OEChem flavor value 42

Format Reader arguments
------ ----------------
smi, flavor using 'Canon', 'Strict', and 'DEFAULT'
can, delimiter -- one of 'to-eol', 'tab', 'whitespace', or 'space'

& usm

sdf the only flavor is 'DEFAULT'
skc the only flavor is 'DEFAULT'
mol2 flavor using 'M2H'

mol2h flavor using 'M2H'
mmod flavor using 'FormalCrg'
pdb flavor using 'ALL', 'BondOrder', 'CHARGE', 'Connect', 'DATA',

'END', 'ENDM', 'FORMALCHARGE', 'FormalCrg', 'ImplicitH',
'RADIUS', 'Rings', 'SecStruct', and 'TER'

xyz flavor using 'BondOrder', 'Connect', 'FormalCrg', 'ImplicitH',
and 'Rings'

cdx flavor using 'SuperAtom'
oeb the only flavor is 'DEFAULT'

See http://docs.eyesopen.com/toolkits/cpp/oechemtk/molreadwrite.html#flavored-input-
→˓and-output
for a description of available flavors for each format.

24 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

rdkit2fps command-line options

The following comes from rdkit2fps --help:

usage: rdkit2fps [-h] [--fpSize FPSIZE] [--RDK] [--minPath INT]
[--maxPath INT] [--nBitsPerHash INT] [--useHs 0|1] [--morgan]
[--radius INT] [--useFeatures 0|1] [--useChirality 0|1]
[--useBondTypes 0|1] [--torsions] [--targetSize INT]
[--pairs] [--minLength INT] [--maxLength INT] [--maccs166]
[--avalon] [--isQuery 0_or_1] [--bitFlags INT] [--pattern]
[--substruct] [--rdmaccs] [--rdmaccs/1] [--id-tag NAME]
[--in FORMAT] [-o FILENAME] [--out FORMAT]
[--errors {strict,report,ignore}] [-R NAME=VALUE]
[--delimiter {tab,whitespace,to-eol,space}] [--has-header]
[--version]
[filenames [filenames ...]]

Generate FPS or FPB fingerprints from a structure file using RDKit

positional arguments:
filenames input structure files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--fpSize FPSIZE number of bits in the fingerprint. Default of 2048 for

RDK, Morgan, topological torsion, atom pair, and
pattern fingerprints, and 512 for Avalon fingerprints

--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default guesses from filename)
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output structure format (default guesses from output

filename, or is 'fps')
--errors {strict,report,ignore}

how should structure parse errors be handled?
(default=ignore)

-R NAME=VALUE specify a reader argument
--delimiter {tab,whitespace,to-eol,space}

delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--has-header Skip the first line of a SMILES or InChI file Aliase
for '-R has_header=1'

--version show program's version number and exit

RDKit topological fingerprints:
--RDK generate RDK fingerprints (default)
--minPath INT minimum number of bonds to include in the subgraph

(default=1)
--maxPath INT maximum number of bonds to include in the subgraph

(default=7)
--nBitsPerHash INT number of bits to set per path (default=2)
--useHs 0|1 include information about the number of hydrogens on

each atom (default=1)

RDKit Morgan fingerprints:
--morgan generate Morgan fingerprints
--radius INT radius for the Morgan algorithm (default=2)
--useFeatures 0|1 use chemical-feature invariants (default=0)

1.3. Help for the command-line tools 25

chemfp Documentation, Release 3.1

--useChirality 0|1 include chirality information (default=0)
--useBondTypes 0|1 include bond type information (default=1)

RDKit Topological Torsion fingerprints:
--torsions generate Topological Torsion fingerprints
--targetSize INT number of bonds per torsion (default=4)

RDKit Atom Pair fingerprints:
--pairs generate Atom Pair fingerprints
--minLength INT minimum bond count for a pair (default=1)
--maxLength INT maximum bond count for a pair (default=30)

166 bit MACCS substructure keys:
--maccs166 generate MACCS fingerprints

Avalon fingerprints:
--avalon generate Avalon fingerprints
--isQuery 0_or_1 is the fingerprint for a query structure? (1 if yes, 0

if no) (default=0)
--bitFlags INT bit flags, SSSBits are 32767 and similarity bits are

15761407 (default=15761407)

RDKit Pattern fingerprints:
--pattern generate (substructure) pattern fingerprints

ChemFP's version of the 881 bit PubChem substructure keys:
--substruct generate ChemFP substructure fingerprints

ChemFP version of the 166 bit RDKit/MACCS keys:
--rdmaccs, --rdmaccs/2

generate 166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs

This program guesses the input structure format and the compression
based on the filename extension. If the guess fails then it assumes
the input is an uncompressed SMILES file.

If the data comes from stdin, or the guess based on extension name is
wrong, then use "--in" to change the default input format. The
supported format extensions are:

File Type Valid FORMATs (use gz if compressed)
--------- ------------------------------------
SMILES smi, can, usm, smi.gz, can.gz, ism.gz
SDF sdf, sdf.gz
InChI inchi, inchi.gz

Note: chemfp-2.0 removed the "ism" input format type. Use "smi" instead.

Use the '-R' reader arguments option to pass in format-specific structure
reader arguments. The details depend on the specific format.

* All of the input formats implement the 'sanitize' option. Use
"-R sanitize=false" to disable the default sanitization.

* The SMILES formats use the 'delimiter' option to specify the
delimiter type. The default is 'to-eol'. The other values are
"tab", "whitespace", and "space". Use "-R delimiter=whitespace"

26 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

to match RDKit's native delimiter style.

* The SDF format supports two additional reader arguments:

* 'strictParsing'; use "-R strictParsing=false" to disable strict parsing

* 'removeHs'; use "-R removeHs=false" to keep all of the hydrogens

* The InChI format supports four additional reader arguments:

* 'delimiter' works the same as it does for the SMILES formats

* 'removeHs' works the same as it does for the SDF format

* 'treatWarningAsError'; use "-R treatWarningAsError=true" to convert all
→˓warnings into errors

* 'logLevel' specifies the RDKit/InChI library log level, as an integer

sdf2fps command-line options

The following comes from sdf2fps --help:

usage: sdf2fps [-h] [--id-tag TAG] [--fp-tag TAG] [--in FORMAT]
[--num-bits INT] [--errors {strict,report,ignore}]
[-o FILENAME] [--out FORMAT] [--software TEXT] [--type TEXT]
[--version] [--binary] [--binary-msb] [--hex] [--hex-lsb]
[--hex-msb] [--base64] [--cactvs] [--daylight]
[--decoder DECODER] [--pubchem]
[filenames [filenames ...]]

Extract a fingerprint tag from an SD file and generate FPS or FPB fingerprints

positional arguments:
filenames input SD files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--id-tag TAG get the record id from TAG instead of the first line

of the record
--fp-tag TAG get the fingerprint from tag TAG (required)
--in FORMAT Specify if the input SD file is uncompressed or gzip

compressed
--num-bits INT use the first INT bits of the input. Use only when the

last 1-7 bits of the last byte are not part of the
fingerprint. Unexpected errors will occur if these
bits are not all zero.

--errors {strict,report,ignore}
how should structure parse errors be handled?
(default=strict)

-o FILENAME, --output FILENAME
save the fingerprints to FILENAME (default=stdout)

--out FORMAT output structure format (default guesses from output
filename, or is 'fps')

--software TEXT use TEXT as the software description
--type TEXT use TEXT as the fingerprint type description
--version show program's version number and exit

Fingerprint decoding options:
--binary Encoded with the characters '0' and '1'. Bit #0 comes

first. Example: 00100000 encodes the value 4
--binary-msb Encoded with the characters '0' and '1'. Bit #0 comes

1.3. Help for the command-line tools 27

chemfp Documentation, Release 3.1

last. Example: 00000100 encodes the value 4
--hex Hex encoded. Bit #0 is the first bit (1<<0) of the

first byte. Example: 01f2 encodes the value \x01\xf2 =
498

--hex-lsb Hex encoded. Bit #0 is the eigth bit (1<<7) of the
first byte. Example: 804f encodes the value \x01\xf2 =
498

--hex-msb Hex encoded. Bit #0 is the first bit (1<<0) of the
last byte. Example: f201 encodes the value \x01\xf2 =
498

--base64 Base-64 encoded. Bit #0 is first bit (1<<0) of first
byte. Example: AfI= encodes value \x01\xf2 = 498

--cactvs CACTVS encoding, based on base64 and includes a
version and bit length

--daylight Daylight encoding, which is is base64 variant
--decoder DECODER import and use the DECODER function to decode the

fingerprint

shortcuts:
--pubchem decode CACTVS substructure keys used in PubChem. Same

as --software=CACTVS/unknown --type 'CACTVS-E_SCREEN/1.0
→˓extended=2'

--fp-tag=PUBCHEM_CACTVS_SUBSKEYS --cactvs

simsearch command-line options

The following comes from simsearch --help:

usage: simsearch [-h] [-k K_NEAREST] [-t THRESHOLD] [--alpha ALPHA]
[--beta BETA] [--queries QUERIES] [--NxN] [--query QUERY]
[--hex-query HEX_QUERY] [--query-id QUERY_ID]
[--query-format FORMAT] [--target-format FORMAT]
[-o FILENAME] [-c] [-b BATCH_SIZE] [--scan] [--memory]
[--times] [--version]
target_filename

Search an FPS or FPB file for similar fingerprints

positional arguments:
target_filename target filename

optional arguments:
-h, --help show this help message and exit
-k K_NEAREST, --k-nearest K_NEAREST

select the k nearest neighbors (use 'all' for all
neighbors)

-t THRESHOLD, --threshold THRESHOLD
minimum similarity score threshold

--alpha ALPHA Tversky alpha parameter (default: 1.0)
--beta BETA Tversky beta parameter (default: the value of --alpha)
--queries QUERIES, -q QUERIES

filename containing the query fingerprints
--NxN use the targets as the queries, and exclude the self-

similarity term
--query QUERY query as a structure record (default format: 'smi')
--hex-query HEX_QUERY

28 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

query in hex
--query-id QUERY_ID id for the query or hex-query (default: 'Query1'
--query-format FORMAT, --in FORMAT

input query format (default uses the file extension,
else 'fps')

--target-format FORMAT
input target format (default uses the file extension,
else 'fps')

-o FILENAME, --output FILENAME
output filename (default is stdout)

-c, --count report counts
-b BATCH_SIZE, --batch-size BATCH_SIZE

batch size
--scan scan the file to find matches (low memory overhead)
--memory build and search an in-memory data structure (faster

for multiple queries)
--times report load and execution times to stderr
--version show program's version number and exit

Fingerprints and fingerprint search examples

The chemfp command-line programs use a Python library called chemfp. Portions of the API are in flux and subject
to change. The stable portions of the API which are open for general use are documented in chemfp API.

The API includes:

• low-level Tanimoto and popcount operations

• Tanimoto search algorithms based on threshold and/or k-nearest neighbors

• routines for reading and writing fingerprints

• a cross-toolkit molecule I/O API

• a cross-toolkit fingerprint type API

The following chapters give examples of how to use the API, starting with fingerprints, fingerprint I/O, and fingerprint
search.

Python 2 vs. Python 3

A goal of the chemfp 3 series is to help with the transition from Python 2 to Python 3. Chemfp 3.0 was the first version
of chemfp to support both major versions, that is, to support both Python 2.7 and Python 3.5 or greater. Chemfp no
longer supports Python 2.5 or 2.6, though it will support Python 2.7 until 2020, which is when Python 2.7’s no-cost
long term support will disappear.

Previous chemfp versions, represented identifiers and fingerprints as Python (byte) strings. This was mostly okay,
except when you had identifiers with non-ASCII characters.

Python 3 draws a strong distinction between text/Unicode strings and byte strings. This required some API changes
in chemfp. Identifiers are now Unicode strings while fingerprints are byte strings. That one line is easy to write, but it
took a few of months to implement, test, debug, and document.

The API changes are not backwards compatible. If you have code which uses the chemfp 2.x API then it may break
under chemfp 3.x. Contact me if you have problems upgrading. I can help, and you pay me a support contract for a
reason.

1.4. Fingerprints and fingerprint search examples 29

chemfp Documentation, Release 3.1

If you are writing new code which uses chemfp then you really should start using Python 3. OpenEye will stop
shipping a Python 2.7 version of OEChem at the end of 2017, and RDKit will stop supporting Python 2.7 by 2020.

If you have code which works under Python 2 and you want it to work on Python 3, then there are two main options. In
some cases you can re-write all the incompatible code, so the result works under Python 3 but not Python 2. However,
that can be too big of a step.

Another option is to port your code to the subset of Python which works under both Python 2 and Python 3. While this
is more work overall, the steps are smaller, and it’s possible to develop new features while gradually doing the port.

This documentation is written with that second option in mind. The examples are shown in Python 2.7, but the same
code will work under Python 3. The only differences are in the output, which I’ll detail in the next section.

Unicode and byte strings

In chemfp 3.x, the record identifier is a Unicode string while the fingerprint is a byte string. Earlier versions of chemfp
treated both identifiers and fingerprints as byte strings. To make things more confusing, Python 2 and Python 3 use
different ways to input and denote Unicode and binary strings.

Under Python 2, normal strings are byte strings, while Unicode strings are represented with the u"" syntax:

>>> "This is a byte string" # Python 2
'This is a byte string'
>>> u"This is a Unicode string"
u'This is a Unicode string'

Under Python 3, normal strings are Unicode strings, while byte strings are represented with the b"" syntax:

>>> b"This is a byte string" # Python 3
b'This is a byte string'
>>> "This is a Unicode string"
'This is a Unicode string'

Python 2.7 understands the b"" notation, and Python 3 understands the u"" notation, so the portable way to represent
a Unicode identifier and binary fingerprint is to be explicit about the string type:

>>> id = u"España" # Works in Python 2.7 and Python 3
>>> fp = b"\x00A!\xff"

While the data types are the same, the output representations are different on the two versions of Python:

>>> (id, fp) # Python 2.7
(u'Espa\xf1a', '\x00A!\xff')

>>> (id, fp) # Python 3
('España', b'\x00A!\xff')

The output in these examples will be from Python 2.7. Unless otherwise stated, the equivalent output in Python 3
differs only in the prefix.

Hex representation of a binary fingerprint

In Python 2 it is easy to turn a byte string into a hex-encoded string:

>>> fp = b"\x00A!\xff" # Python 2.7
>>> fp.encode("hex")
'004121ff'

30 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

The more direct route (and faster) is to use the binascii.hexlify function:

>>> import binascii # Python 2.7
>>> binascii.hexlify(fp)
'004121ff'

In Python 3 it’s even easier to turn a byte string into a hex-encoded string:

>>> fp = b"\x00A!\xff" # Python 3
>>> fp.hex()
'004121ff'

but that is not portable. Nor does fp.encode("hex") work, because in Python 3 byte strings do not have an
encode() method:

>>> fp.encode("hex") # Python 3
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'bytes' object has no attribute 'encode'

If you want a byte string as output then the portable solution is to use hexlify:

>>> import binascii # Python 3
>>> binascii.hexlify(fp)
b'004121ff'

However, on Python 2.7 I often want the hex-encoded version as a byte (“normal”) string, while on Python 3 I want it
as a (“normal”) Unicode string, because I use hex strings for text output.

Python does not offer a portable solution, so I have added one to the chemfp.bitopsmodule, named hex_encode

>>> from chemfp import bitops # Python 2 and Python 3
>>> bitops.hex_encode(b"\x00A!\xff")
'004121ff'

The variant hex_encode_as_bytes returns a byte string, and I think is easier to remember than binascii.
hexlify:

>>> bitops.hex_encode_as_bytes(b"\x00A!\xff")
b'004121ff'

Byte and hex fingerprints

In this section you’ll learn how chemfp stores fingerprints and some of the low-level bit operations on those finger-
prints.

chemfp stores fingerprints as byte strings. Here are two 8 bit fingerprints:

>>> fp1 = b"A"
>>> fp2 = b"B"

The chemfp.bitops module contains functions which work on byte fingerprints. Here’s the byte Tanimoto of
those two fingerprints:

1.4. Fingerprints and fingerprint search examples 31

https://docs.python.org/2/library/binascii.html#binascii.hexlify

chemfp Documentation, Release 3.1

>>> from chemfp import bitops
>>> bitops.byte_tanimoto(fp1, fp2)
0.3333333333333333

To understand why, you have to know that ASCII character “A” has the value 65, and “B” has the value 66. The bit
representation is:

"A" = 01000001 and "B" = 01000010

so their intersection has 1 bit and the union has 3, giving a Tanimoto of 1/3 or 0.3333333333333333 as stored in
Python’s 64 bit floating point value.

You can compute the Tanimoto between any two byte strings with the same length, as in:

>>> bitops.byte_tanimoto(b"apples&", b"oranges")
0.58333333333333334

You’ll get a ValueError if they have different lengths:

>>> bitops.byte_tanimoto(b"ABC", b"A")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: byte fingerprints must have the same length

The Tversky index is also available. The default values for alpha and beta are 1.0, which is identical to the
Tanimoto:

>>> bitops.byte_tversky(b"apples&", b"oranges")
0.5833333333333334
>>> bitops.byte_tversky(b"apples&", b"oranges", 1.0, 1.0)
0.5833333333333334

Using alpha = beta = 0.5 gives the Dice index:

>>> bitops.byte_tversky(b"apples&", b"oranges", 0.5, 0.5)
0.7368421052631579

In chemfp, the alpha and beta may be between 0.0 and 100.0, inclusive. Values outside that range will raise a ValueEr-
ror:

>>> bitops.byte_tversky(b"A", b"B", 0.2, 101)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: beta must be between 0.0 and 100.0, inclusive

Most fingerprints are not as easy to read as the English ones I showed above. They tend to look more like:

P1@\x84K\x1aN\x00\n\x01\xa6\x10\x98\\\x10\x11

which is hard to read. I usually show hex-encoded fingerprints. The above fingerprint in hex is:

503140844b1a4e000a01a610985c1011

which is simpler to read. I’ll use hex_encode as the portable way to convert a byte fingerprint to a string under
Python 2 and Python 3:

32 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> bitops.hex_encode(b"apples&") # Portable (returns a native string)
'6170706c657326'
>>> bitops.hex_encode(b"oranges")
'6f72616e676573'
>>> bitops.hex_decode(b"416e64726577") # (returns a byte string)
'Andrew'

If you do not need to support Python 2.7 then it’s easier to use the Python3 specific ”.hex()” and “fromhex()” methods
of byte strings:

>>> b"apples&".hex() # Python 3 only!
'6170706c657326'
>>> b"oranges".hex() # Python 3 only!
'6f72616e676573'
>>> bytes.fromhex("416e64726577") # Python 3 only!
b'Andrew'

Most of the byte functions in the bitops module have an equivalent hex version, like bitops.hex_tanimoto()
which is the hex equivalent for bitops.byte_tanimoto():

>>> bitops.hex_tanimoto("6170706c657326", "6f72616e676573")
0.5833333333333334
>>> bitops.hex_tanimoto(u"6170706c657326", u"6f72616e676573")
0.5833333333333334
>>> bitops.hex_tanimoto(b"6170706c657326", b"6f72616e676573")
0.5833333333333334

These functions accept both byte strings and Unicode strings.

Even though hex-encoded fingerprints are easier to read than raw bytes, it can still be hard to figure out that which bit
is set in the hex fingerprint “00001000” (which is the byte fingerprint “\x00\x00\x10\x00”). For what it’s worth,
bit number 20 is set, where bit 0 is the first bit.

You can get the list of “on” bits with the bitops.byte_to_bitlist() function:

>>> bitops.byte_to_bitlist(b"P1@\x84K\x1aN\x00\n\x01\xa6\x10\x98\\\x10\x11")
[4, 6, 8, 12, 13, 22, 26, 31, 32, 33, 35, 38, 41, 43, 44, 49, 50,
51, 54, 65, 67, 72, 81, 82, 85, 87, 92, 99, 100, 103, 106, 107,
108, 110, 116, 120, 124]

That’s a lot of overhead if you only want to tell if, say, bit 41 is set. For that case use bitops.
byte_contains_bit():

>>> bitops.byte_contains_bit(b"P1@\x84K\x1aN\x00\n\x01", 41)
True
>>> bitops.byte_contains_bit(b"P1@\x84K\x1aN\x00\n\x01", 42)
False

The bitops.byte_from_bitlist() function creates a fingerprint given a list of ‘on’ bits. By default it gener-
ates a 1024 bit fingerprint, which is a bit too long for this documentation. I’ll use 64 bits instead:

>>> bitops.byte_from_bitlist([0], 64)
'\x01\x00\x00\x00\x00\x00\x00\x00'

The bit positions folded based on the modulo of the fingerprint size, so bit 65 is mapped to bit 1, as in the following:

>>> bitops.byte_from_bitlist([0, 65], 64)
'\x03\x00\x00\x00\x00\x00\x00\x00'

1.4. Fingerprints and fingerprint search examples 33

chemfp Documentation, Release 3.1

>>> bitops.byte_to_bitlist(bitops.byte_from_bitlist([0, 65], 64))
[0, 1]

The bitops module includes other low-level functions which work on byte fingerprints, as well as corresponding
functions which work on hex fingerprints. (Hex-encoded fingerprints are decidedly second-class citizens in chemfp,
but they are citizens.) The byte-based functions are:

• byte_contains - test if the first fingerprint is contained in the second

• byte_contains_bit - test if a specified fingerprint bit is on

• byte_difference - return a fingerprint which is the difference (xor) of two fingerprints

• byte_from_bitlist - create a fingerprint given ‘on’ bit positions

• byte_intersect - return a fingerprint which is the intersection of two fingerprints

• byte_intersect_popcount - intersection popcount between two fingerprints

• byte_popcount - fingerprint popcount

• byte_tanimoto - Tanimoto similarity between two fingerprints

• byte_tversky - Tversky index between two fingerprints

• byte_to_bitlist - get a list of the ‘on’ bit positions

• byte_union - return a fingerprint which is the union of two fingerprints

• hex_encode - hex encode a byte string, returns the native string type

• hex_encode_as_bytes - hex encode a byte string, returns a byte string

The hex-based functions are:

• hex_contains - test if the first hex fingerprint is contained in the second

• hex_contains_bit - test if a specified hex fingerprint bit is on

• hex_difference - return a fingerprint which is the difference (xor) of two hex fingerprints

• hex_from_bitlist - create a fingerprint given ‘on’ bit positions in a hex fingerprint

• hex_intersect - return a fingerprint which is the intersection of two hex fingerprints

• hex_intersect_popcount - intersection popcount between two hex fingerprints

• hex_isvalid - test if the string is a hex-encoded fingerprint

• hex_popcount - hex fingerprint popcount

• hex_tanimoto - Tanimoto similarity between two hex fingerprints

• hex_tversky - Tversky index between two hex fingerprints

• hex_to_bitlist - get a list of the ‘on’ bit positions in a hex fingerprint

• hex_union - return a fingerprint which is the union of two hex fingerprints

• hex_decode - convert a hex-encoded string into a byte string

There are two functions which compare a byte fingerprint to a hex fingerprint. These are somewhat faster than the
pure hex version because they don’t need to verify that the query fingerprint contain only hex characters:

• byte_hex_tanimoto - Tanimoto similarity between a byte and a hex fingerprint

• byte_hex_tversky - Tversky index between a byte and a hex fingerprint

34 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Fingerprint reader and metadata

In this section you’ll learn the basics of the fingerprint reader classes and fingerprint metadata.

A fingerprint record is the fingerprint plus an identifier. In chemfp, a fingerprint reader is an object which
supports iteration through fingerprint records. There some fingerprint readers, like the FingerprintArena also
support direct record lookup.

That’s rather abstract, so let’s work with a few real examples. You’ll need to create a copy of the “pubchem_targets.fps”
file generated in Generate fingerprint files from PubChem SD tags in order to follow along.

Here’s how to open an FPS file:

>>> import chemfp
>>> reader = chemfp.open("pubchem_targets.fps")

Every fingerprint collection has a metadata attribute with details about the fingerprints. It comes from the header of
the FPS file. You can view the metadata in Python repr format:

>>> reader.metadata
Metadata(num_bits=881, num_bytes=111, type=u'CACTVS-E_SCREEN/1.0 extended=2',
aromaticity=None, sources=[u'Compound_014550001_014575000.sdf.gz'],
software=u'CACTVS/unknown', date=u'2017-09-10T23:36:13')

In chemfp 3.x the type, software, date and the source filenames are Unicode strings. In earlier versions of
chemfp these were byte strings.

I added a few newlines to make that easier to read, but I think it’s easier still to view it in string format, which matches
the format of the FPS header:

>>> from __future__ import print_function
>>> print(reader.metadata)
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_014550001_014575000.sdf.gz
#date=2017-09-10T23:36:13

(The print statement in Python 2 was replaced with a print function in Python 3. The special future statement
tells Python 2 to use the new print function syntax of Python 3.)

All fingerprint collections support iteration. Each step of the iteration returns the fingerprint identifier and the finger-
print byte string. Since I know the 6th record has the id 14550010, I can write a simple loop which stops with that
record:

>>> from chemfp import bitops
>>> for (id, fp) in reader:
... print(id, "starts with", bitops.hex_encode(fp)[:20])
... if id == u"14550010":
... break
...
14550001 starts with 034e1c00020000000000
14550002 starts with 034e0c00020000000000
14550003 starts with 034e0400020000000000
14550004 starts with 03c60000000000000000
14550005 starts with 010e1c00000600000000
14550010 starts with 034e1c40000000000000

Fingerprint collections also support iterating via arenas, and several support Tanimoto search methods.

1.4. Fingerprints and fingerprint search examples 35

https://docs.python.org/2/reference/simple_stmts.html#future

chemfp Documentation, Release 3.1

Working with a FingerprintArena

In this section you’ll learn about the FingerprintArena fingerprint collection and how to iterate through subarenas in a
collection.

Chemfp supports two format types. The FPS format is designed to be easy to read and write, but searching through it
requires a linear scan of the disk, which can only be done once. If you want to do many queries then it’s best to load
the FPS data into memory as a FingerprintArena.

Use chemfp.load_fingerprints() to load fingerprints into an arena:

>>> from __future__ import print_function
>>> import chemfp
>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> print(arena.metadata)
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_014550001_014575000.sdf.gz
#date=2017-09-10T23:36:13

The fingerprints can come from an FPS file, as in this example, or from an FPB file. The FPB format is much more
complex internally, but can be loaded directly and quickly into a FingerprintArena, also with the same function:

>>> arena = chemfp.load_fingerprints("pubchem_targets.fpb")

An arena implements the fingerprint collection API, so you can do things like iterate over an arena and get the
id/fingerprint pairs:

>>> from chemfp import bitops
>>> for id, fp in arena:
... print(id, "with popcount", bitops.byte_popcount(fp))
... if id == u"14574551":
... break
...
14550474 with popcount 2
14574228 with popcount 2
14574262 with popcount 2
14574264 with popcount 2
14574265 with popcount 2
14574267 with popcount 2
14574635 with popcount 2
14550409 with popcount 4
14574653 with popcount 4
14550416 with popcount 6
14574831 with popcount 6
14574551 with popcount 7

If you look closely you’ll notice that the fingerprint record order has changed from the previous section, and that the
population counts are suspiciously non-decreasing. By default load_fingerprints() on an FPS file reorders
the fingerprints into a data structure which is faster to search, though you can disable that with the reorder parameter
if you want the fingerprints to be the same as the input order.

The FingerprintArena has new capabilities. You can ask it how many fingerprints it contains, get the list of
identifiers, and look up a fingerprint record given an index:

>>> len(arena)
5167
>>> list(arena.ids[:5])

36 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

[u'14550474', u'14574228', u'14574262', u'14574264', u'14574265']
>>> id, fp = arena[6]
>>> id
u'14574635'
>>> arena[-1][0] # the identifier of the last record in the arena
u'14564974'
>>> bitops.byte_popcount(arena[-1][1]) # its fingerprint
237

An arena supports iterating through subarenas. This is like having a long list and being able to iterate over sublists.
Here’s an example of iterating over the arena to get subarenas of size 1000 (excepting the last), and print information
about each subarena:

>>> for subarena in arena.iter_arenas(1000):
... print(subarena.ids[0], len(subarena))
...
14550474 1000
14570352 1000
14569340 1000
14551936 1000
14550522 1000
14570110 167
>>> arena[0][0]
u'14550474'
>>> arena[1000][0]
u'14570352'

To help demonstrate what’s going on, I showed the first id of each record along with the main arena ids for records 0
and 1000, so you can verify that they are the same.

Arenas are a core part of chemfp. Processing one fingerprint at a time is slow, so the main search routines expect to
iterate over query arenas, rather than query fingerprints.

That’s why the FPSReaders – and all chemfp fingerprint collections – also support the chemfp.
FingerprintReader.iter_arenas() method. Here’s an example of reading 25 records at a time from the
targets file:

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for arena in queries.iter_arenas(25):
... print(len(arena))
...
25
25

<deleted additional lines saying '25'>
25
25
9

Those add up to 384, which you can verify is the number of structures in the original source file.

If you have a FingerprintArena then you can also use Python’s slice notation to make a subarena:

>>> queries = chemfp.load_fingerprints("pubchem_queries.fps")
>>> queries[10:15]
<chemfp.arena.FingerprintArena object at 0x552c10>
>>> queries[10:15].ids
[u'27599092', u'27599227', u'27599228', u'27599115', u'27599116']
>>> queries.ids[10:15] # a different way to get the same list

1.4. Fingerprints and fingerprint search examples 37

chemfp Documentation, Release 3.1

[u'27599092', u'27599227', u'27599228', u'27599115', u'27599116']

The big restriction is that slices can only have a step size of 1. Slices like [10:20:2] and [::-1] aren’t supported.
If you want something like that then you’ll need to make a new arena instead of using a subarena slice. (Hint: pass the
list of indices to the arena's copy method.)

In case you were wondering, yes, you can use iter_arenas and the the other FingerprintArena methods on a
subarena:

>>> queries[10:15][1:3].ids
[u'27599227', u'27599228']
>>> queries.ids[11:13]
[u'27599227', u'27599228']

Save a fingerprint arena

In this section you’ll learn how to save an arena in FPS and FPB formats.

This is probably the easiest section. If you have an arena (or any FingerprintReader), like:

>>> import chemfp
>>> queries = chemfp.load_fingerprints("pubchem_queries.fps")

then you can save it to an FPS file using the FingerprintReader.save() method and a filename ending with
”.fps”. (You’ll also get an FPS file if you specify an unknown extension.):

>>> queries.save("example.fps")

If the filename ends with ”.fps.gz” then the file will be saved as a gzip-compressed FPS file. Finally, if the name ends
with ”.fpb”, as in:

>>> queries.save("example.fpb")

then the result will be in FPB format.

The save method supports a second option, format, should you for some odd reason want the format to be different
than what’s implied by the filename extension:

>>> queries.save("example.fpb", "fps") # save in FPS format

How to use query fingerprints to search for similar target fingerprints

In this section you’ll learn how to do a Tanimoto search using the previously created PubChem fingerprint files for the
queries and the targets from Generate fingerprint files from PubChem SD tags.

It’s faster to search an arena, so I’ll load the target fingerprints:

>>> from __future__ import print_function
>>> import chemfp
>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> len(targets)
5167

and open the queries as an FPSReader.

38 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> queries = chemfp.open("pubchem_queries.fps")

I’ll use chemfp.threshold_tanimoto_search() to find, for each query, all hits which are at least 0.7 similar
to the query.

>>> for (query_id, hits) in chemfp.threshold_tanimoto_search(queries, targets,
→˓threshold=0.7):
... print(query_id, len(hits), list(hits)[:2])
...
27575190 3 [(4240, 0.7105263157894737), (4272, 0.7068062827225131)]
27575192 2 [(4231, 0.7157894736842105), (4773, 0.7114427860696517)]
27575198 4 [(4248, 0.703125), (4677, 0.7258883248730964)]
27575208 10 [(3160, 0.7108433734939759), (3850, 0.7102272727272727)]
27575221 8 [(3160, 0.7100591715976331), (3899, 0.7016574585635359)]
27575223 8 [(3160, 0.7100591715976331), (3899, 0.7016574585635359)]
27575240 2 [(4240, 0.7015706806282722), (4773, 0.715)]

... many lines omitted ...

I’m only showing the first two hits for the sake of space. It seems rather pointless to show all 10 hits of query id
27575208.

However, there’s a subtle problem here. The “list(hits)” returns a list of (index, score) tuples when the targets are an
arena, and (id, score) tuples when the targets are a FPS reader. (I’ll talk about that more in the next section for how
that works.) It’s best to always specify how you want the results. In my case I always want the identifiers and the
scores so I’ll use hits.get_ids_and_scores(), like this:

from __future__ import print_function
import chemfp
targets = chemfp.load_fingerprints("pubchem_targets.fps")
queries = chemfp.open("pubchem_queries.fps")
for (query_id, hits) in chemfp.threshold_tanimoto_search(queries, targets,
→˓threshold=0.7):

print(query_id, len(hits), hits.get_ids_and_scores()[:2])

which gives as output:

27575190 3 [(u'14566941', 0.7105263157894737), (u'14566938', 0.7068062827225131)]
27575192 2 [(u'14555203', 0.7157894736842105), (u'14555201', 0.7114427860696517)]
27575198 4 [(u'14552727', 0.703125), (u'14569555', 0.7258883248730964)]
27575208 10 [(u'14572463', 0.7108433734939759), (u'14560415', 0.7102272727272727)]
27575221 8 [(u'14572463', 0.7100591715976331), (u'14550456', 0.7016574585635359)]
27575223 8 [(u'14572463', 0.7100591715976331), (u'14550456', 0.7016574585635359)]
27575240 2 [(u'14566941', 0.7015706806282722), (u'14555201', 0.715)]
27575250 2 [(u'14555203', 0.7127659574468085), (u'14555201', 0.7085427135678392)]
27575257 15 [(u'14561245', 0.7218543046357616), (u'14551278', 0.7012987012987013)]
27575282 5 [(u'14566941', 0.7165775401069518), (u'14553070', 0.7070707070707071)]
27575284 0 []

... many lines omitted ...

What you don’t see in either case is that the implementation uses the chemfp.FingerprintReader.
iter_arenas() interface on the queries so that it processes one subarena at a time. There’s a tradeoff between a
large arena, which is faster because it doesn’t often go back to Python code, or a small arena, which uses less memory
and is more responsive. You can change the tradeoff using the arena_size parameter.

If all you need is the count of the hits at or above a given threshold then use chemfp.count_tanimoto_hits():

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for (query_id, count) in chemfp.count_tanimoto_hits(queries, targets, threshold=0.
→˓7):

1.4. Fingerprints and fingerprint search examples 39

chemfp Documentation, Release 3.1

... print(query_id, count)

...
27575190 3
27575192 2
27575198 4
27575208 10
27575221 8
27575223 8
27575240 2
27575250 2
27575257 15

... many lines omitted ...

Or, if you only want the k=2 nearest neighbors to each target within that same threshold of 0.7 then use chemfp.
knearest_tanimoto_search():

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for (query_id, hits) in chemfp.knearest_tanimoto_search(queries, targets, k=2,
→˓threshold=0.7):
... print(query_id, hits.get_ids_and_scores())
...
27575190 [(u'14555201', 0.7236180904522613), (u'14566941', 0.7105263157894737)]
27575192 [(u'14555203', 0.7157894736842105), (u'14555201', 0.7114427860696517)]
27575198 [(u'14555201', 0.7286432160804021), (u'14569555', 0.7258883248730964)]
27575208 [(u'14555201', 0.7700534759358288), (u'14566941', 0.7584269662921348)]
27575221 [(u'14555201', 0.7591623036649214), (u'14566941', 0.7472527472527473)]
27575223 [(u'14555201', 0.7591623036649214), (u'14566941', 0.7472527472527473)]
27575240 [(u'14555201', 0.715), (u'14566941', 0.7015706806282722)]
27575250 [(u'14555203', 0.7127659574468085), (u'14555201', 0.7085427135678392)]
27575257 [(u'14572463', 0.7467532467532467), (u'14563588', 0.725)]
27575282 [(u'14555201', 0.765625), (u'14555198', 0.7317073170731707)]
27575284 []

... many lines omitted ...

How to search an FPS file

In this section you’ll learn how to search an FPS file directly, without loading it into a FingerprintArena. You’ll need
the previously created PubChem fingerprint files for the queries and the targets from Generate fingerprint files from
PubChem SD tags.

The previous example loaded the fingerprints into a FingerprintArena. That’s the fastest way to do multiple
searches. Sometimes you only want to do one or a couple of queries. It seems rather excessive to read the entire
targets file into an in-memory data structure before doing the search when you could search while processing the file.

For that case, use an FPSReader as the targets file. Here I’ll get the first two records from the queries file and use it to
search the targets file:

>>> from __future__ import print_function
>>> import chemfp
>>> query_arena = next(chemfp.open("pubchem_queries.fps").iter_arenas(2))
>>> query_arena
<chemfp.arena.FingerprintArena object at 0x11039c850>
>>> len(query_arena)
2

That first line is complicated. It opens the file and iterates over its fingerprint records two at a time as arenas. The
next() returns the first of these arenas, so that line is a way of saying “get the first two records as an arena”.

40 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Here are the k=5 closest hits against the targets file:

>>> targets = chemfp.open("pubchem_targets.fps")
>>> for query_id, hits in chemfp.knearest_tanimoto_search(query_arena, targets, k=5,
→˓threshold=0.0):
... print("** Hits for", query_id, "**")
... for hit in hits.get_ids_and_scores():
... print("", hit)
...

** Hits for 27575190 **
(u'14555201', 0.7236180904522613)
(u'14566941', 0.7105263157894737)
(u'14566938', 0.7068062827225131)
(u'14555198', 0.6933962264150944)
(u'14550456', 0.675531914893617)

** Hits for 27575192 **
(u'14555203', 0.7157894736842105)
(u'14555201', 0.7114427860696517)
(u'14566941', 0.6979166666666666)
(u'14566938', 0.694300518134715)
(u'14560418', 0.6927083333333334)

To make it easier to see, here’s the code in a single chunk:

from __future__ import print_function
import chemfp
query_arena = next(chemfp.open("pubchem_queries.fps").iter_arenas(2))
targets = chemfp.load_fingerprints("pubchem_targets.fps")
for query_id, hits in chemfp.knearest_tanimoto_search(query_arena, targets, k=5,
→˓threshold=0.0):

print("**Hits for", query_id, "**")
for hit in hits.get_ids_and_scores():

print("", hit)

Remember that the FPSReader reads an FPS file. Once you’ve done a search, the file is read, and you can’t do another
search. (Well, you can; but it will return empty results.) You’ll need to reopen the file to reuse the file, or reseek the
file handle to the start position and pass the handle to a new FPSReader.

Each search processes arena_size query fingerprints at a time. You will need to increase that value if you want to search
more than that number of fingerprints with this method. The search performance tradeoff between an FPSReader
search and loading the fingerprints into a FingerprintArena occurs at around 10 queries, so there should be little reason
to worry about this.

How do to a Tversky search using the Dice weights

In this section you’ll learn how to search a set of fingerprints using the more general Tversky parameters, without
loading it into a FingerprintArena. You’ll need the previously created PubChem fingerprint files for the queries and
the targets from Generate fingerprint files from PubChem SD tags.

Chemfp-2.1 added support for Tversky searches. The Tversky index supports weights for the superstructure and
substructure terms to the similarity. Some people like the Dice index, which is the Tversky index with alpha = beta =
0.5, so here are a couple of ways to search the targets based on the Dice index.

The previous two sections did a Tanimoto search by using chemfp.knearest_tanimoto_search(). The
Tversky search uses chemfp.knearest_tversky_search(), which shouldn’t be much of a surprise. Just like
the Tanimoto search code, it can take a fingerprint arena or an FPS reader as the targets.

The first example loads all of the targets into an arena, then searches using each of the queries:

1.4. Fingerprints and fingerprint search examples 41

chemfp Documentation, Release 3.1

from __future__ import print_function
import chemfp
queries = chemfp.open("pubchem_queries.fps")
targets = chemfp.load_fingerprints("pubchem_targets.fps")
for query_id, hits in chemfp.knearest_tversky_search(queries, targets, k=5,

threshold=0.0, alpha=0.5, beta=0.5):
print("**Hits for", query_id, "**")
for hit in hits.get_ids_and_scores():

print("", hit)

The first two output records are:

**Hits for 27575190 **
(u'14555201', 0.8396501457725948)
(u'14566941', 0.8307692307692308)
(u'14566938', 0.8282208588957055)
(u'14555198', 0.8189415041782729)
(u'14550456', 0.8063492063492064)

**Hits for 27575192 **
(u'14555203', 0.8343558282208589)
(u'14555201', 0.8313953488372093)
(u'14566941', 0.8220858895705522)
(u'14566938', 0.8195718654434251)
(u'14560418', 0.8184615384615385)

On the other hand, the following reads the first two queries into an arena, then searches the targets as an FPS file,
without loading all of the targets into memory at once:

import chemfp
queries = next(chemfp.open("pubchem_queries.fps").iter_arenas(2))
targets = chemfp.open("pubchem_targets.fps")
for query_id, hits in chemfp.knearest_tversky_search(queries, targets, k=5,

threshold=0.0, alpha=0.5, beta=0.5):
print("** Hits for", query_id, "**")
for hit in hits.get_ids_and_scores():

print("", hit)

Not surprisingly, this gives the same output as before:

** Hits for 27575190 **
(u'14555201', 0.8396501457725948)
(u'14566941', 0.8307692307692308)
(u'14566938', 0.8282208588957055)
(u'14555198', 0.8189415041782729)
(u'14550456', 0.8063492063492064)

** Hits for 27575192 **
(u'14555203', 0.8343558282208589)
(u'14555201', 0.8313953488372093)
(u'14566941', 0.8220858895705522)
(u'14566938', 0.8195718654434251)
(u'14560418', 0.8184615384615385)

FingerprintArena searches returning indices instead of ids

In this section you’ll learn how to search a FingerprintArena and use hits based on integer indices rather than
string ids.

42 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

The previous sections used a high-level interface to the Tanimoto and Tversky search code. Those are designed for the
common case where you just want the query id and the hits, where each hit includes the target id.

Working with strings is actually rather inefficient in both speed and memory. It’s usually better to work with indices if
you can, and in the next section I’ll show how to make a distance matrix using this interface.

The index-based search functions are in the chemfp.search module. They can be categorized into three groups, with
Tanimoto and Tversky versions for each group:

1. Count the number of hits:

• chemfp.search.count_tanimoto_hits_fp() - search an arena using a single fingerprint
(Tanimoto)

• chemfp.search.count_tanimoto_hits_arena() - search an arena using another arena
(Tanimoto)

• chemfp.search.count_tanimoto_hits_symmetric() - search an arena using itself
(Tanimoto)

• chemfp.search.count_tversky_hits_fp() - search an arena using a single fingerprint
(Tversky)

• chemfp.search.count_tversky_hits_arena() - search an arena using another arena
(Tversky)

• chemfp.search.count_tversky_hits_symmetric() - search an arena using itself
(Tversky)

2. Find all hits at or above a given threshold, sorted arbitrarily:

• chemfp.search.threshold_tanimoto_search_fp() - search an arena using a single
fingerprint (Tanimoto)

• chemfp.search.threshold_tanimoto_search_arena() - search an arena using an-
other arena (Tanimoto)

• chemfp.search.threshold_tanimoto_search_symmetric() - search an arena using
itself (Tanimoto)

• chemfp.search.threshold_tversky_search_fp() - search an arena using a single fin-
gerprint (Tversky)

• chemfp.search.threshold_tversky_search_arena() - search an arena using an-
other arena (Tversky)

• chemfp.search.threshold_tversky_search_symmetric() - search an arena using
itself (Tversky)

3. Find the k-nearest hits at or above a given threshold, sorted by decreasing similarity:

• chemfp.search.knearest_tanimoto_search_fp() - search an arena using a single fin-
gerprint (Tanimoto)

• chemfp.search.knearest_tanimoto_search_arena() - search an arena using an-
other arena (Tanimoto)

• chemfp.search.knearest_tanimoto_search_symmetric() - search an arena using
itself (Tanimoto)

• chemfp.search.knearest_tversky_search_fp() - search an arena using a single fin-
gerprint (Tversky)

• chemfp.search.knearest_tversky_search_arena() - search an arena using another
arena (Tversky)

1.4. Fingerprints and fingerprint search examples 43

chemfp Documentation, Release 3.1

• chemfp.search.knearest_tversky_search_symmetric() - search an arena using it-
self (Tversky)

The functions ending “_fp” take a query fingerprint and a target arena. The functions ending “_arena” take a query
arena and a target arena. The functions ending “_symmetric” use the same arena as both the query and target.

In the following example, I’ll use the first 5 fingerprints of a data set to search the entire data set. To do this, I load the
data set as an arena, extract the first 5 records as a sub-arena, and do the search.

>>> from __future__ import print_function
>>> import chemfp
>>> from chemfp import search
>>> targets = chemfp.load_fingerprints("pubchem_queries.fps")
>>> queries = targets[:5]
>>> results = search.threshold_tanimoto_search_arena(queries, targets, threshold=0.7)

The search.threshold_tanimoto_search_arena() call finds the target fingerprints which have a simi-
larity score of at least 0.7 compared to the query.

You can iterate over the results (which is a SearchResults) to get the list of hits for each of the queries. The order
of the results is the same as the order of the records in the query:

>>> for hits in results:
... print(len(hits), hits.get_ids_and_scores()[:3])
...
2 [(u'27581954', 0.9310344827586207), (u'27581957', 0.9310344827586207)]
2 [(u'27581954', 0.9310344827586207), (u'27581957', 0.9310344827586207)]
4 [(u'27580389', 1.0), (u'27580394', 0.8823529411764706), (u'27581637', 0.75)]
2 [(u'27584917', 1.0), (u'27585106', 0.8991596638655462)]
2 [(u'27584917', 0.8991596638655462), (u'27585106', 1.0)]

The results object don’t store the query id. Instead, you have to know that the results are in the same order as the input
as the query arena, so you can match the query arena’s id attribute, which contains the list of fingerprint identifiers,
to each result:

>>> for query_id, hits in zip(queries.ids, results):
... print("Hits for", query_id)
... for hit in hits.get_ids_and_scores()[:3]:
... print("", hit)
...
Hits for 27581954
(u'27581954', 0.9310344827586207)
(u'27581957', 0.9310344827586207)

Hits for 27581957
(u'27581954', 0.9310344827586207)
(u'27581957', 0.9310344827586207)

Hits for 27580389
(u'27580389', 1.0)
(u'27580394', 0.8823529411764706)
(u'27581637', 0.75)

Hits for 27584917
(u'27584917', 1.0)
(u'27585106', 0.8991596638655462)

Hits for 27585106
(u'27584917', 0.8991596638655462)
(u'27585106', 1.0)

What I really want to show is that you can get the same data only using the offset index for the target record in-
stead of its id. The result from a Tanimoto search with a query arena is a SearchResults. Iterating over the

44 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

results gives a SearchResult object, with methods like SearchResult.get_indices_and_scores(),
SearchResult.get_ids(), and SearchResult.get_scores():

>>> for hits in results:
... print(len(hits), hits.get_indices_and_scores()[:3])
...
2 [(0, 0.9310344827586207), (1, 0.9310344827586207)]
2 [(0, 0.9310344827586207), (1, 0.9310344827586207)]
4 [(2, 1.0), (5, 0.8823529411764706), (26, 0.75)]
2 [(3, 1.0), (4, 0.8991596638655462)]
2 [(3, 0.8991596638655462), (4, 1.0)]
>>>
>>> targets.ids[0]
u'27581954'
>>> targets.ids[1]
u'27581957'
>>> targets.ids[26]
u'27581637'

I did a few id lookups given the target dataset to show you that the index corresponds to the identifiers from the
previous code.

These examples iterated over each individual SearchResult to fetch the ids and scores, or indices and
scores. Another possibility is to ask the SearchResults collection to iterate directly over the list of
fields you want. SearchResults.iter_indices_and_scores(), for example, iterates through the
get_indices_and_score of each SearchResult.

>>> for row in results.iter_indices_and_scores():
... print(len(row), row[:3])
...
2 [(0, 0.9310344827586207), (1, 0.9310344827586207)]
2 [(0, 0.9310344827586207), (1, 0.9310344827586207)]
4 [(2, 1.0), (5, 0.8823529411764706), (26, 0.75)]
2 [(3, 1.0), (4, 0.8991596638655462)]
2 [(3, 0.8991596638655462), (4, 1.0)]

This was added to get a bit more performance out of chemfp and because the API is sometimes cleaner one way and
sometimes cleaner the other. Yes, I know that the Zen of Python recommends that “there should be one– and preferably
only one –obvious way to do it.” Oh well.

Computing a distance matrix for clustering

In this section you’ll learn how to compute a distance matrix using the chemfp API. The next section shows an
alternative way to get the similarity matrix.

chemfp does not do clustering. There’s a huge number of tools which already do that. A goal of chemfp in the future
is to provide some core components which clustering algorithms can use.

That’s in the future, because I know little about how people want to cluster with chemfp. Right now you can use the
following to build a distance matrix and pass that to one of those tools. (I’ll use a distance matrix of 1 - the similarity
matrix.)

Since we’re using the same fingerprint arena for both queries and targets, we know the distance ma-
trix will be symmetric along the diagonal, and the diagonal terms will be 1.0. The chemfp.search.
threshold_tanimoto_search_symmetric() functions can take advantage of the symmetry for a factor of
two performance gain. There’s also a way to limit it to just the upper triangle, which cuts the memory use in half.

1.4. Fingerprints and fingerprint search examples 45

chemfp Documentation, Release 3.1

Most of those tools use NumPy, which is a popular third-party package for numerical computing. You will need to
have it installed for the following to work.

import numpy # NumPy must be installed
from chemfp import search

Compute distance[i][j] = 1-Tanimoto(fp[i], fp[j])

def distance_matrix(arena):
n = len(arena)

Start off a similarity matrix with 1.0s along the diagonal
similarities = numpy.identity(n, "d")

Compute the full similarity matrix.
The implementation computes the upper-triangle then copies
the upper-triangle into lower-triangle. It does not include
terms for the diagonal.
results = search.threshold_tanimoto_search_symmetric(arena, threshold=0.0)

Copy the results into the NumPy array.
for row_index, row in enumerate(results.iter_indices_and_scores()):

for target_index, target_score in row:
similarities[row_index, target_index] = target_score

Return the distance matrix using the similarity matrix
return 1.0 - similarities

With the distance matrix in hand, it’s easy to cluster. The SciPy package contains many clustering algorithms, as well
as an adapter to generate a matplotlib graph. I’ll use it to compute a single linkage clustering:

from __future__ import print_function
import chemfp
from scipy.cluster.hierarchy import linkage, dendrogram

... insert the 'distance_matrix' function definition here ...

dataset = chemfp.load_fingerprints("pubchem_queries.fps")
distances = distance_matrix(dataset)

linkage_matrix = linkage(distances, "single")
dendrogram(linkage_matrix,

orientation="right",
labels = dataset.ids)

import pylab
pylab.show()

Convert SearchResults to a SciPy csr matrix

In this section you’ll learn how to convert a SearchResults object into a SciPy compressed sparse row matrix.

In the previous section you learned how to use the chemfp API to create a NumPy similarity matrix, and convert that
into a distance matrix. The result is a dense matrix, and the amount of memory goes as the square of the number of
structures.

If you have a reasonably high similarity threshold, like 0.7, then most of the similarity scores will be zero. Internally

46 Chapter 1. List of chapters

http://numpy.scipy.org/
http://scipy.org/
http://matplotlib.sourceforge.net/

chemfp Documentation, Release 3.1

the SearchResults object only stores the non-zero values for each row, along with an index to specify the column.
This is a common way to compress sparse data.

SciPy has its own compressed sparse row (“csr”) matrix data type, which can be used as input to many of the scikit-
learn clustering algorithms.

If you want to use those algorithms, call the SearchResults.to_csr() method to convert the SearchResults
scores (and only the scores) into a csr matrix. The rows will be in the same order as the SearchResult (and the original
queries), and the columns will be in the same order as the target arena, including its ids.

I don’t know enough about scikit-learn to give a useful example. (If you do, let me know!) Instead, I’ll start by doing
an NxM search of two sets of fingerprints:

from __future__ import print_function
import chemfp
from chemfp import search

queries = chemfp.load_fingerprints("pubchem_queries.fps")
targets = chemfp.load_fingerprints("pubchem_targets.fps")
results = search.threshold_tanimoto_search_arena(queries, targets, threshold = 0.8)

The SearchResults attribute shape describes the number of rows and columns:

>>> results.shape
(294, 5585)
>>> len(queries)
294
>>> len(targets)
5585
>>> results[6].get_indices_and_scores()
[(3304, 0.8235294117647058), (3404, 0.8115942028985508)]

I’ll turn it into a SciPy csr:

>>> csr = results.to_csr()
>>> csr
<294x5585 sparse matrix of type '<type 'numpy.float64'>'

with 87 stored elements in Compressed Sparse Row format>
>>> csr.shape
(294, 5585)

and look at the same row to show it has the same indices and scores:

>>> csr[6]
<1x5585 sparse matrix of type '<type 'numpy.float64'>'

with 2 stored elements in Compressed Sparse Row format>
>>> csr[6].indices
array([3304, 3404], dtype=int32)
>>> csr[6].data
array([0.82352941, 0.8115942])

Taylor-Butina clustering

For the last clustering example, here’s my (non-validated) variation of the Butina algorithm from JCICS 1999, 39,
747-750. See also http://www.redbrick.dcu.ie/~noel/R_clustering.html . You might know it as Leader clustering.

First, for each fingerprint find all other fingerprints with a threshold of 0.8:

1.4. Fingerprints and fingerprint search examples 47

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
http://www.chemomine.co.uk/dbclus-paper.pdf
http://www.chemomine.co.uk/dbclus-paper.pdf
http://www.redbrick.dcu.ie/~noel/R_clustering.html

chemfp Documentation, Release 3.1

from __future__ import print_function
import chemfp
from chemfp import search

arena = chemfp.load_fingerprints("pubchem_targets.fps")
results = search.threshold_tanimoto_search_symmetric(arena, threshold = 0.8)

Sort the results so that fingerprints with more hits come first. This is more likely to be a cluster centroid. Break ties
arbitrarily by the fingerprint id; since fingerprints are ordered by the number of bits this likely makes larger structures
appear first:

Reorder so the centroid with the most hits comes first.
(That's why I do a reverse search.)
Ignore the arbitrariness of breaking ties by fingerprint index
results = sorted(((len(indices), i, indices)

for (i, indices) in enumerate(results.iter_indices())),
reverse=True)

Apply the leader algorithm to determine the cluster centroids and the singletons:

Determine the true/false singletons and the clusters
true_singletons = []
false_singletons = []
clusters = []

seen = set()
for (size, fp_idx, members) in results:

if fp_idx in seen:
Can't use a centroid which is already assigned
continue

seen.add(fp_idx)

Figure out which ones haven't yet been assigned
unassigned = set(members) - seen

if not unassigned:
false_singletons.append(fp_idx)
continue

this is a new cluster
clusters.append((fp_idx, unassigned))
seen.update(unassigned)

Once done, report the results:

print(len(true_singletons), "true singletons")
print("=>", " ".join(sorted(arena.ids[idx] for idx in true_singletons)))
print()

print(len(false_singletons), "false singletons")
print("=>", " ".join(sorted(arena.ids[idx] for idx in false_singletons)))
print()

Sort so the cluster with the most compounds comes first,
then by alphabetically smallest id
def cluster_sort_key(cluster):

centroid_idx, members = cluster
return -len(members), arena.ids[centroid_idx]

48 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

clusters.sort(key=cluster_sort_key)

print(len(clusters), "clusters")
for centroid_idx, members in clusters:

print(arena.ids[centroid_idx], "has", len(members), "other members")
print("=>", " ".join(arena.ids[idx] for idx in members))

The algorithm is quick for this small data set.

Out of curiosity, I tried this on 100,000 compounds selected arbitrarily from PubChem. It took 35 seconds on my
desktop (a 3.2 GHZ Intel Core i3) with a threshold of 0.8. In the Butina paper, it took 24 hours to do the same,
although that was with a 1024 bit fingerprint instead of 881. It’s hard to judge the absolute speed differences of a
MIPS R4000 from 1998 to a desktop from 2011, but it’s less than the factor of about 2000 you see here.

More relevent is the comparison between these numbers for the 1.1 release compared to the original numbers for the
1.0 release. On my old laptop, may it rest it peace, it took 7 minutes to compute the same benchmark. Where did the
roughly 16-fold peformance boost come from? Money. After 1.0 was released, Roche funded various optimizations,
including taking advantage of the symmetery (2x) and using hardware POPCNT if available (4x). Roche and another
company helped fund the OpenMP support, and when my desktop reran this benchmark it used 4 cores instead of 1.

The wary among you might notice that 2*4*4 = 32x faster, while I said the overall code was only
16x faster. Where’s the factor of 2x slowdown? It’s in the Python code! The chemfp.search.
threshold_tanimoto_search_symmetric() step took only 13 seconds. The remaining 22 seconds was
in the leader code written in Python. To make the analysis more complicated, improvements to the chemfp API sped
up the clustering step by about 40%.

With chemfp 1.0 version, the clustering performance overhead was minor compared to the full similarity search, so I
didn’t keep track of it. With chemfp 1.1, those roles have reversed!

Configuring OpenMP threads

In this section you’ll learn about chemfp and OpenMP threads, including how to set the number of threads to use.

OpenMP is an API for shared memory multiprocessing programming. Chemfp uses it to parallelize the simi-
larity search algorithms. Support for OpenMP is a compile-time option for chemfp, and can be disabled with
--without-openmp in setup.py. Versions 4.2 of gcc (released in 2007) and later support it, as do other compilers,
though chemfp has only been tested with gcc.

Chemfp uses one thread per query fingerprint. This means that single fingerprint queries are not parallelized. There is
no performance gain even if four cores are available.

(A note about nomenclature: a CPU can have one core, or it can have several cores. A single processor computer has
one CPU while a multiprocessor computer has several CPUs. I think some cores can even run multiple threads. So it’s
possible to have many more hardware threads than CPUs.)

Chemfp uses multiple threads when there are many queries, which occurs when using a query arena against a
target arena. These search methods include the high-level API in the top-level chemfp module (like ‘knear-
est_tanimoto_search’), and the arena search function in chemfp.search.

By default, OpenMP and therefore chemfp will use four threads:

>>> import chemfp
>>> chemfp.get_num_threads()
4

You can change this through the standard OpenMP environment variable OMP_NUM_THREADS in the shell:

1.4. Fingerprints and fingerprint search examples 49

chemfp Documentation, Release 3.1

% env OMP_NUM_THREADS=2 python
Python 2.6.7 (r267:88850, Oct 9 2013, 03:47:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import chemfp
>>> chemfp.get_num_threads()
2

or you can specify the number of threads directly using set_num_threads():

>>> chemfp.set_num_threads(3)
>>> chemfp.get_num_threads()
3

If you specify 0 or 1 thread then chemfp will not use OpenMP at all and stick with a single-threaded implementation.
(You probably want to disable OpenMP in multi-threaded programs like web servers. See the next section for details.)

Throwing more threads at a task doesn’t always make it faster. My desktop has one CPU with two cores, so it’s
pointless to have more than two OpenMP threads running, as you can see from some timings:

threshold_tanimoto_search_symmetric (threshold=0.8) (desktop)
#threads time (in s)

1 22.6
2 13.1
3 12.3
4 12.9
5 12.6

On the other hand, my laptop has 1 CPU with four cores, and while my desktop beats my laptop with single threaded
peformance, once I have three cores going, my laptop is faster:

threshold_tanimoto_search_symmetric (threshold=0.8) (laptop)
#threads time (in s)

1 27.4
2 14.6
3 10.3
4 8.2
5 9.0

How many cores/hardware threads are available? That’s a really good question. chemfp implements chemp.
get_max_threads(), but that doesn’t seem to do what I want. So don’t use it, and I’ll figure out a real solution in
a future release.

OpenMP and multi-threaded applications

In this section you’ll learn some of the problems of mixing OpenMP and multi-threaded code.

Do not use OpenMP and multiple threads on a Mac. It will crash. This includes Django, which is a multi-threaded
web server. In multi-threaded code on a Mac you must either tell chemfp to be single-threaded, using:

chemfp.set_num_threads(1)

or figure out some way to put the chemfp search code into its own process space, which is a much harder solution.

Other OSes will let you mix POSIX and OpenMP threads, but life gets confusing. Might your web server handle three
search requests at the same time? If so, should all of those get four OpenMP threads, so that 12 threads are running in
total? Can your hardware handle that many threads?

50 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

It may be better to have chemfp not use OpenMP threads when under a multi-threaded system, or have some way to
limit the number of chemfp search tasks running at the same time. Figuring out the right solution will depend on your
hardware and requirements.

Fingerprint Substructure Screening (experimental)

In this section you’ll learn how to find target fingerprints which contain the query fingerprint bit patterns as a subset.
Bear in mind that this is an experimental API.

Substructure search often uses a screening step to remove obvious mismatches before doing the subgraph isomorphism.
One way is to generate a binary fingerprint such that if a query molecule is a substructure of a target molecule then
the corresponding query fingerprint is completely contained in the target fingerprint, that is, the target fingerprint must
have ‘on’ bits for all of the query fingerprints which have ‘on’ bits.

I’ll start by loading a fingerprint arena with four fingerprints, where the identifiers are Unicode strings and the finger-
print are byte strings of length 1, with the binary form shown to the right:

>>> from __future__ import print_function
>>> import chemfp
>>> from chemfp import bitops
>>> arena = chemfp.load_fingerprints([
... (u"A1", b"\x44"), # 0b01000100
... (u"B2", b"\x6c"), # 0b01101100
... (u"C3", b"\x95"), # 0b10010101
... (u"D4", b"\xea"), # 0b11101010
...], chemfp.Metadata(num_bits=8))
>>> for id, fp in arena:
... print(bitops.hex_encode(fp), id)
...
44 A1
6c B2
95 C3
ea D4

I could use bitops.byte_contains() to search for fingerprints in a loop, in this case with a query fingerprint
which requires that the 7th bit be set (they must fit the pattern 0b*1******):

>>> query_fingerprint = b"\x40" # 0b01000000
>>> bitops.hex_encode(query_fingerprint)
'40'
>>> for id, target_fingerprint in arena:
... if bitops.byte_contains(query_fingerprint, target_fingerprint):
... print(id)
...
A1
B2
D4

This is slow because it uses Python to do almost all of the work. Instead, use contains_fp() from the chemfp.
search module, which is faster because it’s all implemented in C:

>>> from chemfp import search
>>> result = search.contains_fp(query_fingerprint, arena)
>>> result
<chemfp.search.SearchResult object at 0x10195e090>
>>> print(result.get_ids())
[u'A1', u'B2', u'D4']

1.4. Fingerprints and fingerprint search examples 51

chemfp Documentation, Release 3.1

This is the same SearchResult instance that the similarity search code returns, though the scores are all 0.0:

>>> result.get_ids_and_scores()
[(u'A1', 0.0), (u'B2', 0.0), (u'D4', 0.0)]

This API is experimental and likely to change. Please provide feedback. While I don’t think the current call parameters
will change, I might have it return the Tanimoto score (or Hamming distance?) instead of 0.0. Or I might have a way
to compute new scores given a SearchResult.

I also plan to support start/end parameters, to search only a subset of the arena.

There’s also a search.contains_arena() function which takes a query arena instead of only a query fingerprint
as the query, and returns a SearchResults:

>>> results = search.contains_arena(arena, arena)
>>> results
<chemfp.search.SearchResults object at 0x10195c2b8>
>>> for result in results:
... print(result.get_ids_and_scores())
...
[(u'A1', 0.0), (u'B2', 0.0)]
[(u'B2', 0.0)]
[(u'C3', 0.0)]
[(u'D4', 0.0)]

I don’t think the NxN version of the “contains” search is all that useful, so there’s no function for that case.

The implementation doesn’t yet support OpenMP, contains_arena() is only little faster than multiple calls to
contains_fp().

Substructure screening with RDKit

In this section you’ll learn how to use RDKit’s pattern fingerprint (in development) for substructure screening.

Of the three toolkits that chemfp supports, only RDKit has fingerprint tuned for substructure search, though it’s marked
as ‘experimental’ and subject to change. This is the “pattern” fingerprint.

I’ll use it to make a screen for one of the PubChem files. Normally you would start with something like:

% rdkit2fps --pattern Compound_014550001_014575000.sdf.gz -o pubchem_screen.fpb

but that only gives me the identifiers and fingerprints. I want to show some of the struture as well, so I’ll do a bit of
a cheat - I’ll have an augmented identifier which is the PubChem id, followed by a space, followed by the SMILES
string.

I can do this because chemfp supports almost anything as the “identifier”, except newline, tab, and the NUL character,
and because I don’t need to support id lookup.

However, I have to write Python code to generate the augmented identifiers:

import chemfp

fptype = chemfp.get_fingerprint_type("RDKit-Pattern fpSize=1024")
T = fptype.toolkit

with chemfp.open_fingerprint_writer("pubchem_screen.fpb", fptype.get_metadata()) as
→˓writer:
for id, mol in T.read_ids_and_molecules("Compound_014550001_014575000.sdf.gz"):
smiles = T.create_string(mol, "canstring") # use the non-isomeric SMILES string

52 Chapter 1. List of chapters

http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint

chemfp Documentation, Release 3.1

fp = fptype.compute_fingerprint(mol)
Create an "identifier" of the form:
PubChem id + " " + canonical SMILES string
writer.write_fingerprint(id + " " + smiles, fp)

Now that I have the screen, I’ll write some code to actually do the screen. I’ll make this be an interactive prompt,
which asks for the query SMILES string (or “quit” or “exit” to quit), parses the SMILES to a molecule, generates the
fingerprint, does the screen, and displays the first 10 results:

from __future__ import print_function
import itertools
import chemfp
import chemfp.search

fptype = chemfp.get_fingerprint_type("RDKit-Pattern fpSize=1024")
T = fptype.toolkit

screen = chemfp.load_fingerprints("pubchem_screen.fpb")
print("Loaded", len(screen), "screen fingerprints")

while 1:
Ask for the query SMILES string
query = raw_input("Query? ")
if query in ("quit", "exit"):
break

See if it's a valid SMILES
mol = T.parse_molecule(query, "smistring", errors="ignore")
if mol is None:
print("Could not parse query")
continue

Compute the fingerprint and do the substructure screeening
fp = fptype.compute_fingerprint(mol)
result = chemfp.search.contains_fp(fp, screen)

Print the results, up to 10.
n = len(result)
if n > 10:
print(len(result), "matches. First 10 displayed")
n = 10

else:
print(len(result), "matches.")

for augmented_id in itertools.islice(result.iter_ids(), 0, n):
id, smiles = augmented_id.split()
print(id, "=>", smiles)

print()

(In case you haven’t seen it before, the “itertools.islice()” gives me an easy way to get up to the first N items from an
iterator.)

I’ll try out the above code:

Loaded 5208 screen fingerprints
Query? c1ccccc1
3476 matches. First 10 displayed
14571805 => SCCOCc1ccccc1

1.4. Fingerprints and fingerprint search examples 53

https://docs.python.org/2/library/itertools.html#itertools.islice

chemfp Documentation, Release 3.1

14574154 => Cl[Ti]Cl.c1ccccc1.c1ccccc1
14571795 => SCCCSCc1ccccc1
14568980 => C[C](O)c1ccccc1
14568981 => CC([O-])c1ccccc1
14571571 => ICCC(I)c1ccccc1
14573102 => [N-]=[N+]=Nc1cccc(N=[N+]=[N-])c1
14567762 => CC(O)CCC#Cc1ccccc1
14568647 => ClC(Cl)CCOc1ccccc1
14567111 => CCCC(=Cc1ccccc1)CO

Query? c1ccccc1O
1274 matches. First 10 displayed
14568647 => ClC(Cl)CCOc1ccccc1
14557991 => C=CC=COCc1ccc(OC)cc1
14572069 => C=CCNC(=S)Oc1ccccc1
14550766 => NCCNCC(O)COc1ccccc1
14572073 => C=CCNC(=O)Oc1ccccc1
14572952 => Cc1ccc(OCO)c(C)c1
14550768 => NCCCNCC(O)COc1ccccc1
14574927 => CC(N)COc1cccc(Cl)c1
14570157 => CC=CCOc1ccccc1CCC
14567814 => CNc1ccc(OC)cc1C

Query? c1ccccc1I
6 matches.
14573520 => Nc1cc(N)c(I)cc1I
14566147 => S=c1[nH]c2ccc(I)cc2[nH]1
14571184 => O=[N+]([O-])c1cccc([N+](=O)[O-])c1I
14567222 => COn1ccc2cccc(I)c21
14566148 => O=C(O)CSc1nc2ccc(I)cc2[nH]1
14572760 => Ic1ccc(N=c2snc3sc4ccccc4n23)nc1

Query? CC(C1=C(C(=C(C(=C1F)F)F)F)F)Br
1 matches.
14550341 => CC(Br)c1c(F)c(F)c(F)c(F)c1F

Query? quit

Looks reasonable.

It’s not hard to add full substructure matching, but it requires toolkit-specific code. Chemfp doesn’t try to abstract that
detail, and I’m not sure it should be part of chemfp. Instead, I’ll write some RDKit-specific code. Chemfp uses native
toolkit molecules, so there’s actually only a single line of RDKit code.

I’ll also completely rewrite the code so it takes the query string on the command-line, reports all of the screening
results, identifies the true positives, and then does a brute-force verification that the screen results are correct. Oh, and
report statistics:

This program is called 'search.py'
from __future__ import print_function
import sys
import chemfp
import chemfp.search
from chemfp import rdkit_toolkit as T # Will only work with RDKit
import time

fptype = chemfp.get_fingerprint_type("RDKit-Pattern fpSize=1024")

54 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

screen = chemfp.load_fingerprints("pubchem_screen.fpb")
if len(sys.argv) != 2:

raise SystemExit("Usage: %s <smiles>" % (sys.argv[0],))

query_smiles = sys.argv[1]

start_time = time.time()
try:

query_mol = T.parse_molecule(query_smiles, "smistring")
except ValueError as err:

raise SystemExit(str(err))

Compute the fingerprint and do the substructure screeening
fp = fptype.compute_fingerprint(query_mol)
result = chemfp.search.contains_fp(fp, screen)
search_time = time.time()

num_matches = 0

for augmented_id in result.get_ids():
id, smiles = augmented_id.split()
target_mol = T.parse_molecule(smiles, "smistring")
if target_mol.HasSubstructMatch(query_mol): # RDKit specific!
print(id, "matches", smiles)
num_matches += 1

else:
print(id, " ", smiles)

report_time = time.time()

Report the results
print()
print("= Screen search =")
print("num targets:", len(screen))
print("screen size:", len(result))
print("num matches:", num_matches)
print("screenout: %.1f%%" % (100.0 * (len(screen)-len(result)) / len(screen),))
if len(result) == 0:

precision = 100.0
else:
precision = (100.0*num_matches) / len(result)

print("precision: %.1f%%" % (precision,))
print("screen time: %.2f" % (search_time - start_time,))
print("atom-by-atom-search and report time: %.2f" % (report_time - search_time,))
print("total time: %.2f" % (report_time - start_time,))

Reduce the computations without any screening
num_actual = 0
actual_start_time = time.time()
for augmented_id in screen.ids:

id, smiles = augmented_id.split()
target_mol = T.parse_molecule(smiles, "smistring")
if target_mol.HasSubstructMatch(query_mol): # RDKit specific!
num_actual += 1

actual_end_time = time.time()

print()
print("= Brute force search =")
print("num matches:", num_actual)

1.4. Fingerprints and fingerprint search examples 55

chemfp Documentation, Release 3.1

print("time to test all molecules: %.2f" % (actual_end_time - actual_start_time,))
print("screening speedup: %.1f" % ((actual_end_time - actual_start_time) / (report_
→˓time - start_time),))

Here’s the output with ‘c1ccccc1O’ on the command-line:

% python search.py c1ccccc1O
14568647 matches ClC(Cl)CCOc1ccccc1
14557991 matches C=CC=COCc1ccc(OC)cc1
14572069 matches C=CCNC(=S)Oc1ccccc1
14550766 matches NCCNCC(O)COc1ccccc1
14572073 matches C=CCNC(=O)Oc1ccccc1
14572952 matches Cc1ccc(OCO)c(C)c1
14550768 matches NCCCNCC(O)COc1ccccc1

...
14565454 matches
→˓CCOCCC(=O)Oc1c2cccc(OC3OC(C)C4OC(c5ccccc5)OC4C3OC3OC(C)C(O)C(OC)C3O)c2c2oc(=O)c3c(C)ccc4oc(=O)c1c2c43
14565455 matches
→˓CCOCCC(=O)Oc1c2cccc(OC3OC(C)C4OC(c5ccccc5)OC4C3OC3OC(C)C(O)C(OC)C3O)c2c2oc(=O)c3c(C)ccc4oc(=O)c1c2c43
14558058 matches CCCCCCCCCCCCCCCc1c2[nH]c(nc3nc(nc4nc(nc5[nH]c1c1cc(OCC(C)(C)C)ccc51)-
→˓c1cc(OCC(C)(C)C)ccc1-4)-c1cc(OCC(C)(C)C)ccc1-3)c1cc(OCC(C)(C)C)ccc21

= Screen search =
num targets: 5208
screen size: 1274
num matches: 1248
screenout: 75.5%
precision: 98.0%
screen time: 0.00
atom-by-atom-search and report time: 0.71
total time: 0.71

= Brute force search =
num matches: 1248
time to test all molecules: 2.01
screening speedup: 2.8

It’s a relief to see that the versions with and without the screen give the same number of matches!

Next, ‘c1ccccc1I’ (that’s iodobenzene):

% python search.py 'c1ccccc1I'
14573520 matches Nc1cc(N)c(I)cc1I
14566147 matches S=c1[nH]c2ccc(I)cc2[nH]1
14571184 matches O=[N+]([O-])c1cccc([N+](=O)[O-])c1I
14567222 matches COn1ccc2cccc(I)c21
14566148 matches O=C(O)CSc1nc2ccc(I)cc2[nH]1
14572760 Ic1ccc(N=c2snc3sc4ccccc4n23)nc1

= Screen search =
num targets: 5208
screen size: 6
num matches: 5
screenout: 99.9%
precision: 83.3%
screen time: 0.00
atom-by-atom-search and report time: 0.00
total time: 0.00

56 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

= Brute force search =
num matches: 5
time to test all molecules: 2.03
screening speedup: 506.3

Now for some bad news. Try ‘[Pu]’. This doesn’t screen out many structures yet has no matched. I’ll report the search
statistics:

.. code-block:: none

= Screen search = num targets: 5208 screen size: 5160 num matches: 0 screenout: 0.9% precision: 0.0%
screen time: 0.00 atom-by-atom-search and report time: 2.30 total time: 2.31

= Brute force search = num matches: 0 time to test all molecules: 1.85 screening speedup: 0.8

That’s horrible! It’s slower! What happened is that ‘[Pu]’ generates a fingerprint with only two bits set:

% echo '[Pu] plutonium' | rdkit2fps --pattern --fpSize 1024
#FPS1
#num_bits=1024
#type=RDKit-Pattern/4 fpSize=1024
#software=RDKit/2017.09.1.dev1 chemfp/3.1
#date=2017-09-14T23:11:48
000000002000
00008000
00
0000000000000000 plutonium

You know, that’s really hard to see. I’ll use a bit of perl to replace the zeros with ”.”s:

% echo '[Pu] plutonium' | python ../rdkit2fps --pattern --fpSize 1024 | perl -pe 's/0/
→˓./g'
#FPS1
#num_bits=1.24
#type=RDKit-Pattern/4 fpSize=1.24
#software=RDKit/2.17..9.1.dev1 chemfp/3.1
#date=2.17-.9-14T23:29:44
........2...
....8...
..
................ plutonium

Ha! And it converted zeros in the header lines to ”.”. I’ll just omit the header lines in the following.

Unfortunately, so many other structures also set those two bits, like the following two:

% echo 'CNn1cccn1 test1' | python ../rdkit2fps --pattern --fpSize 1024 | perl -pe 's/
→˓0/./g'
...2...83.......1..8....1.1.1..2.82...4.222.........1..34.....28..c........1.2..
...19.8.........6..7......2.1...1...22.4...4.....18a1...2.184............44a....
......38.28..244...8..3.1...1...2...2............4..2....a.....8.44....c8..24.1.
c8181..4.a18..4. test1

% echo 'Cc1cccccc1=S test2' | python ../rdkit2fps --pattern --fpSize 1024 | perl -pe
→˓'s/0/./g'
...2....2.42...15.......1....4...82...4.222....1..241..24.....6..28........1.2..
....b..1..25...86..7......331.8.....22.4..15.....188..2.2.8...28...1......c6....

1.4. Fingerprints and fingerprint search examples 57

chemfp Documentation, Release 3.1

.........6..8244.......411......3..422....8.4...........124......4...1.8...2..2.
881.4....a.8..4. test2

Reading structure fingerprints using a toolkit

In this section you’ll learn how to use a chemistry toolkit to compute fingerprints from a given structure file.

What happens if you’re given a structure file and you want to find the two nearest matches in an FPS file? You’ll have
to generate the fingerprints for the structures in the structure file, then do the comparison.

For this section you’ll need to have a chemistry toolkit. I’ll use the “chebi_maccs.fps” file generated in Using a toolkit
to process the ChEBI dataset as the targets, and the PubChem file Compound_027575001_027600000.sdf.gz as the
source of query structures:

>>> from __future__ import print_function
>>> import chemfp
>>> from chemfp import search
>>> targets = chemfp.load_fingerprints("chebi_maccs.fps")
>>> queries = chemfp.read_molecule_fingerprints(targets.metadata, "Compound_027575001_
→˓027600000.sdf.gz")
>>> for (query_id, hits) in chemfp.knearest_tanimoto_search(queries, targets, k=2,
→˓threshold=0.0):
... print(query_id, "=>", end=" ")
... for (target_id, score) in hits.get_ids_and_scores():
... print("%s %.3f" % (target_id, score), end=" ")
... print()
...
27575190 => CHEBI:116551 0.779 CHEBI:105622 0.771
27575192 => CHEBI:105622 0.809 CHEBI:108425 0.809
27575198 => CHEBI:109833 0.736 CHEBI:105937 0.730
27575208 => CHEBI:105622 0.783 CHEBI:108425 0.783
27575240 => CHEBI:91516 0.747 CHEBI:111326 0.737
27575250 => CHEBI:105622 0.809 CHEBI:108425 0.809
27575257 => CHEBI:105622 0.732 CHEBI:108425 0.732

... many lines omitted ...

That’s it! Pretty simple, wasn’t it? I didn’t even need to explicitly specify which toolkit I wanted to use because the
read_molecule_fingerprints() got that information from the arena’s Metadata.

The new function is chemfp.read_molecule_fingerprints(), which reads a structure file and generates
the appropriate fingerprints for each one. The first parameter of this is the metadata used to configure the reader. In
my case it’s:

>>> print(targets.metadata)
#num_bits=166
#type=OpenBabel-MACCS/2
#software=OpenBabel/2.4.1 chemfp/3.1
#source=ChEBI_lite.sdf.gz
#date=2017-09-16T00:15:13

The metadata’s “type” told chemfp which toolkit to use to read molecules, and how to generate fingerprints from
those molecules. (Note: the “aromaticity” value is no longer in use. The original version of OEGraphSim used the
user-defined aromaticity model, which meant that the same structure could give different results depending on the file
format used. OEGraphSim v2 now always re-perceives using OpenEye’s aromaticity model.)

You can pass in your own metadata as the first parameter to read_molecule_fingerprints, and as a shortcut,
if you pass in a string then it will be used as the fingerprint type.

58 Chapter 1. List of chapters

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz

chemfp Documentation, Release 3.1

For examples, if you have OpenBabel installed then you can do:

>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("OpenBabel-MACCS", "Compound_027575001_
→˓027600000.sdf.gz")
>>> for i, (id, fp) in enumerate(reader):
... print(id, bitops.hex_encode(fp))
... if i == 3:
... break
...

27575190 000000000020449e8401c148a0f4122cfa8a7bff1f
27575192 000000000000449e8401c148e0f4122cfa8a6bff1f
27575198 000000000000449e8401914838f9122edb8a3bff1f
27575208 000000040000449e8401c148a0f4122cfa8a6bff1f

If you have OEChem and OEGraphSim installed and licensed then you can do:

>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("OpenEye-MACCS166", "Compound_
→˓027575001_027600000.sdf.gz")
>>> for i, (id, fp) in enumerate(reader):
... print(id, bitops.hex_encode(fp))
... if i == 3:
... break
...
27575190 000000080020448e8401c148a0f41216fa8a7b7e1b
27575192 000000080000448e8401c148e0f41216fa8a6b7e1b
27575198 000000080000448e8401d14838f91216db8a3b7e1b
27575208 0000000c0000448e8401c148a0f41216fa8a6b7e1b

And if you have RDKit installed then you can do:

>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_027575001_
→˓027600000.sdf.gz")
>>> for i, (id, fp) in enumerate(reader):
... print(id, bitops.hex_encode(fp))
... if i == 3:
... break
...
27575190 000000000020449e8401c148a0f4123cfa8a7bff1f
27575192 000000000000449e8401c148e0f4123cfa8a6bff1f
27575198 000000000000449e8401914838f9123edb8a3bff1f
27575208 000000040000449e8401c148a0f4123cfa8a6bff1f

Select a random fingerprint sample

In this section you’ll learn how to make a new arena where the fingerprints are randomly selected from the old arena.

A FingerprintArena slice creates a subarena. Technically speaking, this is a “view” of the original data. The
subarena doesn’t actually copy its fingerprint data from the original arena. Instead, it uses the same fingerprint data,
but keeps track of the start and end position of the range it needs. This is why it’s not possible to slice with a step size
other than +1.

This also means that memory for a large arena won’t be freed until all of its subarenas are also removed.

You can see some evidence for this because a FingerprintArena stores the entire fingerprint data as a set of bytes
named arena:

1.4. Fingerprints and fingerprint search examples 59

chemfp Documentation, Release 3.1

>>> import chemfp
>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> subset = targets[10:20]
>>> targets.arena is subset.arena
True

This shows that the targets and subset share the same raw data set. At least it does to me, the person who wrote the
code.

You can ask an arena or subarena to make a copy . This allocates new memory for the new arena and copies all of its
fingerprints there.

>>> new_subset = subset.copy()
>>> len(new_subset) == len(subset)
True
>>> new_subset.arena is subset.arena
False
>>> subset[7][0]
'14571646'
>>> new_subset[7][0]
'14571646'

The copy method can do more than just copy the arena. You can give it a list of indices and it will only copy those
fingerprints:

>>> three_targets = targets.copy([3112, 0, 1234])
>>> three_targets.ids
['14550474', '14570519', '14570965']
>>> [targets.ids[3112], targets.ids[0], targets.ids[1234]]
['14570965', '14550474', '14570519']

Are you confused about why the identifiers aren’t in the same order? That’s because when you specify indicies, the
copy automatically reorders them by popcount and stores the popcount information. This requires a bit extra overhead
to sort, but makes future searches faster. Use reorder=False to leave the order unchanged

>>> my_ordering = targets.copy([3112, 0, 1234], reorder=False)
>>> my_ordering.ids
['14570965', '14550474', '14570519']

Let’s get back to the main goal of getting a random subset of the data. I want to select m records at random, without
replacement, to make a new data set. You can see this just means making a list with m different index values. Python’s
built-in random.sample function makes this easy:

>>> import random
>>> random.sample("abcdefgh", 3)
['b', 'h', 'f']
>>> random.sample("abcdefgh", 2)
['d', 'a']
>>> random.sample([5, 6, 7, 8, 9], 2)
[7, 9]
>>> help(random.sample)
sample(self, population, k) method of random.Random instance

Chooses k unique random elements from a population sequence.
...
To choose a sample in a range of integers, use xrange as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(xrange(10000000), 60)

60 Chapter 1. List of chapters

http://docs.python.org/2/library/random.html#random.sample

chemfp Documentation, Release 3.1

The last line of the help points out what do next!:

>>> random.sample(xrange(len(targets)), 5)
[610, 2850, 705, 1402, 2635]
>>> random.sample(xrange(len(targets)), 5)
[1683, 2320, 1385, 2705, 1850]

Putting it all together, and here’s how to get a new arena containing 100 randomly selected fingerprints, without
replacement, from the targets arena:

>>> sample_indices = random.sample(xrange(len(targets)), 100)
>>> sample = targets.copy(indices=sample_indices)
>>> len(sample)
100

Don’t reorder an arena by popcount

In this section you’ll learn about why you might want to store your fingerprints in specific order, rather than being
ordered by population count.

The previous section showed how to make an arena where the fingerprints are in a user-specified order:

>>> import chemfp
>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> [targets.ids[i] for i in [3112, 0, 1234]]
[u'14556313', u'14550474', u'14566849']
>>> targets.copy([3112, 0, 1234], reorder=False).ids
[u'14556313', u'14550474', u'14566849']
>>> targets.copy([3112, 0, 1234], reorder=True).ids
[u'14550474', u'14566849', u'14556313']

If the reorder option is not specified, the fingerprints in the new arena will be in popcount order. Similarity search
is faster when the arena is in popcount order because it lets chemfp make an index of the different regions, based on
popcount, and use that for sublinear search.

Why would someone want search to be slower?

Sometimes data organization is more important. For one client I developed a SEA implementation, where I compared
a set of query fingerprints to about 50 other sets of target fingerprint sets. The largest set had only few thousand
fingerprints, so the overall search was fast without a popcount index.

I could have stored each target data set as its own file, but that would have resulted in about 50 data files to manage,
in addition to the original fingerprint file and the configuration file containing the information about which identifiers
are in which set.

Instead, I stored all of the target data sets in a single FPB file, where the fingerprints for the first set came first, then
the fingerprints for the second set, and so on. I also made a range file to store the set name and the start/end range of
that set in the FPB file. This reduced 50 files down to two, which was much easier to manage.

It’s a bit fiddly to go through the details of how this works, because it requires set membership information which is
a bit complicated to extract and which won’t be used for the rest of this documentation. Instead of walking though an
example here, I’ll refer you to my essay ChEMBL target sets association network.

You can use the subranges directly as an arena slice, like arena[54:91] as the target. This will work, but as I said
earlier, the search time will be slower because the sublinear algorithm requires a popcount index.

If you need that search performance then during load time make a copy of the slice, as in arena[54:91].
copy(reorder=True), and use that as the target.

1.4. Fingerprints and fingerprint search examples 61

http://www.dalkescientific.com/writings/diary/archive/2017/03/27/chembl_target_sets_association_network.html

chemfp Documentation, Release 3.1

A few paragraphs ago I wrote that “I stored all of the target data sets in a single FPB file.” When you load an FPB
format, the fingerprint order will be exactly as given in the file. However, if you load fingerprints from an FPS file, the
fingerprints are by default reordered. For example, given this data set:

% cat unordered_example.fps
#FPS1
0001 Record1
ffee Record2
00f0 Record3

I’ll load it into chemfp and show that by default the records are in the order 1, 3, 2:

>>> import chemfp
>>> chemfp.load_fingerprints("unordered_example.fps").ids
chemfp.load_fingerprints("unordered_example.fps").ids

On the other hand, if I ask it to not reorder then the records are in the input order, which is 1, 2, 3:

>>> chemfp.load_fingerprints("unordered_example.fps", reorder=False).ids
[u'Record1', u'Record2', u'Record3']

In short, if you want to preserve the fingerprint order as given in the input file then use the reorder=False argument
in chemfp.load_fingerprints().

Look up a fingerprint with a given id

In this section you’ll learn how to get a fingerprint record with a given id. You will need the “pubchem_targets.fps”
file generated in Generate fingerprint files from PubChem SD tags in order to do this yourself.

All fingerprint records have an identifier and a fingerprint. Identifiers should be unique. (Duplicates are allowed, and
if they exist then the lookup code described in this section will arbitrarily decide which record to return. Once made,
the choice will not change.)

Let’s find the fingerprint for the record in “pubchem_targets.fps” which has the identifier “14564126”. One solution
is to iterate over all of the records in a file, using the FPS reader:

>>> import chemfp
>>> for id, fp in chemfp.open("pubchem_targets.fps"):
... if id == "14564126":
... break
... else:
... raise KeyError("%r not found" % (id,))
...
>>> fp[:5]
'\x07\x1e\x1c\x00\x00'

(Under Python 3 that last line will show a b'' string because fingerprints are byte strings.)

I used the somewhat obscure else clause to the for loop. If the for finishes without breaking, which would happen
if the identifier weren’t present, then it will raise an exception saying that it couldn’t find the given identifier.

If the fingerprint records are already in a FingerprintArena then there’s a better solution. Use the
FingerprintArena.get_fingerprint_by_id() method to get the fingerprint byte string, or None if the
identifier doesn’t exist:

>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> fp = arena.get_fingerprint_by_id("14564126")
>>> fp[:5]

62 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

'\x07\x1e\x1c\x00\x00'
>>> missing_fp = arena.get_fingerprint_by_id("does-not-exist")
>>> missing_fp
>>> missing_fp is None
True

Internally this does about what you think it would. It uses the arena’s id list to make a lookup table mapping identifier
to index, and caches the table for later use. Given the index, it’s very easy to get the fingerprint.

In fact, you can get the index and do the record lookup yourself:

>>> arena.get_index_by_id("14564126")
2824
>>> arena[2820]
(u'14564126', '\x07\x1e\x1c\x00\x00 ...')

Sorting search results

In this section you’ll learn how to sort the search results.

The k-nearest searches return the hits sorted from highest score to lowest, and break ties arbitrarily. This is usually
what you want, and the extra cost to sort is small (k*log(k)) compared to the time needed to maintain the internal heap
(N*log(k)).

By comparison, the threshold searches return the hits in arbitrary order. Sorting takes up to N*log(N) time, which is
extra work for those cases where you don’t want sorted data. If you actually want it sorted, then call SearchResult.
reorder() method to sort the hits in-place:

>>> import chemfp
>>> arena = chemfp.load_fingerprints("pubchem_queries.fps")
>>> query_fp = arena.get_fingerprint_by_id("27599116")
>>> from chemfp import search
>>> result = search.threshold_tanimoto_search_fp(query_fp, arena, threshold=0.90)
>>> len(result)
9
>>> result.get_ids_and_scores()
[('27599061', 0.953125), ('27599092', 0.9615384615384616),
('27599227', 0.9615384615384616), ('27599228',
0.9615384615384616), ('27599115', 1.0), ('27599116', 1.0),
('27599118', 1.0), ('27599120', 1.0), ('27599082',
0.9253731343283582)]
>>>
>>> result.reorder("decreasing-score")
>>> result.get_ids_and_scores()
[('27599115', 1.0), ('27599116', 1.0), ('27599118', 1.0),
('27599120', 1.0), ('27599092', 0.9615384615384616), ('27599227',
0.9615384615384616), ('27599228', 0.9615384615384616),
('27599061', 0.953125), ('27599082', 0.9253731343283582)]
>>>
>>> result.reorder("increasing-score")
>>> result.get_ids_and_scores()
[('27599082', 0.9253731343283582), ('27599061', 0.953125),
('27599092', 0.9615384615384616), ('27599227',
0.9615384615384616), ('27599228', 0.9615384615384616),
('27599115', 1.0), ('27599116', 1.0), ('27599118', 1.0),
('27599120', 1.0)]

1.4. Fingerprints and fingerprint search examples 63

chemfp Documentation, Release 3.1

There are currently six different sort methods, all specified by a name string. These are

• increasing-score - sort by increasing score

• decreasing-score - sort by decreasing score

• increasing-index - sort by increasing target index

• decreasing-index - sort by decreasing target index

• reverse - reverse the current ordering

• move-closesot-first - move the hit with the highest score to the first position

The first two should be obvious from the examples. If you find something useful for the next two then let me know.
The “reverse” method reverses the current ordering, and is most useful if you want to reverse the sorted results from a
k-nearest search.

The “move-closest-first” option exists to improve the leader algorithm stage used by the Taylor-Butina algorithm. The
newly seen compound is either in the same cluster as its nearest neighbor or it is the new centroid. I felt it best to
implement this as a special reorder term, rather than one of the other possible options.

If you have suggestions for alternate orderings which might help improve your clustering performance, let me know.

If you want to reorder all of the search results then you could use the SearchResult.reorder() method on each
result, but it’s easier to use SearchResults.reorder_all() and change everything in a single call. It takes the
same ordering names as reorder:

>>> from __future__ import print_function
>>> similarity_matrix = search.threshold_tanimoto_search_symmetric(
... arena, threshold=0.8)
>>> for query_id, row in zip(arena.ids, similarity_matrix):
... print(query_id, "->", row.get_ids_and_scores()[:3])
...
27581954 -> [('27581957', 0.9310344827586207)]
27581957 -> [('27581954', 0.9310344827586207)]
27580389 -> [('27580394', 0.8823529411764706)]
27584917 -> [('27585106', 0.8991596638655462)]
27585106 -> [('27584917', 0.8991596638655462)]
27580394 -> [('27580389', 0.8823529411764706)]
27599061 -> [('27599092', 0.9453125), ('27599227', 0.9453125), ('27599228', 0.
→˓9453125)]
27593061 -> []
27575880 -> [('27575997', 0.8194444444444444)]
27583796 -> []
27599092 -> [('27599227', 0.9689922480620154), ('27599228', 0.9689922480620154), (
→˓'27599115', 0.9615384615384616)]

... lines deleted
>>>
>>> similarity_matrix.reorder_all("increasing-score")
>>> for query_id, row in zip(arena.ids, similarity_matrix):
... print(query_id, "->", row.get_ids_and_scores()[:3])
...
27581954 -> [('27581957', 0.9310344827586207)]
27581957 -> [('27581954', 0.9310344827586207)]
27580389 -> [('27580394', 0.8823529411764706)]
27584917 -> [('27585106', 0.8991596638655462)]
27585106 -> [('27584917', 0.8991596638655462)]
27580394 -> [('27580389', 0.8823529411764706)]
27599061 -> [('27598934', 0.8), ('27599095', 0.8108108108108109), ('27598670', 0.
→˓8137931034482758)]
27593061 -> []

64 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

27575880 -> [('27575997', 0.8194444444444444)]
27583796 -> []
27599092 -> [('27598959', 0.8108108108108109), ('27598934', 0.8211920529801324), (
→˓'27598670', 0.8231292517006803)]

... lines deleted

These are almost identical because most of the searches have only zero or one hits. The only differences are in the
lines for ids “27599061” and “27599092”, both of which have 19 hits. For display purposes, I used [:3] to display
only the first three matches. In the first block the results are in arbitrary order, while in the second the elements are
sorted so the smallest score is first.

Working with raw scores and counts in a range

In this section you’ll learn how to get the hit counts and raw scores for an interval.

The length of a SearchResult is the number of hits it contains:

>>> import chemfp
>>> from chemfp import search
>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> fp = arena.get_fingerprint_by_id("14564126")
>>> result = search.threshold_tanimoto_search_fp(fp, arena, threshold=0.2)
>>> len(result)
4682

This gives you the number of hits at or above a threshold of 0.2, which you can also get by doing chemfp.search.
count_tanimoto_hits_fp():

>>> search.count_tanimoto_hits_fp(fp, arena, threshold=0.2)
4682

The advantage to the first version is the result also stores the hits. You can query the hit to get the number of hits which
are within a specified interval. Here are the counts of the number of hits at or above 0.5, 0.80, and 0.95:

>>> result.count(0.5)
1218
>>> result.count(0.8)
9
>>> result.count(0.95)
2

The first parameter, min_score, specifies the minimum threshold. If not specified it’s -infinity. The second, max_score,
specifies the maximum, and is +infinity if not specified. Here’s how to get the number of hits with a score of at most
0.95 and 0.5:

>>> result.count(max_score=0.95)
4680
>>> result.count(max_score=0.5)
3489

If you double-check the math, and add the number above 0.5 (1218) and the number below 0.5 (3489) you’ll get 4707,
even through there are only 4682 records. The extra 25 is because by default the count interval uses a closed range.
There are 25 hits with a score of exactly 0.5:

>>> result.count(0.5, 0.5)
25

1.4. Fingerprints and fingerprint search examples 65

chemfp Documentation, Release 3.1

The third parameter, interval, specifies the end conditions. The default is “[]” which means that both ends are closed.
The interval “()” means that both ends are open, and “[)” and “(]” are the two half-open/half-closed ranges. To get the
number of hits below 0.5 and the number of hits at or above 0.5 then you might use:

>>> result.count(None, 0.5, "[)")
3722
>>> result.count(0.5, None, "[]")
1364
>>> 3464+1218
4682

This total matches the expected count. (A min or max of None means -infinity and +infinity, respectively.)

Cumulative search result counts and scores

In this section you’ll learn some more advanced ways to work with SearchResults and SearchResult instances.

I wanted to title this section “Going to SEA”, but decided to use a more descriptive name. “SEA” refers to the
“Similarity Ensemble Approach” (SEA) work of Keiser, Roth, Armbruster, Ernsberger, and Irwin. The paper is
available online from http://sea.bkslab.org/ , though I won’t actually implement it here. Why do I mention it? Because
these chemfp methods were added specifically to make it easier to support a SEA implementation for one of the
chemfp customers.

Suppose you have two sets of structures. How well do they compare to each other? I can think of various ways to do
it. One is to look at a comparison profile. Find all NxM comparisons between the two sets. How many of the hits have
a threshold of 0.2? How many at 0.5? 0.95?

If there are “many”, then the two sets are likely more similar than not. If the answer is “few”, then they are likely
rather distinct.

I’ll be more specific. I want to know if the coenzyme A-like structures in ChEBI are more similar to the penicillin-like
structures than one would expect by comparing two randomly chosen subsets. To quantify “similar”, I’ll use Tanimoto
similarity of the “chebi_maccs.fps” fingerprints, which are the 166 MACCS key-like fingerprints from RDMACCS
for the ChEBI data set. See Using a toolkit to process the ChEBI dataset for details about why I use the --id-tag
options:

Use one of the following to create chebi_maccs.fps
oe2fps --id-tag "ChEBI ID" --rdmaccs ChEBI_lite.sdf.gz -o chebi_maccs.fps
ob2fps --id-tag "ChEBI ID" --rdmaccs ChEBI_lite.sdf.gz -o chebi_maccs.fps
rdkit --id-tag "ChEBI ID" --rdmaccs ChEBI_lite.sdf.gz -o chebi_maccs.fps

I used oe2fps to create RDMACCS-OpenEye fingerprints.

The CHEBI id for coenzyme A is CHEBI:15346 and for penicillin is CHEBI:17334. I’ll define the “coenzyme A-like”
structures as the 256 structures where the fingerprint is at least 0.95 similar to coenzyme A, and “penicillin-like” as
the 24 structures at least 0.85 similar to penicillin. This gives 6144 total comparisons.

You know enough to do this, but there’s a nice optimization I haven’t told you about. You can get the total count of all
of the threshold hits using the chemfp.search.SearchResults.count_all() method instead of looping
over each SearchResult and calling chemfp.search.SearchResult.count():

from __future__ import print_function
import chemfp
from chemfp import search

def get_neighbors_as_arena(arena, id, threshold):
fp = arena.get_fingerprint_by_id(id)
neighbor_results = search.threshold_tanimoto_search_fp(fp, chebi,

→˓threshold=threshold)

66 Chapter 1. List of chapters

http://sea.bkslab.org/
ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz

chemfp Documentation, Release 3.1

neighbor_arena = arena.copy(neighbor_results.get_indices())
return neighbor_arena

chebi = chemfp.load_fingerprints("chebi_maccs.fps")

Find the 256 neighbors of coenzyme A
coA_arena = get_neighbors_as_arena(chebi, "CHEBI:15346", threshold=0.95)
print(len(coA_arena), "coenzyme A-like structures")

Find the 24 neighbors of penicillin
penicillin_arena = get_neighbors_as_arena(chebi, "CHEBI:17334", threshold=0.85)
print(len(penicillin_arena), "penicillin-like structures")

I'll compute a profile at different thresholds
thresholds = [0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95]

Compare the two sets. (For this case the speed difference between a threshold
of 0.25 and 0.0 is not noticible, but having it makes me feel better.)
coA_against_penicillin_result = search.threshold_tanimoto_search_arena(

coA_arena, penicillin_arena, threshold=min(thresholds))

Show a similarity profile
print("Counts coA/penicillin")
for threshold in thresholds:

print(" %.2f %5d" % (threshold,
coA_against_penicillin_result.count_all(min_

→˓score=threshold)))

This gives a not very useful output:

261 coenzyme A-like structures
8 penicillin-like structures
Counts coA/penicillin
0.30 2088
0.35 2088
0.40 2087
0.45 1113
0.50 0
0.60 0
0.70 0
0.80 0
0.90 0

It’s not useful because it’s not possible to make any decisions from this. Are the numbers high or low? It should be
low, because these are two quite different structure classes, but there’s nothing to compare it against.

I need some sort of background reference. What I’ll do is construct two randomly chosen sets, one with 256 fingerprints
and the other with 24, and generate the same similarity profile with them. That isn’t quite fair, since randomly chosen
sets will most likely be diverse. Instead, I’ll pick one fingerprint at random, then get its 256 or 24, respectively, nearest
neighbors as the set members (place the following code at the end of the file with the previous code):

Get background statistics for random similarity groups of the same size
import random

Find a fingerprint at random, get its k neighbors, return them as a new arena
def get_random_fp_and_its_k_neighbors(arena, k):

fp = arena[random.randrange(len(arena))][1]
similar_search = search.knearest_tanimoto_search_fp(fp, arena, k)

1.4. Fingerprints and fingerprint search examples 67

chemfp Documentation, Release 3.1

return arena.copy(similar_search.get_indices())

I’ll construct 1000 pairs of sets this way, accumulate the threshold profile, and compare the CoA/penicillin profile to
it:

Initialize the threshold counts to 0
total_background_counts = dict.fromkeys(thresholds, 0)

REPEAT = 1000
for i in range(REPEAT):

Select background sets of the same size and accumulate the threshold count
→˓totals

set1 = get_random_fp_and_its_k_neighbors(chebi, len(coA_arena))
set2 = get_random_fp_and_its_k_neighbors(chebi, len(penicillin_arena))
background_search = search.threshold_tanimoto_search_arena(set1, set2,

→˓threshold=min(thresholds))
for threshold in thresholds:

total_background_counts[threshold] += background_search.count_all(min_
→˓score=threshold)

print("Counts coA/penicillin background")
for threshold in thresholds:

print(" %.2f %5d %5d" % (threshold,
coA_against_penicillin_result.count_

→˓all(min_score=threshold),
total_background_counts[threshold] /

→˓(REPEAT+0.0)))

Your output should now have something like this at the end:

Counts coA/penicillin background
0.30 2088 882
0.35 2088 698
0.40 2087 550
0.45 1113 413
0.50 0 322
0.60 0 156
0.70 0 58
0.80 0 20
0.90 0 5

This is a bit hard to interpret. Clearly the coenzyme A and penicillin sets are not closely similar, but for low Tanimoto
scores the similarity is higher than expected. That difficulty is okay for now because I mostly wanted to show an
example of how to use the chemfp API. If you want to dive deeper into this sort of analysis then read a three-part
series I wrote at http://www.dalkescientific.com/writings/diary/archive/2017/03/20/fingerprint_set_similarity.html on
using chemfp to build a target set association network using ChEMBL.

The SEA paper actually wants you to use the raw score, which is the sum of the hit scores in a given range, and not
just the number of hits. No problem! Use SearchResult.cumulative_score() for the cumulative scores for
an individual result, or SearchResults.cumulative_score_all() for the cumulative scores across all of
the results. The two functions compute almost identical values for the whole data set:

>>> sum(row.cumulative_score(min_score=0.5, max_score=0.9)
... for row in coA_against_penicillin_result)
582.129474678352
>>> coA_against_penicillin_result.cumulative_score_all(min_score=0.5, max_score=0.9)
582.1294746783535

68 Chapter 1. List of chapters

http://www.dalkescientific.com/writings/diary/archive/2017/03/20/fingerprint_set_similarity.html

chemfp Documentation, Release 3.1

The cumulative methods, like the count method you learned about in the previous section, also take the interval
parameter for when you don’t want the default of “[]”.

You may wonder why these two values aren’t exactly the same. They differ because floating point addition is not
associative. The first computes the sum for each result, then the sum of sums. The second computes the sum by
adding each score to the cumulative sum.

I get a different result if I sum up the values in reverse order:

>>> sum(list(row.cumulative_score(min_score=0.5, max_score=0.9)
... for row in coA_against_penicillin_result)[::-1])
582.1294746783539

Which is the “right” score? The cumulative_score_all() method at least matches the one you might write if
you computed the sum directly:

>>> total_score = 0.0
>>> for row_scores in coA_against_penicillin_result.iter_scores():
... for score in row_scores:
... if 0.5 <= score <= 0.9:
... total_score += score
...
>>> total_score
582.1294746783535

Writing fingerprints with a fingerprint writer

In this section you’ll learn how to create a fingerprint file using the chemfp fingerprint writer API.

You probably don’t need this section. In most cases you can save the contents of an FPS reader or fingerprint arena by
using the FingerprintReader.save() method, as in the following examples:

chemfp.open("pubchem_targets.fps").save("example.fps")
chemfp.open("pubchem_targets.fps").save("example.fpb")
chemfp.open("pubchem_targets.fpb").save("example.fps.gz")

The structure-based fingerprint readers also implement the save method so you could simply write:

import chemfp
reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_014550001_
→˓014575000.sdf.gz")
reader.save("example.fps") # or "example.fpb"

However, if you generate the fingerprints yourself, or want more fine-grained control over the writer parameters then
read on!

(If you don’t have RDKit installed then use “OpenBabel-MACCS” for Open Babel’s MACCS fingerprints, and
“OpenEye-MACCS166” for OpenEye’s.)

Here’s an example of the fingerprint writer API. I open the writer, ask it to write a fingerprint id and the fingerprint,
and then close it.

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer("example.fps")
>>> writer.write_fingerprint("ABC123", b"\0\0\0\0\0\3\2\1")
>>> writer.close()

I’ll ask Python to read the file and print the contents:

1.4. Fingerprints and fingerprint search examples 69

chemfp Documentation, Release 3.1

>>> from __future__ import print_function
>>> print(open("example.fps").read())
#FPS1
0000000000030201 ABC123

Of course you don’t need to use chemfp to write this file. It’s simple enough that you could get the same result in
fewer lines of normal Python code. The advantage starts to be useful when you want to include metadata.

>>> metadata = chemfp.Metadata(num_bits=64, type="Example-FP/0")
>>> writer = chemfp.open_fingerprint_writer("example.fps", metadata)
>>> writer.write_fingerprint("ABC123", b"\0\0\0\0\0\3\2\1")
>>> writer.close()
>>>
>>> print(open("example.fps").read())
#FPS1
#num_bits=64
#type=Example-FP/0
0000000000030201 ABC123

Even then, native Python code is probably easier to use if you know what the header lines will be, because it’s a bit of
a nuisance to create the chemfp.Metadata yourself.

On the other hand, if you have a chemfp fingerprint type you can just ask it for the correct metadata instance:

>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> metadata = fptype.get_metadata()
>>> metadata
Metadata(num_bits=166, num_bytes=21, type='RDKit-MACCS166/2',
aromaticity=None, sources=[], software='RDKit/2017.09.1.dev1 chemfp/3.1',
date='2017-09-16T00:01:50')

Putting the two together, and switching to a 21 byte fingerprint instead of an 8 byte fingerprint, gives:

>>> from __future__ import print_function
>>> import chemfp
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> writer = chemfp.open_fingerprint_writer("example.fps", fptype.get_metadata())
>>> writer.write_fingerprint("ABC123", b
→˓"\0\1\2\3\4\5\6\7\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14")
>>> writer.close()
>>>
>>> print(open("example.fps").read())
#FPS1
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2017.09.1.dev1 chemfp/3.1
#date=2017-09-16T00:02:29
000102030405060708090a0b0c0d0e0f1011121314 ABC123

In real life that fingerprint comes from somewhere. The high-level structure-based fingerprint reader has a handy
metadata attribute:

>>> filename = "Compound_014550001_014575000.sdf.gz"
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
>>> print(reader.metadata)
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2017.09.1.dev1 chemfp/3.1

70 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

#source=Compound_014550001_014575000.sdf.gz
#date=2017-09-16T00:03:14

By the way, note that this includes the source filename, which FingerprintType.get_metadata() can’t
automatically do. (See Merging multiple structure-based fingerprint sources for an example of how to pass that
information to get_metadata().)

A structure-based fingerprint reader is just like any other reader, so you can iterate over the (id, fingerprint) pairs:

>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
>>> for count, (id, fp) in enumerate(reader):
... print(id, "=>", bitops.hex_encode(fp))
... if count == 5:
... break
...
14550001 => 00008000000081406000a226a010614a5fceae7d1f
14550002 => 00000000000000000000aa06801021405dc6e47d1f
14550003 => 00000000000000000000a8160000054054c4e0bd1f
14550004 => 0000000000000800118204a00000800900b1708813
14550005 => 00000000040801000000000010010014800803523e
14550010 => 000000180084000010003044a882000e8e0e0a771f

You probably already see how to combine this with FingerprintWriter.write_fingerprint() to gener-
ate the FPS output. The key part would look like:

for id, fp in reader:
writer.write_fingerprint(id, fp)

While that would work, there’s a better way. The chemfp fingerprint writer has a FingerprintWriter.
write_fingerprints() method which takes a list or iterator of (id, fingerprint) pairs. Here’s a better way
to write the code:

import chemfp
filename = "Compound_014550001_014575000.sdf.gz"
reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_014550001_
→˓014575000.sdf.gz")
writer = chemfp.open_fingerprint_writer("example.fps", reader.metadata)
writer.write_fingerprints(reader)
writer.close()
reader.close()
Note: See the next section for an even better solution
which uses a context manager.

This produces output which starts:

#FPS1
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2017.09.1.dev1 chemfp/3.1
#source=Compound_014550001_014575000.sdf.gz
#date=2017-09-16T00:04:23
00008000000081406000a226a010614a5fceae7d1f 14550001
00000000000000000000aa06801021405dc6e47d1f 14550002
00000000000000000000a8160000054054c4e0bd1f 14550003
0000000000000800118204a00000800900b1708813 14550004
00000000040801000000000010010014800803523e 14550005

1.4. Fingerprints and fingerprint search examples 71

chemfp Documentation, Release 3.1

Why is write_fingerprints “better” than multiple calls to write_fingerprint? I think it more directly
describes the goal of writing all of the fingerprints, rather than the mechanics of unpacking and repacking the (id,
fingerprint) pairs. I had hoped that there would be performance improvement, because there’s less Python function
call overhead, but my timings show no differences.

However, there’s a still better way, which is to use a context manager to close the files automatically, rather than calling
close() explicitly. I’ll leave that for the next section.

Fingerprint readers and writers are context managers

In this section you’ll learn how the fingerprint readers and writers can be used as a context manager.

The previous section ended with the following code:

import chemfp
filename = "Compound_014550001_014575000.sdf.gz"
reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
writer = chemfp.open_fingerprint_writer("example.fps", reader.metadata)
writer.write_fingerprints(reader)
writer.close()
reader.close()

This reads a PubChem file with RDKit, generates MACCS fingerprints, and saves the results to “example.fps”.

The two FingerprintWriter.close() lines ensure that the reader and writer files are closed. This isn’t re-
quired for a simple script, because Python will close the files automatically at the end of the script, or when the garbage
collector kicks in.

However, since the writer may buffer the output, you have to close the file before you or another program can read it.
It’s good practice to always close the file when you’re done with it, as otherwise there are ways to get really confused
about why you don’t have a complete file.

Even with the explicit close calls, if there’s an exception in FingerprintWriter.write_fingerprints()
then the files will be left open. In older-style Python this was handled with a try/finally block, but that’s verbose.
Instead, chemfp’s readers and writers implement modern Python’s context manager API, to make it easier to close
files automatically at just the right place. Here’s what the above looks like with a context manager:

import chemfp
filename = "Compound_014550001_014575000.sdf.gz"
with chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename) as reader:

with chemfp.open_fingerprint_writer("example.fps", reader.metadata) as writer:
writer.write_fingerprints(reader)

Isn’t that nice and short? Just bear in mind that it’s even more succinctly written as:

import chemfp
filename = "Compound_014550001_014575000.sdf.gz"
with chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename) as reader:

reader.save("example.fps")

Write fingerprints to stdout or a file-like object

In this section you’ll learn how to write fingerprints to stdout, and how to write them to a BytesIO instance.

The previous section showed examples of passing a filename string to chemfp.open_fingerprint_writer().
If the filename argument is None then the writer will write to stdout in uncompressed FPS format:

72 Chapter 1. List of chapters

https://www.python.org/dev/peps/pep-0343/

chemfp Documentation, Release 3.1

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer(None,
... chemfp.Metadata(num_bits=16, type="Experiment/1"))
#FPS1
#num_bits=16
#type=Experiment/1
>>> writer.write_fingerprint("QWERTY", b"AA")
4141 QWERTY
>>> writer.write_fingerprint("SHRDLU", b"\0\1")
0001 SHRDLU
>>> writer.close()

The filename argument may also be a file-like object, which is defined as any object which implements the method
write(s) where s is a byte string. A io.BytesIO instance is one such file-like object. It gives access to the output
as a byte string:

>>> from __future__ import print_function
>>> import chemfp
>>> from io import BytesIO
>>> f = BytesIO()
>>> writer = chemfp.open_fingerprint_writer(f, chemfp.Metadata(num_bits=16, type=
→˓"Experiment/1"))
>>> print(f.getvalue())
#FPS1
#num_bits=16
#type=Experiment/1

>>> writer.write_fingerprint("ETAOIN", b"00")
>>> writer.close()
>>> print(f.getvalue())
#FPS1
#num_bits=16
#type=Experiment/1
3030 ETAOIN

(Note: Under Python 3 the two print(f.getvalue()) lines will display the byte string as:

b'#FPS1\n#num_bits=16\n#type=Experiment/1\n'
b'#FPS1\n#num_bits=16\n#type=Experiment/1\n3030\tETAOIN\n'

You can see that closing the fingerprint writer does not close the underlying file-like object. (If it did then you couldn’t
get access to the string content, which gets deleted when the StringIO is closed.)

You can also write an FPB file to a file-like object, if it supports seek() and tell() and binary writes. This means
that you cannot write an FPB format to stdout, but you can write it to a BytesIO instance.

>>> import chemfp
>>> from io import BytesIO
>>> f = BytesIO()
>>> writer = chemfp.open_fingerprint_writer(f, format="fpb")
>>> writer.write_fingerprint("ID123", b"\x01\xfe")
>>> writer.close()
>>> len(f.getvalue())
2269

1.4. Fingerprints and fingerprint search examples 73

https://docs.python.org/2/library/io.html#io.BytesIO

chemfp Documentation, Release 3.1

Writing fingerprints to an FPB file

In this section you’ll learn how to write an FPB file.

The FPS file is a text format which was designed to be easy to read and write. The FPB file is a binary format which
is designed to be fast to load. Internally it stores the fingerprints in a way which can be mapped directly to the arena
data structure. However, writing this format yourself is not easy.

Instead, let chemfp do it for you. With the chemfp.open_fingerprint_writer() function, the difference
between writing an FPS file and an FPB file is a matter of changing the extension. Here’s a simple example:

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer("simple.fpb")
>>> writer.write_fingerprints([("first", b"\xff\xff"), ("second", b"ZZ"), ("third", b
→˓"\1\2")])
>>> writer.close()

Almost all you need to know is to use the ”.fpb” extension instead of ”.fps”. The rest of this section goes into low-level
details that might be enlightening, but probably aren’t that directly useful for most people.

It’s hard to show the content of the FPB file, because it is binary. I’ll do a character dump to show the first 96 bytes:

% od -c simple.fpb
0000000 F P B 1 \r \n \0 \0 \r \0 \0 \0 \0 \0 \0 \0
0000020 M E T A # n u m _ b i t s = 1 6
0000040 \n # \0 \0 \0 \0 \0 \0 \0 A R E N 002 \0 \0
0000060 \0 \b \0 \0 \0 002 \0 \0 001 002 \0 \0 \0 \0 \0 \0
0000100 Z Z \0 \0 \0 \0 \0 \0 377 377 \0 \0 \0 \0 \0 \0
0000120 H \0 \0 \0 \0 \0 \0 \0 P O P C \0 \0 \0 \0

...

The first eight bytes are the file signature. Following that are a set of blocks, with eight bytes for the length, a four byte
block type name, and then the block content. Here you can see the “META”data block, followed by the “AREN”a block
containing the fingerprint data, followed by the start of the “POPC”ount block with the popcount index information.

That’s probably a bit too much detail for you. I’ll use chemfp to read the file and show the contents:

>>> from __future__ import print_function
>>> import chemfp
>>> reader = chemfp.open("simple.fpb")
>>> print(reader.metadata)
#num_bits=16

>>> from chemfp import bitops
>>> for id, fp in reader:
... print(id, "=>", bitops.hex_encode(fp))
...
third => 0102
second => 5a5a
first => ffff

Unlike the FPS format, the FPB format requires a num_bits in the metadata. Since I didn’t give the writer that
information, it figured it out from the number of bytes in the first written fingerprint.

You can see that record order is different than the input order. While the FPS fingerprint writer preserves input order,
the FPB writer will reorder the records by population count, so the records with fewer ‘on’ bits come first. It then
creates a popcount index, to mark the start and end location of all of the fingerprints with a given popcount. This is
used to pre-compute the popcount for a fingerprint, and to implement sublinear similarity search.

74 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Use the reorder parameter to control if the fingerprints should be reordered. The default is True, and False will preserve
the input order:

>>> writer = chemfp.open_fingerprint_writer("simple.fpb", reorder=False)
>>> writer.write_fingerprints([("first", b"\xff\xff"), ("second", b"ZZ"), ("third", b
→˓"\1\2")])
>>> writer.close()
>>>
>>> reader = chemfp.open("simple.fpb")
>>> for id, fp in reader:
... print(id, "=>", bitops.hex_encode(fp))
...
first => ffff
second => 5a5a
third => 0102

You might think it’s a bit useless to preserve input order, because the performance won’t be as fast. It’s actually
proved useful for one project, where the targets were broken up into clusters, and cluster membership was done using
a SEA analysis. Rather than have a few dozen separate fingerprint files, I stored everything in the same file (including
duplicate fingerprints), and used a configuration file which specified the cluster name and its range in the file. This
made it a lot easier to organize the data, and since there were only a few thousand fingerprints sublinear search
performance wasn’t needed.

The FPB fingerprint writer also has an alignment option. If you look very carefully at the character dump you can see
that the fingerprints are eight byte aligned:

0000040 \n # \0 \0 \0 \0 \0 \0 \0 A R E N 002 \0 \0
0000060 \0 \b \0 \0 \0 002 \0 \0 001 002 \0 \0 \0 \0 \0 \0
0000100 Z Z \0 \0 \0 \0 \0 \0 377 377 \0 \0 \0 \0 \0 \0
0000120 H \0 \0 \0 \0 \0 \0 \0 P O P C \0 \0 \0 \0

The “AREN” is the start of the arena block, the next four bytes (“002 0 0 0 0”) are the number of bytes in a fingerprint,
in this case 2. The four bytes after that (“b 0 0 0”) are the number of bytes allocated for each fingerprint; “b” is the
escape code for backspace, or ASCII 8. Yes, 8 bytes are used even though the fingerprints only have 2 bytes in them.
This is because the FPB format expects to be able to use the 8 byte “POPC” assembly instruction, if available, because
that has the fastest performance.

After the storage size field is a byte for the spacer length. The “002” means two NUL spacer characters follow. This is
used to put the start of the first fingerprint on the eight byte boundary, so there will be no alignment issues with using
the POPC instruction. (This is not that important for recent Intel processors, but Intel isn’t the only processor in the
world.)

Finally you see the fingerprints; the first fingerprint is “001 002”, followed by six NUL characters to fill up the 8 bytes
of storage, the second is “Z Z” followed by six more NUL pad characters, etc.

If you are really working with a two byte fingerprint, then six NUL characters is likely a waste of space. You can ask
chemfp to use a two byte alignment instead:

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer("simple.fpb", alignment=2)
>>> writer.write_fingerprints([("first", b"\xff\xff"), ("second", b"ZZ"), ("third", b
→˓"\1\2")])
>>> writer.close()

giving:

% od -c simple.fpb
0000000 F P B 1 \r \n \0 \0 \r \0 \0 \0 \0 \0 \0 \0
0000020 M E T A # n u m _ b i t s = 1 6

1.4. Fingerprints and fingerprint search examples 75

chemfp Documentation, Release 3.1

0000040 \n 017 \0 \0 \0 \0 \0 \0 \0 A R E N 002 \0 \0
0000060 \0 002 \0 \0 \0 \0 001 002 Z Z 377 377 H \0 \0 \0
0000100 \0 \0 \0 \0 P O P C \0 \0 \0 \0 \0 \0 \0 \0

If you stare at it long enough you’ll see that the storage size is now two bytes, and that the fingerprints are arranged
without any padding. (Actually, since chemfp’s two byte popcount uses character pointers, you could even use 1 byte
alignment without a performance hit. But all this will do is save you at most one byte of spacer.)

Going in the other direction, it’s possible to specify up to 256 bytes of alignment. This is far beyond any conceiv-
able use. Even the AVX instructions need only 256 bits, or 32 byte alignment, and that’s not a requirement, only a
performance optimization to avoid a cache line split.

(If some future instruction set needs a larger alignment then the FPB format acquire a new block type which provides
the right alignment.)

Specify the output fingerprint format

In this section you’ll learn about the format option to the fingerprint writer.

By default chemfp.open_fingerprint_writer() uses the destination filename’s extension to determine if it
should write an FPS file (”.fps”), a gzip compressed FPS file (”.fps.gz”), or an FPB file (”.fpb”). If it doesn’t recognize
the extension, or if the filename is None (to write to stdout) then it will assume the FPS format.

If the destination is a file-like object then things become a bit more complicated. If the object has a name attribute,
which is the case with real file objects, then that will be examined for any known extension. That’s why the following
writes the output in fps.gz format:

>>> import chemfp
>>> f = open("example.fps.gz", "wb") # must be in binary mode!
>>> writer = chemfp.open_fingerprint_writer(f)
>>> writer.write_fingerprint("ABC", b"\0\0\0\0")
>>> writer.close()
>>> f.close()
>>> open("example.fps.gz", "rb").read() # must be in binary mode!
"\x1f\x8b\x08\x08\x10%\xdcT\x02\xffexample.fps\x00S ... more deleted
>>>
>>> import gzip
>>> print(gzip.open("example.fps.gz").read())
#FPS1
00000000 ABC

Note: Under Python3 that last output will be:

b’#FPS1n00000000tABCn’

There’s a large amount of magic behind the scenes to connect the filename in the Python open() call to the chemfp
output format.

The other solution is to just tell it which format to use, with the format parameter. For example, if you want to send
the output to stdout in gzip compressed FPS format then do:

writer = chemfp.open_fingerprint_writer(None, format="fps.gz")

If you want to save an FPB file to a BytesIO instance then do:

from io import BytesIO
f = BytesIO()
writer = chemfp.open_fingerprint_writer(f, format="fpb")

76 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

And if you really want to save to a file with an ”.fpb” extension but have it as an FPS file, then do:

writer = chemfp.open_fingerprint_writer("really_an_fps_file.fpb", format="fps")

But that would be silly.

Merging multiple structure-based fingerprint sources

In this section you’ll learn how to merge multiple fingerprint scores into a single file, and include the full list of source
filenames.

The structure-based fingerprint readers include a source filename in the metadata:

>>> from __future__ import print_function
>>> import chemfp
>>> filename = "Compound_014550001_014575000.sdf.gz"
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
>>> print(reader.metadata)
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2017.09.1.dev1 chemfp/3.1
#source=Compound_014550001_014575000.sdf.gz
#date=2017-09-16T00:05:52

If you have a single input file and a single output file then you can save the reader to an FPS or FPB file directly:

>>> reader.save("example.fpb")
>>> reader.close()

Strictly speaking, the close() is rarely necessary as the garbage collector will close the file during finalization. Still,
it’s good practice to close file, and to use a context manager to ensure that the file is always closed. Here’s what that
looks like:

>>> with chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename) as reader:
... reader.save("example.fpb")

However you create it, the output file will have the original metadata:

>>> arena = chemfp.open("example.fpb")
>>> print(arena.metadata)
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2017.09.1.dev1 chemfp/3.1
#source=Compound_014550001_014575000.sdf.gz

What happens if you want to want to merge multiple files? How does the output fingerprint file get the correct
metadata?

I’ll demonstrate the problem by computing fingerprints from two structure files. I’ll get the fingerprint type and ask it
to create a metadata instance:

>>> from __future__ import print_function
>>> import chemfp
>>> filenames = ["Compound_014550001_014575000.sdf.gz", "Compound_027575001_027600000.
→˓sdf.gz"]
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> print(fptype.get_metadata())

1.4. Fingerprints and fingerprint search examples 77

chemfp Documentation, Release 3.1

#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2017.09.1.dev1 chemfp/3.1
#date=2017-09-16T00:07:56

The problem is that I also want to include the filenames as source fields in the metadata. The fingerprint type doesn’t
have this information. Instead, I’ll them in through the sources parameter, which takes a string or a list of strings:

>>> metadata = fptype.get_metadata(sources=filenames)
>>> print(metadata)
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2017.09.1.dev1 chemfp/3.1
#source=Compound_014550001_014575000.sdf.gz
#source=Compound_027575001_027600000.sdf.gz
#date=2017-09-16T00:08:10

What remains is to pass this metadata to the fingerprint writer, then loop through the structure filenames to compute
the fingerprints and send them to the writer:

>>> with chemfp.open_fingerprint_writer("example.fpb", metadata=metadata) as writer:
... for filename in filenames:
... with fptype.read_molecule_fingerprints(filename) as reader:
... writer.write_fingerprints(reader)
...

Here’s a quick check to see that the metadata was saved correctly:

>>> print(chemfp.open("example.fpb").metadata)
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2017.09.1.dev1 chemfp/3.1
#source=Compound_014550001_014575000.sdf.gz
#source=Compound_027575001_027600000.sdf.gz
#date=2017-09-16T00:08:10

If your toolkit can’t parse one of the records then it will raise an exception. You likely want it to ignore errors, which
you can do with the errors option to chemfp.read_molecule_fingerprints(). The final code for this
section looks like:

import chemfp

filenames = ["Compound_014550001_014575000.sdf.gz", "Compound_027575001_027600000.sdf.
→˓gz"]

fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
metadata = fptype.get_metadata(sources=filenames)

with chemfp.open_fingerprint_writer("example.fpb", metadata=metadata) as writer:
for filename in filenames:
with fptype.read_molecule_fingerprints(filename, errors="ignore") as reader:

writer.write_fingerprints(reader)

Merging multiple fingerprint files

In this section you’ll learn how to make a modified copy of a metadata instance.

78 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

The previous section merged multiple structure-based fingerprints, and used the fingerprint type to get the correct
metadata instance.

What if you want to merge several existing fingerprint files, and those use a fingerprint type that chemfp doesn’t
understand? In that case there is no chemfp fingerprint type, and therefore no get_metadata() method to call.
Instead, you’ll need some other way to make a chemfp.Metadata instance.

I’ll work through a solution, and start by using sdf2fps to extract the PubChem/CACTVS fingerprints from two Pub-
Chem SD files:

% sdf2fps --pubchem Compound_014550001_014575000.sdf.gz -o Compound_014550001_
→˓014575000.fps
% sdf2fps --pubchem Compound_027575001_027600000.sdf.gz -o Compound_027575001_
→˓027600000.fps
% head -7 Compound_014550001_014575000.fps | fold
#FPS1
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_014550001_014575000.sdf.gz
#date=2017-09-16T00:10:01
034e1c000200000000000000000000000000000000000c0000000000000000800000007820201000
003030a51b400d630108421081402442c200410000044408141100603651106c444589c9010e0026
0388141be00d03047000020002001000000001000100080000000000000000 14550001
% head -7 Compound_027575001_027600000.fps | fold
#FPS1
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_027575001_027600000.sdf.gz
#date=2017-09-16T00:10:03
075e1c000208000000000000000000000000000000000c06000000000000008002000078200a0000
803510a51b404d93410320501140a44b1a4e430000a4502810119802361750644c07adb9e18c1026
2b801fd7e91913047100000402002001000000020100900000000000000000 27575190

Of course you could just ignore the header data, which is what the following does:

import chemfp

filenames = ["Compound_014550001_014575000.fps" ,"Compound_027575001_027600000.fps"]

with chemfp.open_fingerprint_writer("merged_pubchem.fps") as writer:
for filename in filenames:
with chemfp.open(filename) as reader:

writer.write_fingerprints(reader)

but then you’ll be left with no metadata in the FPS header:

% head -3 merged_pubchem.fps | fold
#FPS1
034e1c000200000000000000000000000000000000000c0000000000000000800000007820201000
003030a51b400d630108421081402442c200410000044408141100603651106c444589c9010e0026
0388141be00d03047000020002001000000001000100080000000000000000 14550001
034e0c000200000000000000000000000000000000000c0000000000000000800000007820081000
003030a51b400d6301024010014024420200410000044408101100603611106c444589c9010e0026
0b88141be00d03047000020002001000000001000100080000000000000000 14550002

While you could do that, the metadata keeps track of potentially useful information, so it’s better to add it. For that
matter, metadata usually isn’t useful until some time after the fingerprints are generated. People tend to put off writing

1.4. Fingerprints and fingerprint search examples 79

chemfp Documentation, Release 3.1

code until it’s needed, but by then it’s too late. I’ve tried to make chemfp’s API easy, to encourage people to add the
right metadata from the start.

There are a couple of ways to add the right metadata. The classic way is to make your own chemfp.Metadata
with the right values:

>>> metadata = chemfp.Metadata(num_bits=881, type="CACTVS-E_SCREEN/1.0 extended=2",
... software="CACTVS/unknown", sources=["Compound_014550001_014575000.sdf.gz",
... "Compound_027575001_027600000.sdf.gz"])
>>> print(metadata)
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_014550001_014575000.sdf.gz
#source=Compound_027575001_027600000.sdf.gz

The downside is this requires knowing all of the fields beforehand. Another option is to copy the metadata from the
first fingerprint file, and ask the copy() to use a new list of sources:

>>> from __future__ import print_function
>>> import chemfp
>>> reader = chemfp.open("Compound_014550001_014575000.fps")
>>> metadata = reader.metadata.copy()
>>> metadata.sources
[u'Compound_014550001_014575000.sdf.gz']
>>> metadata = reader.metadata.copy(sources=[
... u"Compound_014550001_014575000.sdf.gz",
... u"Compound_027575001_027600000.sdf.gz"])
>>> print(metadata)
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_014550001_014575000.sdf.gz
#source=Compound_027575001_027600000.sdf.gz
#date=2017-09-16T00:10:01

Now to put the pieces together. I’ll make one pass through the fingerprint files to get the sources, and then another
pass to generate the output. If you only have a handful of files then this works nicely:

>>> from __future__ import print_function
>>> import chemfp
>>> filenames = ["Compound_014550001_014575000.fps", "Compound_027575001_027600000.fps
→˓"]
>>> readers = [chemfp.open(filename) for filename in filenames]
>>> sources = sum((reader.metadata.sources for reader in readers), [])
>>> sources
[u'Compound_014550001_014575000.sdf.gz', u'Compound_027575001_027600000.sdf.gz']
>>> metadata = readers[0].metadata.copy(sources=sources)
>>> print(metadata)
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_014550001_014575000.sdf.gz
#source=Compound_027575001_027600000.sdf.gz
#date=2017-09-16T00:10:01

>>> import itertools
>>> with chemfp.open_fingerprint_writer("merged_pubchem.fps", metadata=metadata) as
→˓writer:

80 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

... writer.write_fingerprints(itertools.chain.from_iterable(readers))

...
>>> for reader in readers:
... reader.close()
...

(You might not have seen the itertools.chain.from_iterable before. The itertools.chain function iterates over all of the
elements in the first term, then the second, etc., as in:

>>> list(itertools.chain("abc", "123", "xyz"))
['a', 'b', 'c', '1', '2', '3', 'x', 'y', 'z']

The itertools.chain.from_iterable takes an iterable, like a list, as its sole parameter:

>>> list(itertools.chain.from_iterable(["abc", "123", "xyz"]))
['a', 'b', 'c', '1', '2', '3', 'x', 'y', 'z']

)

However, the previous code likely won’t work if you want to merge thousands of records, which might happen if you
try to merge all of the PubChem file. Why? Because the operating system may limit the number of open file handles:

>>> import glob
>>> filenames = glob.glob("/Users/dalke/databases/pubchem/*.sdf.gz")
>>> filenames = filenames + filenames # double the size to reach my system limit
>>> readers = [open(filename) for filename in filenames]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IOError: [Errno 24] Too many open files: '/Users/dalke/databases/pubchem/Compound_
→˓029800001_029825000.sdf.gz'
>>> filenames.index("/Users/dalke/databases/pubchem/Compound_029800001_029825000.sdf.
→˓gz")
1192
>>> filenames.index("/Users/dalke/databases/pubchem/Compound_029800001_029825000.sdf.
→˓gz", 1193)
4861

Double-checking with Python’s resource module:

>>> import resource
>>> resource.getrlimit(resource.RLIMIT_NOFILE)
(4864, 9223372036854775807)

This says that there’s a “soft” limit of 4864 open files, though I could change that to a larger number, up to the much
higher “hard” limit of roughly 9 quintillion. What happened in the above exception was that the 4862nd file reached
the soft limit. Remember, stdin, stdout, and stderr are also open files, and 4861+3 = 4864, which was the limit.

I did have to cheat in the above to get the exception. I doubled the list of filenames. The original version of this
documentation was written on a version of the Mac operating system which had a default soft limit of only 256 open
files. It was easy to reach the limit with just the list of PubChem filenames.

Even if you only think you’ll open a few dozen files, you might want to write code which doesn’t tempt the limits.
The following will do one scan through the files and create a Metadata instance with all of the sources from each of
the files. I’ll use the with statement to automatically close the file during this scan. I’ll then do another pass through
the filenames to merge all of the fingerprints into a single file:

import chemfp
filenames = ["Compound_014550001_014575000.fps", "Compound_027575001_027600000.fps"]

1.4. Fingerprints and fingerprint search examples 81

https://docs.python.org/2/library/itertools.html#itertools.chain.from_iterable
https://docs.python.org/2/library/itertools.html#itertools.chain
https://docs.python.org/2/library/resource.html

chemfp Documentation, Release 3.1

Create the correct metadata with all of the sources from all of the files.
metadata = None
sources = []
for filename in filenames:

with chemfp.open(filename) as reader:
if metadata is None:

metadata = reader.metadata.copy()
sources.extend(reader.metadata.sources)

metadata = metadata.copy(sources = sources)

Merge the files using the new metadata
with chemfp.open_fingerprint_writer("merged_pubchem.fps", metadata=metadata) as
→˓writer:

for filename in filenames:
with chemfp.open(filename) as reader:

writer.write_fingerprints(reader)

This code assumes that the fingerprints are compatible, that is, that the fingerprints are the same size, and the fingerprint
types and other metadata fields are compatible. The next section shows how to detect if there are compatibility
problems.

Check for metadata compatibility problems

In this section you’ll learn how to detect compatibility mismatches between two metadata instances, and between a
metadata and a fingerprint.

In the previous section you learned how to merge multiple fingerprint files, which all happened to have the same
fingerprint type. What happens if they are different types?

There are actually a few possible problems:

• the fingerprint lengths are different (very bad)

• the fingerprint types are different (probably bad)

• the software is from different versions (probably okay)

The chemfp.check_metadata_problems() function compares two metadata objects and returns a list of
possible problems:

>>> from __future__ import print_function
>>> import chemfp
>>> rdkit_metadata = chemfp.get_fingerprint_type("RDKit-MACCS166").get_metadata()
>>> openeye_metadata = chemfp.get_fingerprint_type("OpenEye-MACCS166").get_metadata()
>>> problems = chemfp.check_metadata_problems(rdkit_metadata, openeye_metadata)
>>> len(problems)
2
>>> for problem in problems:
... print(problem)
...
WARNING: query has fingerprints of type 'RDKit-MACCS166/2' but
target has fingerprints of type 'OpenEye-MACCS166/3'
INFO: query comes from software 'RDKit/2017.09.1.dev1 chemfp/3.1'
but target comes from software 'OEGraphSim/2.2.6 (20170208) chemfp/3.1'

82 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

In this case the fingerprint types are different, but since the fingerprint lengths are the same it’s not an error, only a
warning. The software field is also not identical, but as that’s not so significant it’s listed as “info”.

The returned problem objects are chemfp.ChemFPProblem() instances, which have useful attributes:

>>> for problem in problems:
... print("Problem:")
... print(" severity:", problem.severity)
... print(" category:", problem.category)
... print(" description:", problem.description)
...
Problem:

severity: warning
category: type mismatch
description: query has fingerprints of type 'RDKit-MACCS166/2'

but target has fingerprints of type 'OpenEye-MACCS166/3'
Problem:

severity: info
category: software mismatch
description: query comes from software 'RDKit/2017.09.1.dev1 chemfp/3.1'

but target comes from software 'OEGraphSim/2.3.1.b.2_debug (20170828) chemfp/3.1'

The idea is that the category text won’t change, so your code can figure out what’s going on, while the
description is subject to change and hopefully improvement. The severity is one of “info”, “warning” and “error”.

>>> rdkit1_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=512").get_
→˓metadata()
>>> rdkit2_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024").
→˓get_metadata()
>>> problems = chemfp.check_metadata_problems(rdkit1_metadata, rdkit2_metadata)
>>> for problem in problems:
... print(problem)
...
ERROR: query has 512 bit fingerprints but target has 1024 bit fingerprints
WARNING: query has fingerprints of type 'RDKit-Fingerprint/2 minPath=1
maxPath=7 fpSize=512 nBitsPerHash=2 useHs=1' but target has
fingerprints of type 'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024
nBitsPerHash=2 useHs=1'

A chemfp.ChemFPProblem is derived from Exception, so you can raise it directly if you want:

>>> for problem in chemfp.check_metadata_problems(rdkit1_metadata, rdkit2_metadata):
... if problem.severity == "error":
... raise problem
...
Traceback (most recent call last):

File "<stdin>", line 3, in <module>
chemfp.ChemFPProblem: ERROR: query has 512 bit fingerprints but target has 1024 bit
→˓fingerprints

You might have noticed that the error message uses the words “query” and “target”. Chemfp is designed around
similarity searches, so I expect the default to compare query metadata to target metadata.

On the other hand, the previous section merged multiple fingerprint files, where “query” and “target” don’t make sense.
Instead, you can give alternative names via the query_name and target_name parameters:

>>> rdkit1_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=512").get_
→˓metadata()
>>> rdkit2_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024").
→˓get_metadata()

1.4. Fingerprints and fingerprint search examples 83

chemfp Documentation, Release 3.1

>>> for problem in chemfp.check_metadata_problems(rdkit1_metadata, rdkit2_metadata,
... "file #1", "file #14"):
... if problem.severity == "error":
... print(problem)
...
ERROR: file #1 has 512 bit fingerprints but file #14 has 1024 bit fingerprints

I’ll use this to update the code from the previous section to raise an exception on errors, print warnings to stderr, and
do nothing about “info” problems, and add a MACCS fingerprint file to the list of files to process, so I can show what
happens if there’s a problem:

import sys
import chemfp

filenames = ["Compound_014550001_014575000.fps",
"Compound_027575001_027600000.fps",
"chebi_maccs.fps"]

Create the correct metadata with all of the sources from all of the files.
metadata = None
sources = []
for filename in filenames:

with chemfp.open(filename) as reader:
if metadata is None:

metadata = reader.metadata.copy()
first_filename = filename

else:
Check for compatibility problems
for problem in chemfp.check_metadata_problems(metadata, reader.metadata,

repr(first_filename),
repr(filename)):

if problem.severity == "error":
raise problem

elif problem.severity == "warning":
sys.stderr.write(str(problem) + "\n")

sources.extend(reader.metadata.sources)

if metadata is not None:
metadata = metadata.copy(sources=sources)

Merge the files using the new metadata
with chemfp.open_fingerprint_writer("merged_pubchem.fps", metadata=metadata) as
→˓writer:

for filename in filenames:
with chemfp.open(filename) as reader:

writer.write_fingerprints(reader)

When I run that code with the mismatched fingerprint types, I get the error message:

Traceback (most recent call last):
File "x.py", line 23, in <module>
raise problem

chemfp.ChemFPProblem: ERROR: 'Compound_014550001_014575000.fps' has
881 bit fingerprints but 'chebi_maccs.fps' has 166 bit fingerprints

I then removed the chebi_maccs.fps and manually changed the fingerprint type, so I could demonstrate what a
warning message looks like:

84 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

WARNING: 'Compound_014550001_014575000.fps' has fingerprints of type
u'CACTVS-E_SCREEN/1.0 extended=2' but
'Compound_027575001_027600000.fps' has fingerprints of type
u'CACTVS-E_SCREEN/1.0 extended=DIFFERENT_VALUE'

(In case you’re wondering what the type string means, those are the actual CACTVS parameters that PubChem uses,
according to the CACTVS author, Wolf-Dietrich Ihlenfeldt.)

Lastly, sometimes the query is a simple byte string. There’s not really much to compare, but you use chemfp.
check_fingerprint_problems() to see if the fingerprint length is compatible with a metadata instance:

>>> import chemfp
>>> metadata = chemfp.get_fingerprint_type("RDKit-MACCS166").get_metadata()
>>> chemfp.check_fingerprint_problems(b"\0\0\0\0", metadata)
[ChemFPProblem('error', 'num_bytes mismatch', 'query contains 4
bytes but target has 21 byte fingerprints')]

The simsearch command-line tool uses this function to check if the query fingerprint, which is entered as hex as a
command-line parameter, is compatible with the target fingerprints.

How to write very large FPB files

In this section you’ll learn how to write an FPB file even when fingerprint data is so large that the intermediate data
doesn’t all fit into memory at once.

By default the FPB format will reorder the fingerprints to be in popcount order. (Use reorder=False option to
preserve the input order.) This requires intermediate storage in order to sort all of the records. By default the writer
will use memory for this, but the implementation may require about two to three times as much memory as the raw
fingerprint size.

That is, if you have 50 million fingerprints, with 1024 bits per fingerprint, plus 10 bytes for the name, then the
fingerprint arena requires about 6 GiB of memory, plus 0.5 GiB for the ids, and another ~1 GiB for the id lookup table.

That calculation gives the minimum amount of memory needed. The actual implementation may preallocate up to
twice as much memory as the current size, in order to handle growth gracefully, and there is some additional overhead.
You may be left with the case where you have 12 GiB of RAM, and where the final FPB file is only 8 GiB in size, but
where the intermediate storage requires 15 GiB of RAM.

Or you may want to build that data set on a machine with 6 GiB of RAM, and copy the result over to the production
machine with a lot more memory.

If that happens, then use the max_spool_size option to specify the maximum number of bytes to store in memory
before switching to temporary files for additional storage. This should be about 1/3 of the available RAM because
there can be two different temporary file “spools”, each of which can use up to max_spool_size bytes of RAM.

For example, the following will use at most about 4 GiB of RAM:

writer = chemfp.open_fingerprint_writer(
"pubchem.fpb", max_spool_size = 2 * 1024 * 1024 * 1024)

Note: do not make this too small. The merge step opens all of the temporary files in order to make the final FPB output
file. If you specify a spool size of 50 MiB then you’ll end up creating several hundred files for PubChem, which may
exceed the resource limits for the number of open file descriptors for a process. When that happens you’ll get an
exception like:

IOError: [Errno 24] Too many open files

1.4. Fingerprints and fingerprint search examples 85

chemfp Documentation, Release 3.1

Where does the FPB writer store the temporary files? It uses Python’s tempfile module to create the temporary files
in a directory. Quoting from that documentation, “The default directory is chosen from a platform-dependent list, but
the user of the application can control the directory location by setting the TMPDIR, TEMP or TMP environment
variables.”

Environment variables give one way to specify an alternate directory. Or you can specify it directly using the tmpdir
parameter, as in:

writer = chemfp.open_fingerprint_writer(
"pubchem.fpb", max_spool_size = 2 * 1024 * 1024 * 1024,
tmpdir = "/scratch")

This can be very important on some cluster machines with a small local /tmp but a large networked scratch disk.

FPS fingerprint writer errors

In this section you’ll learn how the FPS fingerprint writer handles errors, and how to change the error handling
behavior.

It’s hard but not impossible to have the FPS writer raise an exception:

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer(None)
#FPS1
>>> writer.write_fingerprint("Tab\tHere", b"\0")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "chemfp/fps_io.py", line 550, in write_fingerprint
raise_tb(err[0], err[1])

File "chemfp/fps_io.py", line 467, in _fps_writer_gen
location)

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Unable to write an identifier containing a tab: 'Tab\tHere', file '
→˓<stdout>', line 1, record #1

The FPS file format simply doesn’t support tab characters in the indentifier, nor newline characters, for that matter. It
also doesn’t allow empty identifiers.

As you saw, the default error action is to raise an exception.

Sometimes it’s okay to ignore errors. For example, you might process a large number of structures, where you know
that a few of them have missing, or poorly formed, identifiers, and where it’s okay to omit those records.

The errors parameter can be used to change the error handler. The value of “report” tells the parser to skip failing
record and write an error message written to stderr. The value of “ignore” simply skips the record:

>>> writer = chemfp.open_fingerprint_writer(None, errors="report")
#FPS1
>>> writer.write_fingerprint("", b"\0\0\0\0")
ERROR: Unable to write a fingerprint with an empty identifier, file '<stdout>', line
→˓1, record #1. Skipping.
>>>
>>> writer = chemfp.open_fingerprint_writer(None, errors="ignore")
#FPS1
>>> writer.write_fingerprint("", b"\0")
>>> writer.write_fingerprint("Tab\tHere", b"\0")

86 Chapter 1. List of chapters

https://docs.python.org/2/library/tempfile.html

chemfp Documentation, Release 3.1

Granted, this feature isn’t so important for FingerprintWriter.write_fingerprint() because catch-
ing the exception isn’t hard to do. It’s a bit more useful for bulk conversions with FingerprintWriter.
write_fingerprints(), like:

import chemfp
with chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_014550001_
→˓014575000.sdf.gz") as reader:
with chemfp.open_fingerprint_writer("example.fps", reader.metadata, errors="report

→˓") as writer:
writer.write_fingerprints(reader)

Note that the FPB writer ignores the errors parameter and treats all errors as “strict”.

FPS fingerprint writer location

In this section you’ll learn how to get information like the number of lines and number of records written to an FPS
file.

I’ll start by saying that this feature isn’t all that useful. It exists because of parallelism to the toolkit structure writers,
and I wanted to experiment to see if it could be useful in the future.

The FPS fingerprint writer has a location attribute. This can be used to get some information about the
state of the output writer. The most basic is the output filename. If the output is None or an unnamed file object then a
fake filename will be used:

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer("example.fps")
>>> writer.location.filename
'example.fps'
>>> writer = chemfp.open_fingerprint_writer(None)
#FPS1
>>> writer.location.filename
'<stdout>'

At this point the signature line has been written, so the file is at line 1, but no record have been written:

>>> writer.location.lineno
1
>>> writer.location.recno
0
>>> writer.location.output_recno
0

Each of these values is incremented by one after adding a valid record:

>>> writer.write_fingerprint("FP001", b"\xA0\xFE")
a0fe FP001
>>> writer.location.lineno
2
>>> writer.location.recno
1
>>> writer.location.output_recno
1

If however the record is invalid then the recno will increase by one because it’s the number of records sent to the
writer, but the other values do not increase because they only change when a record is written successfully:

1.4. Fingerprints and fingerprint search examples 87

chemfp Documentation, Release 3.1

>>> writer.write_fingerprint("", b"\xA0\xFE")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "chemfp/fps_io.py", line 550, in write_fingerprint
raise_tb(err[0], err[1])

File "chemfp/fps_io.py", line 475, in _fps_writer_gen
location)

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Unable to write a fingerprint with an empty identifier, file '
→˓<stdout>', line 2, record #2
>>> writer.location.lineno
2
>>> writer.location.recno
2
>>> writer.location.output_recno
1

This is perhaps more clearly shown if I try to write four records at one, where two contain errors, and where I’ve asked
the writer to “report” errors rather than raise an exception:

>>> metadata = chemfp.Metadata(type="Experiment/1", software="AndrewDalke/1")
>>> writer = chemfp.open_fingerprint_writer(None, metadata=metadata, errors="report")
#FPS1
#type=Experiment/1
#software=AndrewDalke/1
>>> writer.location.lineno
3
>>> writer.location.recno
0
>>> writer.location.output_recno
0
>>> writer.write_fingerprints([("A", b"\0\0"), ("\t", b"\0\1"), ("", b"\0\2"), ("B",
→˓b"\0\3")])
0000 A
ERROR: Unable to write an identifier containing a tab: '\t', file '<stdout>', line 4,
→˓record #2. Skipping.
ERROR: Unable to write a fingerprint with an empty identifier, file '<stdout>', line
→˓4, record #3. Skipping.
0003 B
>>> writer.location.recno
4
>>> writer.location.output_recno
2
>>> writer.location.lineno
5

There are three lines in the header; the signature, the type line, and the software line. I tried to write four fingerprints,
but two were invalid. It wrote the valid fingerprint “A” to stdout, report the two invalid records to stderr, and write the
valid fingerprint “B” to stdout. Thus, two records were actually output, which is why output_recno is 2, while
four records were sent to the writer, which is why recno is 4. The three header lines and the two lines of output give
five lines of output, so the final lineno is 5.

In case you hadn’t figured it out, the location information is used to make the exception and error message. That
explains why both of the error reports say the error is on “line 4”; that’s the line that would have been output if there
were no error.

88 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Note that the FPB writer does not have a location, and it ignores the location parameter.

MACCS dependency on hydrogens

In this section you’ll learn how the RDKit MACCS fingerprints differ if there are explicit or implicit hydrogens.

Note: A goal of this is to show that MACCS key generation isn’t as easy as you might think it is!

One of my long-term goals is to get a good cross-toolkit implementation of the MACCS keys. It’s very odd how the
MACCS keys are the de facto fingerprint for cheminformatics, but the toolkits don’t give the same answers. Over the
years, I’ve found bugs or incomplete definitions in all of the toolkits I’ve looked at, which I’ve reported and have since
been fixed.

If you use RDKit, Open Babel, or CDK (chemfp doesn’t yet support CDK, but this is my story so I get to mention it)
then your toolkit implements MACCS keys that were derived from the ones that Greg Landrum developed for RDKit.
The portable portion uses hand-translated SMARTS definitions for most of the MACCS key definitions. A couple
keys, like key 125 (“at least two aromatic rings”) cannot be represented as SMARTS. RDKit had special code for
these definitions, but Open Babel does not.

Even with a portable SMARTS definition, I would expect to see some differences between the toolkits, if only because
they have different aromaticity models. One toolkit might call something an aromatic ring, while another says it’s
aliphatic.

Unfortunately, the SMARTS patterns used in those programs give different results if you have explicit hydrogens or
implicit hydrogens. I’ll demonstrate with using RDKit, because that has a reader_arg to specify if I want to remove
hydrogens from the input structure or not. (Here “remove” means to make them implicit.)

I’ll use RDKit twice to read the first molecule from a file and compute the RDKit fingerprint; the first time I keep the
hydrogens and the second time I remove them:

>>> import chemfp
>>> from chemfp import bitops
>>> filename = "Compound_014550001_014575000.sdf.gz"
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>>
>>> with_h_reader = fptype.read_molecule_fingerprints(filename,
... reader_args={"removeHs": False})
>>> with_h_id, with_h_fp = next(with_h_reader)
>>> with_h_id, bitops.hex_encode(with_h_fp)
('14550001', '00008000000081406000a326a090616a5fceae7d1f')
>>>
>>> without_h_reader = fptype.read_molecule_fingerprints(filename,
... reader_args={"removeHs": True})
>>> without_h_id, without_h_fp = next(without_h_reader)
>>> without_h_id, bitops.hex_encode(without_h_fp)
('14550001', '00008000000081406000a226a010614a5fceae7d1f')

If you look closely you’ll see that they have two different fingerprints! I’ll make it easier to see by reporting the bits
which are only in one or the other fingerprint:

>>> with_h_bits = set(bitops.byte_to_bitlist(with_h_fp))
>>> without_h_bits = set(bitops.byte_to_bitlist(without_h_fp))
>>> sorted(with_h_bits - without_h_bits) # only with hydrogens
[80, 111, 125]
>>> sorted(without_h_bits - with_h_bits) # only without hydrogens
[]

The molecule with explicit hydrogens sets three more bits than the one with implicit hydrogens.

1.4. Fingerprints and fingerprint search examples 89

chemfp Documentation, Release 3.1

Why is that? The RDKit (and hence Open Babel and CDK) definitions often use “*” to match an atom, when the
corresponding MACCS definition is supposed to exclude hydrogens. A hydrogen-independent version would use
“[!#1]” instead. By default RDKit removes normal explicit hydrogens, so this isn’t usually a problem. As far as I
can tell, Open Babel always removes them from an SD file, so again this isn’t really a problem. (Well, except for
hydrogens with an explicit isotope number.)

The list [80, 111, 125] are bit numbers. The corresponding keys are [81, 112, 126]. I looked at how those are defined
in various sources:

Definitions for key 112 (bit 111)
MACCS: AA(A)(A)A
RDKit: *~*(~*)(~*)~*
OpenBabel: *~*(~*)(~*)~*
CDK: *~*(~*)(~*)~*
chemfp's RDMACCS-*: [!#1]~*(~[!#1])(~[!#1])~[!#1]
O'Donnell: *~*(~*)(~*)~*

(“O’Donnell” here comes from Table A.4 of TJ O’Donnell’s Design and Use of Relational Databases in Chemistry.)

If you know SMARTS you can see how an explicit H will lead to a different match than an implicit one, except for
chemfp’s own attempt at making a cross-toolkit MACCS implementation. I’ll test out RDMACCS-RDKit, which is
chemfp’s implementation of the MACCS 166 fingerprint using RDKit:

>>> chemfp_maccs = chemfp.get_fingerprint_type("RDMACCS-RDKit")
>>>
>>> with_h_reader = chemfp_maccs.read_molecule_fingerprints(filename,
... reader_args={"removeHs": False})
>>> with_h_id, with_h_fp = next(with_h_reader)
>>> with_h_id, bitops.hex_encode(with_h_fp)
('14550001', '00008000000081406000a226a010614a5fceae7d1f')
>>>
>>> without_h_reader = chemfp_maccs.read_molecule_fingerprints(filename,
... reader_args={"removeHs": True})
>>> without_h_id, without_h_fp = next(without_h_reader)
>>> without_h_id, bitops.hex_encode(without_h_fp)
('14550001', '00008000000081406000a226a010614a5fceae7d1f')
>>>
>>> with_h_fp == without_h_fp
True

What a relief that they are the same!

If you want to use the OEChem or Open Babel-based RDMACSS implemenations, the corresponding fingerprint
type names are “RDMACCS-OpenEye” or “RDMACCS-OpenBabel”, respectively, and the command-line option for
oe2fps and ob2fps is --rdmaccs.

WARNING: the RDMACCS fingerprints have not been fully validated! Validation is hard. A chemfp goal is to make
that easier.

To finish, I was curious about the differences in RDKit’s native MACCS166 implementation across all of the records
in the file, so I wrote some code. It’s a direct evolution of the code you already saw. The only new things might be
that izip function from the itertools module in Python 2. It’s the same as zip, except where zip returns the complete
list, izip returns an iterator for elements that would be in that list. A simplifed implementation looks like:

def izip(iter1, iter2):
while 1:

yield next(iter1), next(iter2)

This changed in Python 3. The built-in zip now returns an iterator instead of a list, and itertools.izip has been

90 Chapter 1. List of chapters

http://www.crcpress.com/product/isbn/9781420064421
https://docs.python.org/2/library/itertools.html#itertools.izip

chemfp Documentation, Release 3.1

removed. I want the following code to work under Python 2 and Python 3, so I wrote a portability layer to refer to the
appropriate function as izip:

Python 2
>>> import itertools
>>> izip = getattr(itertools, "izip", zip)
>>> izip is zip
False
>>> izip is itertools.izip
True
Python 3
>>> import itertools
>>> izip = getattr(itertools, "izip", zip)
>>> izip is zip
True

Otherwise, I think I’ve covered what’s needed to understand the rest of the code without more elaboration:

from __future__ import print_function
import itertools
from collections import Counter
import chemfp
from chemfp import bitops

izip = getattr(itertools, "izip", zip) # Support Python2 and Python3

filename = "Compound_014550001_014575000.sdf.gz"
with_h_fingerprints = chemfp.read_molecule_fingerprints(

"RDKit-MACCS166", filename, reader_args={"removeHs": False})
without_h_fingerprints = chemfp.read_molecule_fingerprints(

"RDKit-MACCS166", filename, reader_args={"removeHs": True})

extra_with_h = Counter()
extra_without_h = Counter()
num_records = 0
for (id1, with_h_fp), (id2, without_h_fp) in izip(with_h_fingerprints,

without_h_fingerprints):
num_records += 1
assert id1 == id2, (id1, id2)
if with_h_fp != without_h_fp:

with_h_keys = set(bitno+1 for bitno in bitops.byte_to_bitlist(with_h_fp))
without_h_keys = set(bitno+1 for bitno in bitops.byte_to_bitlist(without_h_

→˓fp))
only_with_h = sorted(with_h_keys - without_h_keys)
only_without_h = sorted(without_h_keys - with_h_keys)
print(id1, "with:", only_with_h, "without:", only_without_h)
extra_with_h.update(only_with_h)
extra_without_h.update(only_without_h)

print("\nNumber of records:", num_records)
print("\nCounts that were only with hydrogens:")
for key, count in extra_with_h.most_common():

print(" %d %d" % (key, count))
print("\nCounts that were only without hydrogens:")
for key, count in extra_without_h.most_common():

print(" %d %d" % (key, count))

In case you were wondering, the report summary starts:

1.4. Fingerprints and fingerprint search examples 91

chemfp Documentation, Release 3.1

Number of records: 5167

Counts that were only with hydrogens:
112 2993
150 2116
144 1939
138 1283
122 1201

Now you can see why I used key 112 in my elaboration - it’s the one that causes the most problems!

Create similarity search web service

In this section you’ll learn how to write a simple WSGI-based web service which does a similarity search given an
SDF record.

I found it a bit difficult to write this section because few people will write a WSGI service directly. I think most
people use Django, but a Django example would require several different files to make it work. There are other web
frameworks I could use, like Flask, but I eventually decided to limit myself to what’s available in the standard library,
that is, the wsgiref module.

I’m going to write a WSGI server named “simple_server.py” which takes an SDF record as input and returns the top
5 hits from a specified database. If there’s a GET request then the result is a simple form. The form sends a POST
request to the server, with the SDF record in the query parameter q.

By the way, if the target fingerprint data set is large then you should use an FPB file to get the best startup performance.

Let’s get started. The first part is a comment about what the code does and some imports:

This is a very simple fingerprint search server. # I call it ‘simple_server.py’. # # Usage: simple_server
<fingerprint_filename> [port] # # A GET to the server (default uses port 80) returns a simple form. # The
form has a single text box, to paste the SDF query or queries. # The POST query variable ‘q’ contains the
SDF contents. # The search finds the nearest 5 queries for each query record. # The result is a simple list
of query ids and its matches.

import argparse from wsgiref.simple_server import make_server import cgi

import chemfp

The server will return an HTML form for a GET request:

Create a simple form.
def query_form(environ, start_response):

status = '200 OK' # HTTP Status
headers = [('Content-type', 'text/html')] # HTTP Headers
start_response(status, headers)

The returned object is going to be printed.
Must be a byte string for Python 3.
return [b"""<html>

<head>
<title>Simple fingerprint search</title>

</head>
<body>
<form method="POST">
Paste in SDF records(s):

<textarea name="q" type="text" rows="20" cols="80"></textarea>

<button type="submit">Search!</button>
</form>

92 Chapter 1. List of chapters

https://docs.python.org/2/library/wsgiref.html

chemfp Documentation, Release 3.1

</body>
</html>
"""]

I’ll use the argparse module to handle the command-line arguments:

Command-line parameters
parser = argparse.ArgumentParser("simple_search",

description="Simple fingerprint web server with SDF
→˓input")
parser.add_argument("filename",

help="chemfp fingerprint filename")

parser.add_argument("port", type=int, default=8080, nargs="?",
help="port to use (default is 8080)")

The heavy work is in the ‘main’ function. It starts with some setup to load the fingerprints and make sure the fingerprint
type is available:

def main():
args = parser.parse_args()

Load the arena, get the type, and make sure I can handle the type.
arena = chemfp.load_fingerprints(args.filename)
print("Loaded %s fingerprints from %r" % (len(arena), args.filename))

type = arena.metadata.type
if type is None:

parser.error("File %r does not contain a fingerprint type" % (args.filename,))

try:
fptype = chemfp.get_fingerprint_type(type)

except KeyError as err:
parser.error(str(err))

It then defines the WSGI app, which returns the query_form() for a GET request, or processes the form for a POST
request. I think the embedded comments explain things enough:

... continue the 'main' function ...
This is the WSGI app

def fingerprint_search_app(environ, start_response):
Is this a GET or a POST? If a GET, return the query form
if environ["REQUEST_METHOD"] != "POST":

return query_form(environ, start_response)

Get the query data from the POST
post_env = environ.copy()
post = cgi.FieldStorage(

fp=environ['wsgi.input'],
environ=post_env,
keep_blank_values=True,

)
q = post.getfirst("q", "")
The underlying toolkit code may require "\n" instead of "\r\n" strings.
q = q.replace("\r\n", "\n")

For each input record, do a search, get the results, and build up the output
→˓lines.

1.4. Fingerprints and fingerprint search examples 93

chemfp Documentation, Release 3.1

Ignore any records that can't be parsed.

output = ["Search against %r using k=5 and threshold=0.0\n\n" % (args.filename,
→˓)]

The next three lines use chemfp to convert the record into a
fingerprint, do the search for the top 5 hits, get the ids
and scores for the hits, and make the output text.

for query_id, fp in fptype.read_molecule_fingerprints_from_string(q, "sdf",
→˓errors="ignore"):

results = arena.knearest_tanimoto_search_fp(fp, k=5, threshold=0.0)
text = " ".join("%s (%.3f)" % (id, score) for (id, score) in results.get_

→˓ids_and_scores())
output.append("%s => %s\n" % (query_id, text))

Return the results in plain text.

status = '200 OK' # HTTP Status
headers = [('Content-type', 'text/plain')] # HTTP Headers
start_response(status, headers)

Python 3 requires bytes, not strings, so convert to UTF-8
return output

The main function ends with some code to start the WSGI server using the correct port:

... end of the 'main' function ...
Make the server and run it. (Use ^C to kill it.)
httpd = make_server('', args.port, fingerprint_search_app)
print("Serving fingerprint search on port %s..." % (args.port,))

httpd.serve_forever()

Finally, code to start things rolling:

if __name__ == "__main__":
main()

I’ll start the server using a ChEBI-derived data set:

% python simple_server.py rdkit_chebi.fps
Loaded 93572 fingerprints from 'rdkit_chebi.fps'
Serving fingerprint search on port 8080...

then direct the browser to http://127.0.0.1:8080/ . I pasted in the first three records from ChEBI itself, pressed
“Search!”, and got the result:

Search against 'rdkit_chebi.fps' using k=5 and threshold=0.0

CHEBI:776 => CHEBI:776 (1.000) CHEBI:87628 (1.000) CHEBI:34165 (0.906) CHEBI:17263 (0.
→˓886) CHEBI:91668 (0.886)
CHEBI:1148 => CHEBI:1148 (1.000) CHEBI:50612 (1.000) CHEBI:50613 (1.000) CHEBI:64552
→˓(1.000) CHEBI:73709 (1.000)
CHEBI:1734 => CHEBI:1734 (1.000) CHEBI:18088 (0.916) CHEBI:77688 (0.916) CHEBI:18220
→˓(0.896) CHEBI:29608 (0.883)

I don’t think I’ll continue this WSGI example in future documentation as that API is too low-level and seldom used

94 Chapter 1. List of chapters

http://127.0.0.1:8080/

chemfp Documentation, Release 3.1

by web developers. If you think otherwise, let me know.

Fingerprint family and type examples

This chapter describes how to use the fingerprint family and fingerprint type API added in chemfp 2.0.

Fingerprint families and types

In this section you’ll learn the difference between a fingerprint family and a fingerprint type. You will need Com-
pound_014550001_014575000.sdf.gz from PubChem to work though all of the examples.

Chemfp distinguishes between a “fingerprint family” and a “fingerprint type.” A fingerprint family describes the
general approach for doing a fingerprint, like “the OpenEye path-based fingerprint method”, while a fingerprint type
describes the specific parameters used for a given approach, such as “the OpenEye path-based fingerprint method
using path lengths between 0 and 5 bonds, where the atom types are based on the atomic number and aromaticity, and
the bond type is based on the bond order, mapped to a 256 bit fingerprint.”

(In object-oriented terms, a fingerprint family is the class and a fingerprint type is an instance of the class.)

I’ll use chemfp.get_fingerprint_family() to get the FingerprintFamily for “OpenEye-Path”. On
the laptop where I’m writing the documentation, this resolves to what chemfp calls version “2”:

>>> from __future__ import print_function
>>> import chemfp
>>> family = chemfp.get_fingerprint_family("OpenEye-Path")
>>> family
FingerprintFamily(<OpenEye-Path/2>)

The fingerprint family can be called like a function to return a FingerprintType. If you call it with no arguments
it will use the defaults parameters for that family. I’ll do that, then use get_type() to get the fingerprint type string,
which is the canonical representation of the fingerprint family name, version, and parameters:

>>> fptype = family()
>>> fptype.get_type()
'OpenEye-Path/2 numbits=4096 minbonds=0 maxbonds=5
→˓atype=Arom|AtmNum|Chiral|EqHalo|FCharge|HvyDeg|Hyb btype=Order|Chiral'

A 4096 bit fingerprint is rather large. I’ll make a new OpenEye-Path fingerprint type, but this time with only 256 bits.
That’s small enough that the resulting fingerprint will fit on a line of documentation. All of the other parameters will
be unchanged:

>>> fptype = family(numbits=256)
>>> fptype
<chemfp.openeye_types.OpenEyePathFingerprintType_v2 object at 0x10b9c4e90>
>>> print(fptype.get_metadata())
#num_bits=256
#type=OpenEye-Path/2 numbits=256 minbonds=0 maxbonds=5
→˓atype=Arom|AtmNum|Chiral|EqHalo|FCharge|HvyDeg|Hyb btype=Order|Chiral
#software=OEGraphSim/2.2.6 (20170208) chemfp/3.1
#date=2017-09-16T13:56:20

This time I used FingerprintType.get_metadata() to give information about the fingerprint. This returns
a new Metadata instance which describes the fingerprint type, and if you print a Metadata it displays the metadata
information as an FPS header.

1.5. Fingerprint family and type examples 95

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz

chemfp Documentation, Release 3.1

Once you have the fingerprint type you can create fingerprints, including directly from a SMILES string, as in the
following:

>>> from chemfp import bitops
>>> fp = fptype.parse_molecule_fingerprint("c1ccccc1O", "smistring")
>>> bitops.hex_encode(fp)
'0012250160901000080c002810000400201000900054880442000e8040201000'

and from a structure file:

>>> for id, fp in fptype.read_molecule_fingerprints("Compound_014550001_014575000.sdf.
→˓gz"):
... print(id, bitops.hex_encode(fp))
...
14550001 5ae8f4bbfcda6a66fdbfc2ab9045ecde36b055e3ca56f10477a18df6fd1ebb06
14550002 5ac8f4fafcce6b657d3f82a79145aacca65015e34a56c00777880db27d8ef006
14550003 78c8f17a7cce6b657d3782a59105a2c4a64115c34a5ec04773a80fb2758cd006
14550004 2683e056c28a20882ba8d410304184514213c0300209c3e0eb8241b280008102

...

For more examples of using get_metadata see Merging multiple structure-based fingerprint sources.

Even though I used the fingerprint family to get the type, I did that more for pedagogical reasons. Most times you can
get the fingerprint type directly using chemfp.get_fingerprint_type(). You can call it using a fingerprint
type string or by passing in the parameters in the optional second parameter::

>>> fptype = chemfp.get_fingerprint_type("OpenEye-Path numbits=256")
>>> fptype = chemfp.get_fingerprint_type("OpenEye-Path", {"numbits": 256})

See get_fingerprint_type() and get_type() for examples on how to use get_fingerprint_type.

Fingerprint family

In this section you’ll learn about the attributes and methods of a fingerprint family.

The get_fingerprint_family() function takes the fingerprint family name (with or without a version) and
returns a FingerprintFamily instance:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")

It will raise a ValueError if you ask for a fingerprint family or version which doesn’t exist:

>>> chemfp.get_fingerprint_family("whirl")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/Users/dalke/cvses/cfp-3x/docs/tmp/chemfp/__init__.py", line 1912, in get_

→˓fingerprint_family
return _family_registry.get_family(family_name)

File "/Users/dalke/cvses/cfp-3x/docs/tmp/chemfp/types.py", line 1205, in get_family
raise err

ValueError: Unknown fingerprint type 'whirl'
>>> chemfp.get_fingerprint_family("RDKit-Fingerprint/1")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/Users/dalke/cvses/cfp-3x/docs/tmp/chemfp/__init__.py", line 1912, in get_

→˓fingerprint_family
return _family_registry.get_family(family_name)

96 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

File "/Users/dalke/cvses/cfp-3x/docs/tmp/chemfp/types.py", line 1205, in get_family
raise err

ValueError: Unable to use RDKit-Fingerprint/1: This version of RDKit does not support
→˓the RDKit-Fingerprint/1 fingerprint

The fingerprint family has several attributes to ask for the name or parts of the name:

>>> family
FingerprintFamily(<RDKit-Fingerprint/2>)
>>> family.name
'RDKit-Fingerprint/2'
>>> (family.base_name, family.version)
('RDKit-Fingerprint', '2')

It also has a toolkit attribute, which is the underlying chemfp toolkit that can create molecules for this fingerprint:

>>> family.toolkit
<module 'chemfp.rdkit_toolkit' from 'chemfp/rdkit_toolkit.pyc'>
>>> family.toolkit.name
'rdkit'

See the chapter Toolkit API examples for many examples of how to use a toolkit.

The get_defaults() method returns the default arguments used to create a fingerprint type, which is handy when
you’ve forgotten what all of the arguments are:

>>> family.get_defaults()
{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

If you call the family as a function, you’ll get a FingerprintType. You can check to see that the fingerprint type’s
keyword arguments match the defaults:

>>> fptype = family()
>>> fptype.fingerprint_kwargs
{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

Call the fingerprint family with keyword arguments to use something other than the default parameters:

>>> fptype = family(fpSize=1024, maxPath=6)
>>> fptype.fingerprint_kwargs
{'maxPath': 6, 'fpSize': 1024, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

If you have the keyword arguments as a dictionary you can use the “**” syntax to apply the dictionary as keyword argu-
ments, but I think it’s clearer to call the FingerprintFamily.from_kwargs() method to create the fingerprint
type:

>>> kwargs = {"fpSize": 512, "maxPath": 5}
>>> fptype = family(**kwargs) # Acceptable
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=5 fpSize=512 nBitsPerHash=2 useHs=1'
>>> fptype = family.from_kwargs(kwargs) # Better
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=5 fpSize=512 nBitsPerHash=2 useHs=1'

(Currently family(**kwargs) forwards the the call to family.from_kwargs(kwargs) so there is a slight
performance advantage to using from_kwargs().)

1.5. Fingerprint family and type examples 97

chemfp Documentation, Release 3.1

Sometimes the fingerprint parameters come from a string, for example, from command-line arguments or a web form.
In chemfp a dictionary of text keys and values are called “text settings”. The fingerprint family has a helper function
to process them and create a kwargs dictionary with the correct data types as values:

>>> family.get_kwargs_from_text_settings({
... "fpSize": "128",
... "nBitsPerHash": "1",
... })
{'maxPath': 7, 'fpSize': 128, 'nBitsPerHash': 1, 'minPath': 1, 'useHs': 1}

Note: This method is not as advanced as the corresponding code in the toolkit Format API. It does
not understand namespaces. It will also raise an exception if called with an unsupported parameter:

>>> family.get_kwargs_from_text_settings({
... "unsupported parameter": "-12.34",
... })
Traceback (most recent call last):

....
ValueError: Unsupported fingerprint parameter name 'unsupported parameter'

If you have text settings then you probably want to call chemfp.get_fingerprint_type_from_text_settings()
directly instead of going through the fingerprint family:

>>> fptype = chemfp.get_fingerprint_type_from_text_settings("RDKit-Fingerprint",
... {"fpSize": "512", "nBitsPerHash": "3", "maxPath": "6"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=6 fpSize=512 nBitsPerHash=3 useHs=1'

See Create a fingerprint using text settings for more examples of how to use this function.

Fingerprint family discovery

In this section you’ll learn how to get the available fingerprint families, both as a set of name strings and a list of
FingerprintFamily instances.

Even though chemfp knows about the OpenEye fingerprints, those fingerprints might not be available on your system
if you don’t have OEChem and OEGraphSim installed and licensed. Chemfp has a discovery system which will probe
to see which fingerprint types are available and determine their version numbers.

If you just want the available family names, use chemfp.get_fingerprint_family_names():

>>> import chemfp
>>> chemfp.get_fingerprint_family_names()
set(['RDKit-Torsion', 'OpenEye-Path', 'OpenBabel-FP2',
'OpenBabel-FP3', 'OpenBabel-FP4', 'RDKit-Avalon', 'RDMACCS-RDKit',
'RDKit-Morgan', 'OpenEye-MACCS166', 'RDMACCS-OpenEye',
'RDKit-MACCS166', 'OpenBabel-MACCS', 'ChemFP-Substruct-RDKit',
'ChemFP-Substruct-OpenEye', 'OpenEye-Circular', 'RDKit-Fingerprint',
'OpenEye-Tree', 'ChemFP-Substruct-OpenBabel', 'RDMACCS-OpenBabel',
'RDKit-AtomPair', 'RDKit-Pattern'])

Bear in mind that this might take a few seconds to run, since it will try to load the Python packages for each supported
toolkit. (Once done, that list is cached so subsequent calls are fast.)

The function returns a set of base names, which don’t contain the version information. Most likely you want to sort it
before displaying it more nicely:

98 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> from __future__ import print_function
>>> for name in sorted(chemfp.get_fingerprint_family_names()):
... print(name)
...
ChemFP-Substruct-OpenBabel
ChemFP-Substruct-OpenEye
ChemFP-Substruct-RDKit
OpenBabel-FP2
OpenBabel-FP3
OpenBabel-FP4
OpenBabel-MACCS
OpenEye-Circular
OpenEye-MACCS166
OpenEye-Path
OpenEye-Tree
RDKit-AtomPair
RDKit-Avalon
RDKit-Fingerprint
RDKit-MACCS166
RDKit-Morgan
RDKit-Pattern
RDKit-Torsion
RDMACCS-OpenBabel
RDMACCS-OpenEye
RDMACCS-RDKit

On my desktop, where I do all of the testing, I have many virturalenv installations so I can test different combinations
of Python and toolkit versions. I’ll run chemfp in one of the OpenEye-only virtualenv installations and show that it
only knows about the OEChem/OEGraphSim fingerprint types:

>>> from __future__ import print_function
>>> import chemfp
>>> print("\n".join(sorted(chemfp.get_fingerprint_family_names())))
ChemFP-Substruct-OpenEye
OpenEye-Circular
OpenEye-MACCS166
OpenEye-Path
OpenEye-Tree
RDMACCS-OpenEye

It’s still possible to get a list of all fingerprint family names, including those which aren’t actually available for the
given Python installation, by setting the include_unavailable parameter to True:

>>> print("\n".join(sorted(chemfp.get_fingerprint_family_names(include_
→˓unavailable=True))))
ChemFP-Substruct-OpenBabel
ChemFP-Substruct-OpenEye
ChemFP-Substruct-RDKit
OpenBabel-FP2
OpenBabel-FP3
OpenBabel-FP4
OpenBabel-MACCS
OpenEye-Circular
OpenEye-MACCS166
OpenEye-Path
OpenEye-Tree
RDKit-AtomPair
RDKit-Avalon

1.5. Fingerprint family and type examples 99

https://virtualenv.pypa.io/en/latest/

chemfp Documentation, Release 3.1

RDKit-Fingerprint
RDKit-MACCS166
RDKit-Morgan
RDKit-Pattern
RDKit-Torsion
RDMACCS-OpenBabel
RDMACCS-OpenEye
RDMACCS-RDKit

The list of base names is pretty useful, but sometimes you want more details, like the specific version number, and
the default number of bits. The FingerprintFamily includes the attributes to get the name and version
but it doesn’t have a way to get the default number of bits. Instead, I’ll use the FingerprintFamily to make a
FingerprintType with the default parameters, then ask the new fingerprint type its number of bits.

This means I need a list of FingerprintFamily instances, which is conveniently available from chemfp.
get_fingerprint_families(). (Remember, this may take a few seconds the first time it’s called, because
it tries to load all of the available fingerprints. Once determined, this information is cached.)

As a result, you can make a list of all available fingerprint methods and their default number of bits with the following:

>>> for family in chemfp.get_fingerprint_families():
... print(family.name, family().num_bits)
...
ChemFP-Substruct-OpenBabel/1 881
ChemFP-Substruct-OpenEye/1 881
ChemFP-Substruct-RDKit/1 881
OpenBabel-FP2/1 1021
OpenBabel-FP3/1 55
OpenBabel-FP4/1 307
OpenBabel-MACCS/2 166
OpenEye-Circular/2 4096
OpenEye-MACCS166/3 166
OpenEye-Path/2 4096
OpenEye-Tree/2 4096
RDKit-AtomPair/2 2048
RDKit-Avalon/1 512
RDKit-Fingerprint/2 2048
RDKit-MACCS166/2 166
RDKit-Morgan/1 2048
RDKit-Pattern/2 2048
RDKit-Torsion/2 2048
RDMACCS-OpenBabel/2 166
RDMACCS-OpenEye/2 166
RDMACCS-RDKit/2 166

The output here is a bit fancy. If you only want the version information then you could just look at the list, since a
family’s repr shows the versioned name:

>>> chemfp.get_fingerprint_families()
[FingerprintFamily(<ChemFP-Substruct-OpenBabel/1>), FingerprintFamily(<ChemFP-
→˓Substruct-OpenEye/1>),
FingerprintFamily(<ChemFP-Substruct-RDKit/1>), FingerprintFamily(<OpenBabel-FP2/1>),
FingerprintFamily(<OpenBabel-FP3/1>), FingerprintFamily(<OpenBabel-FP4/1>),
FingerprintFamily(<OpenBabel-MACCS/2>), FingerprintFamily(<OpenEye-Circular/2>),
FingerprintFamily(<OpenEye-MACCS166/3>), FingerprintFamily(<OpenEye-Path/2>),
FingerprintFamily(<OpenEye-Tree/2>), FingerprintFamily(<RDKit-AtomPair/2>),
FingerprintFamily(<RDKit-Avalon/1>), FingerprintFamily(<RDKit-Fingerprint/2>),
FingerprintFamily(<RDKit-MACCS166/2>), FingerprintFamily(<RDKit-Morgan/1>),

100 Chapter 1. List of chapters

https://docs.python.org/2/library/functions.html#func-repr

chemfp Documentation, Release 3.1

FingerprintFamily(<RDKit-Pattern/2>), FingerprintFamily(<RDKit-Torsion/2>),
FingerprintFamily(<RDMACCS-OpenBabel/2>), FingerprintFamily(<RDMACCS-OpenEye/2>),
FingerprintFamily(<RDMACCS-RDKit/2>)]

On the other hand, that’s a rather dense block of text.

Finally, use chemfp.has_fingerprint_family() to test if a fingerprint family is available:

>>> chemfp.has_fingerprint_family("OpenEye-Tree")
True
>>> chemfp.has_fingerprint_family("OpenEye-Tree/2")
True
>>> chemfp.has_fingerprint_family("OpenEye-Tree/1")
False

It understands both version and unversioned names.

get_fingerprint_type() and get_type()

In this section you’ll learn how to get a fingerprint type given its type string, and how to specify fingerprint parameters
as a dictionary.

The easiest way to get a specific FingerprintType is with chemfp.get_fingerprint_type():

>>> import chemfp
>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint")
>>> fptype
<chemfp.rdkit_types.RDKitFingerprintType_v2 object at 0x10cfedb10>

The fingerprint type has a FingerprintType.get_type() method, which returns the canonical fingerprint type
string:

>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'

This is canonical because chemfp ensures that all fingerprint type strings with the same parameter values have the
same type string.

I left out the version number in the fingerprint name, so chemfp gives me the most recent supported version. I could
have included the version in the name, which is useful if you want to prevent a version mismatch between your data
sets. If the version doesn’t exist, the function will raise a ValueError:

>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint/2")
>>> chemfp.get_fingerprint_type("RDKit-Fingerprint/1")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1984, in get_fingerprint_type
return types.registry.get_fingerprint_type(type, fingerprint_kwargs)

File "chemfp/types.py", line 1233, in get_fingerprint_type
raise ValueError("Unable to use %s: %s" % (name, reason))

ValueError: Unable to use RDKit-Fingerprint/1: This version of
RDKit does not support the RDKit-Fingerprint/1 fingerprint

I can also specify some or all of the parameters myself in the type string, instead of accepting the default values:

1.5. Fingerprint family and type examples 101

chemfp Documentation, Release 3.1

>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024 maxPath=6")
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=6 fpSize=1024 nBitsPerHash=2 useHs=1'

You can also pass in the parameters as a Python dictionary, though you still need at least the base name of the fingerprint
family:

>>> fp_kwargs = {
... "maxPath": 6,
... "fpSize": 512,
... }
>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint", fp_kwargs)
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=6 fpSize=512 nBitsPerHash=2 useHs=1'

If a parameter is specified in both the type string and the dictionary then the dictionary value will be used:

>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024 minPath=2",
... {"fpSize": 128})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=2 maxPath=7 fpSize=128 nBitsPerHash=2 useHs=1'

Create a fingerprint using text settings

In this section you’ll learn how to get a fingerprint type using text settings.

The fingerprint keywords arguments (“kwargs”) are a dictionary whose keys are fingerprint parameter names and
whose values are native Python objects for those parameters. Here is a fingerprint kwargs dictionary for the RDKit-
Fingerprint:

{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

Text settings are a dictionary where the dictionary keys are still parameter names but where the dictionary values are
string-encoded parameter values. Here is the equivalent text settings for the above kwargs dictionary:

{'maxPath': '7', 'fpSize': '2048', 'nBitsPerHash': '2', 'minPath': '1', 'useHs': '1'}

A text settings dictionary typically comes from command-line parameters or a configuration file, where everything is
a string. The fingerprint family has a method to convert text settings to kwargs:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> kwargs = family.get_kwargs_from_text_settings({"fpSize": "4096"})
>>> kwargs
{'maxPath': 7, 'fpSize': 4096, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

The kwargs can then be used to get the specified fingerprint type from the family:

>>> fptype = family.from_kwargs(kwargs)
>>> fptype
<chemfp.rdkit_types.RDKitFingerprintType_v2 object at 0x100f68610>
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

It’s a bit tedious to go through all those steps to process some text settings. Instead, call chemfp.
get_fingerprint_type_from_text_settings():

102 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> fptype = chemfp.get_fingerprint_type_from_text_settings(
... "RDKit-Fingerprint", {"fpSize": "4096"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

The parameters in the text settings have priority should the fingerprint type string and the text settings both specify the
same parameter name, as in this example where the fingerprint type string specifies a 1024 bit fingerprint while the
text settings specifies a 4096 bit fingerprint:

>>> fptype = chemfp.get_fingerprint_type_from_text_settings("RDKit-Fingerprint
→˓fpSize=1024")
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'
>>>
>>> fptype = chemfp.get_fingerprint_type_from_text_settings(
... "RDKit-Fingerprint fpSize=1024", {"fpSize": "4096"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

At present there is no support for parameter namespaces, and unknown parameter names will raise an exception:

>>> fptype = chemfp.get_fingerprint_type_from_text_settings(
... "RDKit-Fingerprint", {"fpSize": "4096", "spam": "eggs"})
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
File "chemfp/__init__.py", line 1329, in get_fingerprint_type_from_text_settings
return types.registry.get_fingerprint_type_from_text_settings(type, settings)

File "chemfp/types.py", line 868, in get_fingerprint_type_from_text_settings
raise ValueError("Error with type %r: %s" % (type, err))

ValueError: Error with type 'RDKit-Fingerprint': Unsupported fingerprint parameter
→˓name 'spam'

This may change in the future; let me know what’s best for you.

For now, if you want to remove unexpected names from a dictionary then use the fingerprint family’s
get_defaults() to get the default kwargs as a dictionary, and use the keys to filter out the unknown parame-
ters:

>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> defaults = family.get_defaults()
>>> defaults
{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}
>>> settings = {"maxPath": "8", "unknown": "mystery"}
>>> new_settings = dict((k, v) for (k,v) in settings.items() if k in defaults)
>>> new_settings
{'maxPath': '8'}

FingerprintType properties and methods

In this section you’ll learn about the FingerprintType properties and methods.

I’ll start by getting OpenEye’s tree fingerprint using the default parameters:

>>> fptype = chemfp.get_fingerprint_type("OpenEye-Tree")
>>> fptype
<chemfp.openeye_types.OpenEyeTreeFingerprintType_v2 object at 0x10a64be10>

1.5. Fingerprint family and type examples 103

chemfp Documentation, Release 3.1

>>> fptype.get_type()
'OpenEye-Tree/2 numbits=4096 minbonds=0 maxbonds=4
→˓atype=Arom|AtmNum|Chiral|FCharge|HvyDeg|Hyb btype=Order'

The “OpenEye-Tree/2” is the fingerprint name, which is decomposed into the base_name “OpenEye-Tree” and the
version “2”:

>>> fptype.name
'OpenEye-Tree/2'
>>> fptype.base_name, fptype.version
('OpenEye-Tree', '2')

The number of bits for the fingerprint is num_bits, and fingerprint_kwargs is a fingerprint parameters as a
dictionary of Python values:

>>> fptype.num_bits
4096
>>> fptype.fingerprint_kwargs
{'maxbonds': 4, 'numbits': 4096, 'atype': 63, 'minbonds': 0, 'btype': 1}

Each fingerprint type has a toolkit, which is the chemfp toolkit that can make molecules used as input to the
fingerprint type. (This would be None if there were no toolkit.) Given a fingerprint type it’s easy to figure out the
toolkit.name of the toolkit it’s associated with:

>>> fptype.toolkit.name
'openeye'

The software attribute gives information about the software used to generate the fingerprint. For RDKit and Open
Babel this is the same as the toolkit.software string. On the other hand, OpenEye distributes OEChem and
OEGraphSim as two different libraries. These map quite naturally to chemfp’s concepts of fingerprint type and toolkit,
so the “software” field for its fingerprint type and toolkit differ:

>>> fptype.software
'OEGraphSim/2.2.6 (20170208) chemfp/3.1'
>>> fptype.toolkit.software
'OEChem/20170208'

Finally, FingerprintType.get_fingerprint_family() returns the fingerprint family for a given finger-
print type:

>>> fptype.get_fingerprint_family()
FingerprintFamily(<OpenEye-Tree/2>)

Convert a structure record to a fingerprint

In this section you’ll learn how to use a fingerprint type to convert a structure record into a fingerprint.

The FingerprintType method parse_molecule_fingerprint() parses a structure record and returns the
fingerprint as a byte string. The following uses Open Babel to get the MACCS fingerprint for phenol:

>>> import chemfp
>>> from chemfp import bitops
>>> fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")
>>> fptype
<chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v2 object at 0x10cfedc10>
>>> fp = fptype.parse_molecule_fingerprint("c1ccccc1O", "smistring")

104 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> fp
'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00D\x80\x10\x1e'
>>> bitops.hex_encode(fp)
'00000000000000000000000000000140004480101e'

(Under Python 3 the fingerprint is a byte string and the second-to-last output line will be shown with the b” prefix.)

The parameters to parse_molecule_fingerprint() are identical to the toolkit’s parse_molecule()
function. For example, the following shows that the SMILES “Q” raises a chemfp.ParseError with the de-
fault errors mode, and returns None when errors is “ignore”:

>>> fptype.parse_molecule_fingerprint("Q", "smistring")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "chemfp/types.py", line 984, in parse_molecule_fingerprint
mol = self.toolkit.parse_molecule(content, format, reader_args=reader_args,

→˓errors=errors)
.... lines omitted ...

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot parse the SMILES 'Q'
>>> fptype.parse_molecule_fingerprint("Q", "smistring", errors="ignore") is None
True

See Parse and create SMILES for information about using parse_molecule() and the distinction between
“smistring”, “smi” and other SMILES formats. See Specify alternate error behavior for more about the errors pa-
rameter.

Convert a structure record to an id and fingerprint

In this section you’ll learn how to use a fingerprint type to extract the id from a structure record, convert the structure
record into a fingerprint, and return the (id, fingerprint) pair.

The previous section showed how to convert a structure record into a fingerprint. Sometimes you’ll also want the
identifier. The FingerprintType method parse_id_and_molecule_fingerprint() does both in the
same call.

>>> fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
>>> fptype.parse_id_and_molecule_fingerprint("c1ccccc1O phenol", "smi")
(u'phenol',
→˓'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00\x04\x00\x10\x1a')

(If the identifier is not present then the function may return None or the empty string, depending on the format and
underlying implementation.)

The parameters to parse_id_and_molecule_fingerprint are identical to the toolkit.
parse_id_and_molecule() function. For example, the following shows the difference in using two
different delimiter types in the reader_args:

>>> record = "C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a"
>>> fptype.parse_id_and_molecule_fingerprint(record, "smi", reader_args={"delimiter":
→˓"to-eol"})
(u'vitamin a',
→˓'\x00\x00\x00\x08\x00\x00\x02\x00\x02\n\x02\x80\x04\x98\x0c\x00\x00\x140\x14\x18')
>>> fptype.parse_id_and_molecule_fingerprint(record, "smi", reader_args={"delimiter":
→˓"space"})

1.5. Fingerprint family and type examples 105

chemfp Documentation, Release 3.1

(u'vitamin',
→˓'\x00\x00\x00\x08\x00\x00\x02\x00\x02\n\x02\x80\x04\x98\x0c\x00\x00\x140\x14\x18')

The id_tag and errors parameters are also supported, though I won’t give examples. See Read ids and molecules
using an SD tag for the id to learn how to use the id_tag and Specify a SMILES delimiter through reader_args and
Multi-toolkit reader_args and writer_args for examples of using reader_args.

Make a specialized id and molecule fingerprint parser

In this section you’ll learn how to make a specialized function for computing the fingerprints given many individual
structure records.

Sometimes the structure input comes as a set of individual strings, with one record per string. For example, the input
might come from a database query, where the cursor returns each field of each row as its own term, and you want to
convert each of them into a fingerprint.

One way to do this through successive calls to FingerprintType.parse_molecule_fingerprint():

>>> from __future__ import print_function
>>> import chemfp
>>> from chemfp import bitops
>>>
>>> smiles_list = ["C", "O=O", "C#N"]
>>>
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> for smiles in smiles_list:
... fp = fptype.parse_molecule_fingerprint(smiles, "smistring")
... print(bitops.hex_encode(fp), smiles)
...
000000000000000000000000000000000000008000 C
000000000000000000000000200000080000004008 O=O
000000000001000000000000000000000000000001 C#N

There is some overhead in this because the parameters, like format (“smistring” in this case) are (re)validated for each
call, and sometimes extra work is done to ensure that the call is thread-safe. (The overhead is higher if there are
complex reader args, and if the underlying fingerprinter is very fast.)

Another solution is to use make_id_and_molecule_fingerprinter_parser() to create a specialized
parser function for a given set of parameters. The parameters are only validated once, and the returned parser function
takes only the record as input and returns the (id, fingerprint) pair:

>>> import chemfp
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> id_and_fp_parser = fptype.make_id_and_molecule_fingerprint_parser("smi")
>>> id_and_fp_parser("c1ccccc1O phenol")
(u'phenol',
→˓'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00D\x80\x10\x1e')

The parameters to make_id_and_molecule_fingerprint_parser are identical to toolkit.
make_id_and_molecule_parser().

I’ll use the new function to parse the smiles_list from earlier:

>>> from __future__ import print_function
>>> import chemfp
>>> from chemfp import bitops
>>>

106 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> smiles_list = ["C", "O=O", "C#N"]
>>>
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> id_and_fp_parser = fptype.make_id_and_molecule_fingerprint_parser("smistring")
>>>
>>> for smiles in smiles_list:
... id, fp = id_and_fp_parser(smiles)
... print(bitops.hex_encode(fp), smiles)
...
000000000000000000000000000000000000008000 C
000000000000000000000000200000080000004008 O=O
000000000001000000000000000000000000000001 C#N

For OpenEye-MACCS166, creating and using a specialized parser is about 15% faster than using the
parse_molecule_fingerprint() when the query is isocane (C20H42). For OpenBabel-MACCS it’s about 5%, and for
RDKit-MACCS166 it’s around 1%.

You might be tempted to assume there’s a constant Python overhead and use the above numbers to judge the perfor-
mance of the underlying toolkit. This won’t give accurate answers. Chemfp makes certain threading guarantees which
aren’t always directly mapped to the underlying toolkit. This can require extra overhead.

In addition, RDKit’s native MACCS implementation maps key 1 to bit 1, while the other toolkits and chemfp map key
1 to bit 0. Chemfp normalizes RDKit-MACCS by shifting all of the bits left, and this translation code hasn’t yet been
optimized.

You may have noticed that there’s a parse_molecule_fingerprint()
and a make_id_and_molecule_fingerprint_parser() but there isn’t a
parse_id_and_molecule_fingerprint() or make_molecule_fingerprint_parser(). This
is simply a matter of time. I haven’t needed those functions, they are quite easy to emulate given what’s available, and
I was getting bored of writing test cases.

Let me know if they would be useful for your code.

Read a structure file and compute fingerprints

In this section you’ll learn how to use a fingerprint type to read a structure file, compute fingerprints for each one,
and iterate over the resulting (id, fingerprint) pairs. You will need Compound_027575001_027600000.sdf.gz from
PubChem.

The read_molecule_fingerprints() method of a FingerprintType reads a structure file and computes
the fingerprint for each molecule. It will also extract the record identifier. It returns an iterator of the (id, fingerprint)
pairs. For example, the following uses OEChem/OEGraphSim to compute the MACCS166 fingerprint for a PubChem
file, and prints the identifier, the number of keys set in the fingerprint, and the hex-encoded fingerprint:

from __future__ import print_function
import chemfp
from chemfp import bitops

Uncomment the fingerprint type you want to use.
fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
#fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
#fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")
for id, fp in fptype.read_molecule_fingerprints("Compound_014550001_014575000.sdf.gz
→˓"):

print("%s %3d %s" % (id, bitops.byte_popcount(fp), bitops.hex_encode(fp)))

The first few lines of ouput (excluding OEChem warnings) are:

1.5. Fingerprint family and type examples 107

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz

chemfp Documentation, Release 3.1

14550001 46 00008008000081406000e226a0906142df8e2a7c1b
14550002 35 00000008000000000000ea06809021425d862a7c1b
14550003 25 00000008000000000000c812008005425084283c1b
14550004 23 0000000000000800118204a00080800300b0780813
14550005 16 00000000040001000000000010010004800803523a

However, in most cases you should use the top-level helper function chemfp.
read_molecule_fingerprints(), which does the fingerprint type lookup and the call to
read_molecule_fingerprints:

from __future__ import print_function
import chemfp
from chemfp import bitops

for id, fp in chemfp.read_molecule_fingerprints("OpenEye-MACCS166",
"Compound_014550001_014575000.sdf.gz

→˓"):
print("%s %3d %s" % (id, bitops.byte_popcount(fp), bitops.hex_encode(fp)))

The helper function accepts both a type string, as shown here, and a Metadata object. On the other hand, the helper
function does not support fingerprint kwargs, so in that case you have to go through the FingerprintType.

The read_molecule_fingerprints method takes the same parameters as the toolkit.
read_ids_and_molecules(), including id_tag, errors, and location. I won’t cover those details again
here. Instead, see Read ids and molecules from an SD file at the same time.

Structure-based fingerprint reader location

In this section you’ll learn more about the location attribute of the structure-based fingerprint iterator returned by
read_molecule_fingerprints and read_molecule_fingerprints_from_string.

Four related functions implement structure-based fingerprint readers:

• chemfp.read_molecule_fingerprints()

• chemfp.read_molecule_fingerprints_from_string()

• FingerprintType.read_molecule_fingerprints()

• FingerprintType.read_molecule_fingerprints_from_string()

They all return a FingerprintIterator. Just like with the BaseMoleculeReader classes, the Fingerprint-
Iterator has a location attribute that can be used to get more information about the internal reader state. The
toolkit section has more details about how to get the current record number (see Location information: filename,
record_format, recno and output_recno) and, if supported by the parser implementation for a format, the line number
and byte ranges for the record (see Location information: record position and content).

It’s also possible to get the current molecule object using the location’s “mol” attribute. This isn’t so important for
the toolkit API since all of the molecule readers return the molecule object. It’s more useful in the fingerprint iterator,
which doesn’t.

NOTE: accessing the molecule this way is somewhat slow, because it requires several Python function calls. It should
mostly be used for error reporting; the following is meant as an example of use, and not a recommended best practice.

The following uses the location’s mol to report the SMILES string for every molecule whose MACCS fingerprint sets
fewer than 5 keys:

108 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

from __future__ import print_function
import chemfp
from chemfp import bitops

from openeye.oechem import OECreateSmiString

fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
with fptype.read_molecule_fingerprints("Compound_014550001_014575000.sdf.gz") as
→˓reader:

location = reader.location
for id, fp in reader:

popcount = bitops.byte_popcount(fp)
if popcount >= 5:

continue
smiles = OECreateSmiString(location.mol)
print("%s %3d %s" % (id, popcount, smiles))

The output from the above is:

14550474 3 [Mg+2].[Ca+2]
14567810 4 [B]=CO
14574228 4 F[In]
14574262 3 [Ga].[Ga].[Ga].[Ga].[Ga].[Ir].[Ir].[Ir]
14574264 3 [Co].[Ga]
14574265 3 [Ga].[Ga].[Pt]
14574267 3 [Ga].[Pt]
14574635 4 [Mg+2].[Al+3]
14574653 4 [Na+].[Na+].[Na+].[PH2-]

The above code imports and calls OECreateSmiString directly. The cross-toolkit solution is only slightly more com-
plicated. I need to use the fingerprint type object to get the underlying “toolkit”, which is a portability layer on top of
the actual cheminformatics toolkit with functions to parse a string into a molecule and vice versa:

>>> import chemfp
>>> fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
>>> fptype.toolkit
<module 'chemfp.openeye_toolkit' from '/Users/dalke/cvses/cfp-3x/docs/tmp/chemfp/
→˓openeye_toolkit.py'>
>>> T = fptype.toolkit
>>> mol = T.parse_molecule("OC", "smistring")
>>> T.create_string(mol, "smistring")
'CO'

I’ll use the toolkit’s create_string() method to make the SMILES string for each molecule which passes the
filter:

from __future__ import print_function
import chemfp
from chemfp import bitops

fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
T = fptype.toolkit

with fptype.read_molecule_fingerprints("Compound_014550001_014575000.sdf.gz") as
→˓reader:

location = reader.location
for id, fp in reader:

popcount = bitops.byte_popcount(fp)

1.5. Fingerprint family and type examples 109

chemfp Documentation, Release 3.1

if popcount >= 5:
continue

smiles = T.create_string(location.mol, "smistring")
print("%s %3d %s" % (id, popcount, smiles))

When should you use a toolkit-specific API and when to use the portable one?

That depends on you. There’s definitely a portability vs. performance tradeoff because the new create_string
function will always require an extra function call over the native API. If you work with a given toolkit a lot then
you’re going to be more familiar with it than this brand new chemfp API. Plus, calling a function to create another
function is somewhat unusual.

On the other hand, it’s trivial to change the above code to work with any of the fingerprint types that chemfp supports.

Read fingerprints from a string containing structures

In this section you’ll learn how to use a fingerprint type to read a string containing a set of structure records, compute
fingerprints for each one, and iterate over the resulting (id, fingerprint) pairs.

The read_molecule_fingerprints_from_string() method of the FingerprintType takes as input
a string containing structure records and returns an iterator over the (id, fingerprint) pairs.

>>> from __future__ import print_function
>>> import chemfp
>>> from chemfp import bitops
>>> fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")
>>> content = "C methane\n" + "CC ethane\n"
>>> reader = fptype.read_molecule_fingerprints_from_string(content, "smi")
>>> for (id, fp) in reader:
... print(id, bitops.hex_encode(fp))
...
methane 000000000000000000000000000000000000008000
ethane 000000000000000000000000000000000000108000
>>>

In most cases you should use the top-level helper function chemfp.
read_molecule_fingerprints_from_string(), which is slightly easier to call:

from __future__ import print_function
import chemfp
from chemfp import bitops
content = ("C methane\n"

"CC ethane\n")
reader = chemfp.read_molecule_fingerprints_from_string("OpenBabel-MACCS",

content, "smi")
for (id, fp) in reader:

print(id, bitops.hex_encode(fp))

The helper function accepts both a type string, as shown here, and a Metadata object. The helper function does not
support fingerprint kwargs so in that case you must go through the fingerprint type.

The method takes the same parameters as toolkit.read_ids_and_molecules_from_string(), includ-
ing the id_tag, errors, location, and reader_args. See Read from a string instead of a file for more about that function.

110 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Structure-based fingerprint reader errors

In this section you’ll learn how to use the errors option for the “read molecule fingerprints” functions, including how
to use the experimental support for a callback error handler.

The four structure reader functions (chemfp.read_molecule_fingerprints(),
chemfp.read_molecule_fingerprints_from_string(), FingerprintType.
read_molecule_fingerprints(), and FingerprintType.read_molecule_fingerprints_from_string())
take the standard errors option. By default it is “strict”, which means that it raises an exception when there are errors,
and stops processing.

>>> from __future__ import print_function
>>> import chemfp
>>> from chemfp import bitops
>>> content = ("C methane\n" +
... "Q Q-ane\n" +
... "O=O molecular oxygen\n")
>>> with chemfp.read_molecule_fingerprints_from_string(
... "RDKit-MACCS166", content, "smi") as reader:
... for (id, fp) in reader:
... print(id, bitops.hex_encode(fp))
...
methane 000000000000000000000000000000000000008000
[02:19:12] SMILES Parse Error: syntax error for input: 'Q'
Traceback (most recent call last):

....
File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot parse the SMILES 'Q', file '<string>', line 2, record
→˓#2: first line is 'Q Q-ane'

The default is “strict” because you should be the one to decide if you really want to ignore errors, not me. Specify
errors="ignore" to ignore errors, or use “report” to have chemfp write its own error messages to stderr:

>>> with chemfp.read_molecule_fingerprints_from_string(
... "RDKit-MACCS166", content, "smi", errors="ignore") as reader:
... for (id, fp) in reader:
... print(id, bitops.hex_encode(fp))
...
methane 000000000000000000000000000000000000008000
[02:21:36] SMILES Parse Error: syntax error for input: 'Q'
molecular oxygen 000000000000000000000000200000080000004008

Of course, this depends on the underlying toolkit implementation. Some toolkit/format combinations don’t let chemfp
know there was an error, such as most of the OEChem-based formats.

Experimental error handler

In this section you’ll learn about the experimental API for writing your own error handler.

In the previous section you learned about the “strict”, “report”, and “ignore” error handlers. What if you want
something different? Chemfp has an experimental feature where the errors can be any object with the method “er-
ror(message, location)”. You might send the results to a log file, or display it in a GUI, ... or send it to a speech
synthesizer and hear all of the error messages go by.

NOTE: This error handler API is experimental and may change in the future.

1.5. Fingerprint family and type examples 111

chemfp Documentation, Release 3.1

The following creates an error handler which counts the number of errors, and for each one reports the error number,
the filename (which is “<string>” if the input is from a string), and the error message:

>>> class ErrorCounter(object):
... def __init__(self):
... self.num_errors = 0
... def error(self, message, location):
... self.num_errors += 1
... print("Failure #%d from file %r: %s" % (
... self.num_errors, location.filename, message))
...
>>> error_handler = ErrorCounter()
>>> # ... use 'content' from the previous section
>>> with chemfp.read_molecule_fingerprints_from_string(
... "RDKit-MACCS166", content, "smi", errors=error_handler) as reader:
... for (id, fp) in reader:
... print(id, bitops.hex_encode(fp))
...
methane 000000000000000000000000000000000000008000
[02:26:02] SMILES Parse Error: syntax error for input: 'Q'
Failure #1 from file '<string>': RDKit cannot parse the SMILES 'Q'
molecular oxygen 000000000000000000000000200000080000004008

Let me know if you use the API and have ideas for improvements.

The toolkit documentation includes another example of how to write an error handler.

Compute a fingerprint for a native toolkit molecule

In this section you’ll learn how to compute a fingerprint given a toolkit molecule.

All of the previous sections assumed the inputs were structure record(s), either as a string or from a file. What if you
already have a native toolkit molecule and want to compute its fingerprint? In that case, use the FingerprintType.
compute_fingerprint() method:

>>> import chemfp
>>> fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")
>>> mol = fptype.toolkit.parse_molecule("c1ccccc1O", "smistring")
>>> mol
<openbabel.OBMol; proxy of <Swig Object of type 'OpenBabel::OBMol *' at 0x10d2bf510> >
>>> fptype.compute_fingerprint(mol)
'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00D\x80\x10\x1e'

This can be useful when you want to compute multiple fingerprint types for the same molecule. For example, I’ll
compare Open Babel’s MACCS implementation with chemfp’s own MACCS implementation for Open Babel:

from __future__ import print_function
import chemfp
from chemfp import openbabel_toolkit as T
from chemfp import bitops

fptype1 = chemfp.get_fingerprint_type("OpenBabel-MACCS")
fptype2 = chemfp.get_fingerprint_type("RDMACCS-OpenBabel")

with T.read_ids_and_molecules("Compound_014550001_014575000.sdf.gz") as reader:
for id, mol in reader:

fp1 = fptype1.compute_fingerprint(mol)
fp2 = fptype2.compute_fingerprint(mol)

112 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

if fp1 != fp2:
bits1 = set(bitops.byte_to_bitlist(fp1))
bits2 = set(bitops.byte_to_bitlist(fp2))
print(id, "in OB:", sorted(bits1-bits2), "in RDMACCS:", sorted(bits2-

→˓bits1))
else:

print(id, "equal")

Almost half (2186 of 5167) of the output were lines of the form:

14574962 in OB: [] in RDMACCS: [124]

I was curious, so I investigated the differences. Key 125 (the MACCS keys start at 1 while chemfp bit indexing starts
at 0) is defined as “Aromatic Ring > 1”. Open Babel doesn’t support this bit because it only allows key definitions
based on SMARTS, and this query cannot be represented as SMARTS.

This is also why there are 90 records where chemfp’s RDMACCS finds bit 165/key 166 (“more than one fragment”).
That can be expressed as the SMARTS “(*).(*)” but when the MACCS definitions were added to Open Babel it didn’t
understand component level groupings, so that pattern was omitted, and Open Babel will always generate a 0 for it.
Always, that is, until someone implements it. (Might that be you?)

For the record, 2756 of the records matched exactly, 2186 set bit 124 in RDMACCS, 90 set bit 165 in RDMACCS,
123 set both bit 124 and 165 in RDMACCS, and 1 set bit 111 in Open Babel’s MACCS but not in RDMACCS while
setting bit 124 in RDMACCS but not in Open Babel. I haven’t investigated when PubChem record 14559073 gives
this difference.

Note: compute_fingerprint() is thread-safe. If an underlying chemistry toolkit object is not thread-safe then
chemfp will duplicate that object before computing the fingerprint.

Fingerprint many native toolkit molecules

In this section you’ll learn how to generate a fingerprint given many native toolkit molecules.

Sometimes you have a list of molecules and you want to compute fingerprints for each one. In the following I’ll load
4378 molecules from an SD file using OEChem:

>>> import chemfp
>>>
>>> fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
>>> T = fptype.toolkit
>>>
>>> with T.read_molecules("Compound_014550001_014575000.sdf.gz") as reader:
... mols = [T.copy_molecule(mol) for mol in reader]
...

... various OEChem warnings omitted ...
>>> len(mols)
5167

NOTE: for performance reasons, some of the toolkit implementations will reuse a molecule object. I call toolkit.
copy_molecule() to force a copy of each one. A future version of chemfp will likely support a new reader_args
parameter to ask the reader implementation to always return a new molecule.

You know from the previous section how to compute the fingerprint one molecule at a time using
FingerprintType.compute_fingerprint():

>>> fps = [fptype.compute_fingerprint(mol) for mol in mols]

1.5. Fingerprint family and type examples 113

chemfp Documentation, Release 3.1

You can also process all of them at once using FingerprintType.compute_fingerprints():

>>> fps = list(fptype.compute_fingerprints(mols))

The plural in the name compute_fingerprints() is the hint that it can take multiple molecules. It returns a
generator, so I used Python’s list() to convert it to an actual list.

Why call compute_fingerprints instead of compute_fingerprint? The main reason is that it expresses
your intent more clearly than setting up a for-loop. But to be honest, the original reason was that I expected it would
be faster than calling the compute_fingerprint many times, because the underlying code could skip some
overhead.

By design, compute_fingerprint is thread-safe, which means chemfp sometimes makes extra objects to keep
that promise. On the other hand, compute_fingerprints, which processes a sequential series of molecules, can
reuse internal objects across the series instead of creating new ones. In principle this should be a bit faster. In practice,
nearly all of the time is spent in generating the fingerprint. Even with a faster fingerprint like OpenEye-Path, the timing
difference is well under 1%, and not enough to be interesting.

Make a specialized molecule fingerprinter

In this section you’ll learn how to make a specialized function to compute a fingerprint for a molecule. However, there
is very little reason for you to use this function.

The FingerprintType.compute_fingerprint() method is thread-safe. Some of the underlying toolkit
implementations can use code which isn’t thread-safe. For example, OEGraphSim writes its fingerprint information
to an OEFingerPrint instance, and replaces its previous value. A thread-safe implementation would make a new
OEFingerPrint for each call, which a non-thread-safe implementation could reuse it, and save a small bit of allocation
overhead.

The FingerprintType.make_fingerprinter() method returns a non-thread-safe fingerprinter function,
which is potentially faster beause it doesn’t need to keep the thread-safe promise.

Here’s an example of the two APIs. First, a bit of preamble to get things set up with a couple of molecules:

>>> import chemfp
>>> from chemfp import bitops
>>>
>>> fptype = chemfp.get_fingerprint_type("OpenBabel-FP2")
>>> mol1 = fptype.toolkit.parse_molecule("c1ccccc1O", "smistring")
>>> mol2 = fptype.toolkit.parse_molecule("O=O", "smistring")

The thread-safe API calls the compute_fingerprint() method:

>>> bitops.byte_popcount(fptype.compute_fingerprint(mol1))
12
>>> bitops.byte_popcount(fptype.compute_fingerprint(mol2))
1

The non-thread-safe version uses make_fingerprinter to create a new fingerprinter function, which I’ve as-
signed to calc_fingerprint, and then call directly:

>>> calc_fingerprint = fptype.make_fingerprinter()
>>> bitops.byte_popcount(calc_fingerprint(mol1))
12
>>> bitops.byte_popcount(calc_fingerprint(mol2))
1

114 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

The keen-eyed will note that I could have written the first code as:

>>> compute_fingerprint = fptype.compute_fingerprint
>>> bitops.byte_popcount(compute_fingerprint(mol1))
12
>>> bitops.byte_popcount(compute_fingerprint(mol2))
1

and gotten the same answer, which means there is little API need for a special “make_fingerprinter()” function, except
for performance.

I timed the performance. Even in the worst case that I could find (Open Babel’s FP2 fingerprint), the performance
boost was a paltry 2.5%. Otherwise it was about 1%. This is not enough to warrant using this function.

(Why do I leave it in? Probably because of the hard work I put into writing it, and because I like the principle behind
it. Perhaps I have hopes that the performance difference will be more apparent on multi-threaded benchmarks, which
I haven’t evaluated.)

Toolkit API examples

This chapter gives many examples of how to use the toolkit API. For an overview of the toolkit API functions,
see chemfp.toolkit. For details about actual toolkit implementations, see chemfp.openeye_toolkit,
chemfp.openbabel_toolkit, chemfp.rdkit_toolkit, and chemfp.text_toolkit.

Fingerprint search usually starts with a structure record, and not a fingerprint. The functions chemfp.
read_molecule_fingerprints() and chemfp.read_molecule_fingerprints_from_string()
give a quick way to read a file or string containing structure records as the corresponding fingerprints.

Sometimes you want more control over the process. You might want to generate multiple fingerprints for the same
structure and not want to reparse the structure record multiple times. Or you might want to return the search results as
extra fields to the query SDF record instead of a simple list of values.

Chemfp uses a third-party chemistry toolkit to parse the records into a molecule, or compute the fingerprint for a given
molecule. It’s not hard to write your own Open Babel, OEChem/OEGraphSim, or RDKit code to handle any of these
or similar tasks. The problem comes in when you want to mix multiple fingerprint types, like to compare the default
RDKit fingerprint to Open Babel’s FP2 fingerprint. You end up writing very different code for essentially the same
fingerprint task.

There’s an old saying in computer science; all problems can be solved with another layer of indirection. The chemfp
toolkit API follows that tradition. It’s a common API for molecule I/O which works across the three supported toolkits.
It’s also my best effort at implementing a next generation API.

Bear in mind that it is only an I/O API. Chemfp is a fingerprint toolkit and it will not gain a common molecule API.
For that, look toward Cinfony.

Get a chemfp toolkit

In this section you’ll learn how to load a “toolkit” – a portable API layer above the actual chemistry toolkit – and how
to check if a toolkit is available and has a valid license.

Each toolkit I/O adapter is implemented as a chemfp submodule. If you know the underlying chemistry toolkit is
installed you can import the adapter directly:

>>> from chemfp import openbabel_toolkit
>>> from chemfp import openeye_toolkit
>>> from chemfp import rdkit_toolkit

1.6. Toolkit API examples 115

http://code.google.com/p/cinfony/

chemfp Documentation, Release 3.1

Use chemfp.get_toolkit_names() to get the available toolkit names:

>>> chemfp.get_toolkit_names()
set(['openeye', 'rdkit', 'openbabel'])

This will try to import each module, which means it may take a second or more depending on the shared library load
time for your system. (This overhead only occurs once.) The function returns a list of the modules that could be loaded
and have a valid license.

You can use chemfp.get_toolkit() to get the correct toolkit module given a name; it raises a ValueError if the
underlying toolkit isn’t installed or the toolkit name is unknown:

>>> chemfp.get_toolkit("rdkit")
<module 'chemfp.rdkit_toolkit' from 'chemfp/rdkit_toolkit.pyc'>
>>> chemfp.get_toolkit("openeye")
<module 'chemfp.openeye_toolkit' from 'chemfp/openeye_toolkit.pyc'>
>>> chemfp.get_toolkit("openbabel")
<module 'chemfp.openbabel_toolkit' from 'chemfp/openbabel_toolkit.pyc'>

Existence isn’t enough to know if you can use a toolkit. OEChem requires a license. Each I/O adapter implements
chemfp.toolkit.is_licensed(). It returns True for Open Babel and RDKit and the value of OEChemIsLi-
censed() for OEChem:

>>> from __future__ import print_function
>>> for name in chemfp.get_toolkit_names():
... T = chemfp.get_toolkit(name)
... print("Toolkit %r (%s) is licensed? %s" % (T.name, T.software, T.is_licensed()))
...
Toolkit 'openeye' (OEChem/20170208) is licensed? True
Toolkit 'rdkit' (RDKit/2016.09.3) is licensed? True
Toolkit 'openbabel' (OpenBabel/2.4.1) is licensed? True

(Thanks OpenEye for an no-cost developer license to their toolkit!) There is currently no way to check if OEGraphSim
is licensed; you’ll need to use native OpenEye code instead.

For fun I also showed the software attribute, which gives more detailed information about the toolkit version in a
standardized format.

Finally, use chemfp.has_toolkit() to check if a toolkit is available. In the following, I used one of my local
testing environments which has OEChem installed but not the other toolkits. (I use virtualenv to create and manage
these environments; it’s a very useful tool.):

>>> chemfp.has_toolkit("openeye")
True
>>> chemfp.has_toolkit("openbabel")
False
>>> chemfp.has_toolkit("rdkit")
False

The other option is to catch the ValueError raised when trying to get an unavailable toolkit:

>>> chemfp.get_toolkit("openeye")
<module 'chemfp.openeye_toolkit' from 'chemfp/openeye_toolkit.py'>
>>> chemfp.get_toolkit("rdkit")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1823, in get_toolkit
raise ValueError("Unable to get toolkit %r: %s" % (toolkit_name, err))

ValueError: Unable to get toolkit 'rdkit': No module named rdkit

116 Chapter 1. List of chapters

https://virtualenv.pypa.io/en/latest/

chemfp Documentation, Release 3.1

>>> chemfp.get_toolkit("cdk")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1845, in get_toolkit
raise ValueError("Toolkit %r is not supported" % (toolkit_name,))

ValueError: Toolkit 'cdk' is not supported

This is a bit more complicated to do, but does have the advantage of giving access to an error message.

Parse and create SMILES

In this section you’ll learn how to parse a SMILES into a molecule, convert a molecule into a SMILES, and the
difference between a SMILES record and a SMILES string. You will need a chemistry toolkit for this and most of the
examples in this chapter.

The chemfp toolkit I/O API is the same across the different toolkits, and examples with one will generally work
with the other, except for essential differences like the specific formats available, the chemistry differences in how to
interpret a record, the error messages, and reader and writer arguments.

For most examples I’ll use T as the toolkit module name, rather than specify a specific toolkit. My examples will be
based on RDKit, but you can use any of the following, if available on your system:

Choose one of these
from chemfp import openeye_toolkit as T
from chemfp import openbabel_toolkit as T
from chemfp import rdkit_toolkit as T

I’ll parse the SMILES string for phenol as a toolkit molecule, then convert the toolkit molecule into its canonical
isomeric SMILES string using chemfp.toolkit.create_string():

>>> mol = T.parse_molecule("c1ccccc1O", "smistring")
>>> mol
<rdkit.Chem.rdchem.Mol object at 0x103559980>
>>> T.create_string(mol, "smistring")
'Oc1ccccc1'

The “smistring” format name means that the input is a SMILES string. Chemfp follows the rule from the original
SMILES paper that the SMILES string ends at the first whitespace. The following is valid across the chemfp toolkits
API even if the underlying toolkit doesn’t accept the “junk” as part of a SMILES:

>>> mol = T.parse_molecule("c1ccccc1O junk", "smistring")

On the other hand, if you have a SMILES record, which is a SMILES string followed by an id and possibly other
fields, then use the “smi” format name. That will parse the first characters as a SMILES string and parse the rest of the
input, up to the end of the line, as the record id:

>>> mol = T.parse_molecule("c1ccccc1O junk", "smistring")
>>> T.get_id(mol)
>>> mol = T.parse_molecule("c1ccccc1O junk", "smi")
>>> T.get_id(mol)
'junk'
>>> mol = T.parse_molecule("c1ccccc1O flotsam and jetsam\nand more\n", "smi")
>>> T.get_id(mol)
'flotsam and jetsam'

1.6. Toolkit API examples 117

chemfp Documentation, Release 3.1

I used the chemfp.toolkit.get_id() helper function. While chemfp doesn’t have a common molecule object,
I found I do need a few standard functions to manipulate toolkit molecules. Also, toolkit.parse_molecule()
will only read the first record and ignore trailing data, which is why the “and more” didn’t affect anything.

Now that the molecule has an id, it’s easy to see the difference between the “smistring” and “smi” in the output string:

>>> T.create_string(mol, "smistring")
'Oc1ccccc1'
>>> T.create_string(mol, "smi")
'Oc1ccccc1 flotsam and jetsam\n'

Finally, you can pass an alternate id to the toolkit.create_string() function. One example of when this is
useful is when your identifier comes from one field of a database and the SMILES string from another, and you want
to combine the results to get an SDF record:

>>> T.create_string(mol, "smi", id="nothing to see here")
'Oc1ccccc1 nothing to see here\n'

WARNING: The toolkit implementation may temporarily change then restore the toolkit molecule’s own identifier in
order to get the correct output. This is not thread-safe.

Canonical, non-isomeric, and arbitrary SMILES

In this section you’ll learn the difference between the “smistring”, “canstring”, and “usmstring” SMILES string for-
mats and the “smi”, “can”, and “usm” SMILES record formats. As with all examples which use the generic T toolkit
name, you’ll need one of the supported chemistry toolkits, and I’ll use RDKit as my underlying toolkit.

The SMILES format supports many different ways to represent the same molecule. “CO”, “OC”, “[OH][CH3]”,
and “C3.O3” are four different SMILES strings for methanol. A canonicalization algorithm uses additional rules to
create a unique SMILES representation for a given molecular graph. The different chemistry toolkit have different
canonicalization algorithms, so each toolkit will likely generate a different canonical SMILES string for the same
molecular graph.

There are multiple classes of canonical SMILES strings even in the same toolkit. The original SMILES format did not
handle isotopes, chirality, or stereochemistry. The later extension to support these was called “isomeric SMILES”, to
distinguish it from the original SMILES.

Because of the history, when people asked a toolkit for “SMILES” output they got non-isomeric non-canonical
SMILES, while “canonical SMILES” gave them “non-isomeric canonical”. This caused subtle usability errors. Many
people, including people like me who should have the experience to know better, expect canonical isomeric SMILES
by default. But for over 20 years all of the toolkits followed Daylight’s lead in how they did things.

OEChem 2.0 broke with tradition and fixed the mistake. It defined the default SMILES as canonical isomeric SMILES.
If you make the effort to ask for a canonical SMILES you get canonical non-isomeric SMILES, and if you really want
non-canonical, non-isomeric SMILES you can ask for the “usm” format.

Chemfp follows OpenEye’s lead. The “smistring” format generates a canonical isomeric SMILES string, the
“canstring” format generates a canonical non-isomeric SMILES string, and the “usmstring” format generates a non-
canonical non-isomeric SMILES string:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>
>>> mol = T.parse_molecule("[235P].[238U]", "smistring")
>>> T.create_string(mol, "smistring")
u'[235P].[238U]'
>>> T.create_string(mol, "canstring")
u'[P].[U]'

118 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> T.create_string(mol, "usmstring")
u'[P].[U]'

Here’s evidence that the “usmstring” format is non-canonical:

>>> mol = T.parse_molecule("[238U].[235P]", "smistring")
>>> T.create_string(mol, "usmstring")
u'[U].[P]'
>>> T.create_string(mol, "smistring")
u'[235P].[238U]'

These conventions also apply when creating “smi”, “can”, and “usm” strings:

>>> T.set_id(mol, "radioactive")
>>> T.create_string(mol, "smi")
u'[235P].[238U] radioactive\n'
>>> T.create_string(mol, "can")
u'[P].[U] radioactive\n'
>>> T.create_string(mol, "usm")
u'[U].[P] radioactive\n'

By the way, chemfp.toolkit.parse_molecule() doesn’t distinguish between “smi”, “can” and “usm” as
input SMILES records, nor between “smistring”, “canstring” and “usmstring”. The format only makes a differ-
ence for output. Later on you’ll see how to specify writer_args to have more fine-grained control over the output
SMILES format. (See RDKit-specific SMILES reader_args and writer_args, OpenEye-specific SMILES reader_args
and writer_args, and Open Babel-specific SMILES reader_args and writer_args for toolkit-specific examples.)

Use format to create a record in SDF format

In this section you’ll learn how to convert a toolkit molecule into an SDF record. This example will use the RDKit
toolkit but the results will be substantially the same for any of the three supported chemistry toolkits.

To create an SDF record as a Unicode string, pass “sdf” as the format to chemfp.toolkit.create_string():

>>> from __future__ import print_function
>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("CO", "smistring")
>>> print(T.create_string(mol, "sdf"))

RDKit

2 1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 1 0
M END
$$$$

Starting with chemfp 3.0, the create_string() function returns a Unicode string, under both Python 2.7 and
Python 3.5+:

>>> T.create_string(mol, "sdf")[:13]
u'\n RDKit '

In earlier versions of chemfp, create_string() returned a byte string. This was the usual practice under Python
2.5 to 2.7. It was fine for ASCII data, but caused problems with other characters, like Greek letters in a compound

1.6. Toolkit API examples 119

chemfp Documentation, Release 3.1

name or a data item listing prices in with the GBP or EUR symbol.

Python 3 makes a strong distinction between a byte string and a Unicode string. Chemfp 3.x follows that
lead by having create_string() return a Unicode string, and added the new function chemfp.toolkit.
create_bytes() to return a byte string:

>>> T.create_bytes(mol, "sdf")[:13]
'\n RDKit '

Here I’ll set the molecule’s name to the lower-case Greek letter ‘alpha’, and show you the interactive output from
Python 2.7:

>>> T.set_id(mol, u"\N{GREEK SMALL LETTER ALPHA}")
>>> T.create_string(mol, "sdf")[:13]
u'\u03b1\n RDKit '
>>> T.create_bytes(mol, "sdf")[:13]
'\xce\xb1\n RDKit'
>>> print(T.create_string(mol, "sdf")[:13])
𝛼

RDKit

Here’s the same output under Python 3.5:

>>> T.set_id(mol, u"\N{GREEK SMALL LETTER ALPHA}")
>>> T.create_string(mol, "sdf")[:13]
'𝛼\n RDKit '
>>> T.create_bytes(mol, "sdf")[:13]
b'\xce\xb1\n RDKit'
>>> print(T.create_string(mol, "sdf")[:13])
𝛼

RDKit

Use zlib record compression

In this section you’ll learn about the “zlib” compression option for single record parsers and byte string creation.

A record in SDF format can be large, but most of the content is repetetive. Often it’s better to store a zlib
compressed record in a database instead of the full record. When I use zlib to compress each record of Com-
pound_027575001_027600000.sdf.gz I get a 4.5-fold compression. That is, the uncompressed records take 2704906
bytes, the individually compressed records take 594682 bytes, and the gzip compressed file takes 270419. (Gzip is
nearly twice as good as individually compressed records because it can collect compression statistics across multiple
records and build a better prediction model.)

Chemfp supports a zlib compression option for the record-oriented functions, though not the file-oriented functions.
To enable it, add ”.zlib” to the format string for chemfp.toolkit.create_bytes(). Here you can see how
adding that suffix reduces the record size:

>>> from __future__ import print_function
>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("CO", "smistring")
>>> print("uncompressed:", len(T.create_bytes(mol, "sdf")))
uncompressed: 228
>>> print("compressed:", len(T.create_bytes(mol, "sdf.zlib")))
compressed: 77

I’ll complete a round-trip conversion by parsing the compressed SD record to a molecule then converting it to a
SMILES string:

120 Chapter 1. List of chapters

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz

chemfp Documentation, Release 3.1

>>> compressed = T.create_bytes(mol, "sdf.zlib")
>>> new_mol = T.parse_molecule(compressed, "sdf.zlib")
>>> T.create_string(new_mol, "smistring")
'CO'

The zlib option only works with create_bytes; it does not work with create_string because the latter only
returns Unicode strings, and it’s possible for zlib to return something which isn’t valid Unicode. Here’s what happens
if you try to use it anyway:

>>> T.create_string(mol, "sdf.zlib")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "chemfp/rdkit_toolkit.py", line 428, in create_string
return _toolkit.create_string(mol, format, id, writer_args, errors)

File "chemfp/base_toolkit.py", line 1333, in create_string
raise ValueError("create_string() does not support compression. Use create_bytes()

→˓")
ValueError: create_string() does not support compression. Use create_bytes()

On the other hand, chemfp.toolkit.parse_molecule() takes both Unicode strings and byte strings as input.
It treats the byte strings as being UTF-8 encoded.

Get a list of available formats and distinguish between input and output formats

In this section you’ll learn how to get the list of available formats for each object, and determine if a format can be
used to get a toolkit molecule from a string record, or convert a toolkit molecule into a string record.

The toolkit’s chemfp.toolkit.get_formats() function returns a list of the available formats. On my com-
puter RDKit supports 13 formats, OEChem 24, and Open Babel (showing off its heritage) supports a whopping 189:

>>> from chemfp import rdkit_toolkit
>>> len(rdkit_toolkit.get_formats())
13
>>> rdkit_toolkit.get_formats()
[Format('rdkit/smi'), Format('rdkit/can'), Format('rdkit/usm'),
Format('rdkit/sdf'), Format('rdkit/smistring'),
Format('rdkit/canstring'), Format('rdkit/usmstring'),
Format('rdkit/molfile'), Format('rdkit/rdbinmol'),
Format('rdkit/inchi'), Format('rdkit/inchikey'),
Format('rdkit/inchistring'), Format('rdkit/inchikeystring')]
>>>
>>> from chemfp import openeye_toolkit
>>> len(openeye_toolkit.get_formats())
24
>>> openeye_toolkit.get_formats()
[Format('openeye/smi'), Format('openeye/usm'),
Format('openeye/can'), Format('openeye/sdf'),
Format('openeye/molfile'), Format('openeye/skc'),
Format('openeye/mol2'), Format('openeye/mol2h'),
Format('openeye/sln'), Format('openeye/mmod'),
Format('openeye/pdb'), Format('openeye/xyz'), Format('openeye/cdx'),
Format('openeye/mopac'), Format('openeye/mf'),
Format('openeye/oeb'), Format('openeye/inchi'),
Format('openeye/inchikey'), Format('openeye/smistring'),
Format('openeye/canstring'), Format('openeye/usmstring'),
Format('openeye/slnstring'), Format('openeye/inchistring'),
Format('openeye/inchikeystring')]

1.6. Toolkit API examples 121

chemfp Documentation, Release 3.1

>>>
>>> from chemfp import openbabel_toolkit
>>> len(openbabel_toolkit.get_formats())
189
>>> openbabel_toolkit.get_formats()
[Format('openbabel/smi'), Format('openbabel/can'),
Format('openbabel/usm'), Format('openbabel/smistring'),
Format('openbabel/canstring'), Format('openbabel/usmstring'),
Format('openbabel/sdf'), Format('openbabel/inchi'),
Format('openbabel/inchikey'), Format('openbabel/inchistring'),
Format('openbabel/inchikeystring'), Format('openbabel/mp'),
Format('openbabel/gzmat'), Format('openbabel/txt'),

... many formats omitted ...
Format('openbabel/pdb')]
>>>

I’ll use chemfp.toolkit.get_format(), which returns a chemfp.base_toolkit.Format, to get the
“sdf” format for OpenEye:

>>> sdf_format = openeye_toolkit.get_format("sdf")
>>> sdf_format.name
'sdf'
>>> sdf_format.toolkit_name
'openeye'

The “sdf” format can be used for both input and output in all toolkits:

>>> sdf_format.is_input_format, sdf_format.is_output_format
(True, True)

However, some formats are output only, like the InChIKey format (assuming it’s available for your toolkit):

>>> inchi_fmt = openeye_toolkit.get_format("inchikey")
>>> inchi_fmt.is_input_format, inchi_fmt.is_output_format
(False, True)

On the other hand, some formats are input only, like Open Babel’s support for MOPAC’s output format:

>>> mopout_fmt = openbabel_toolkit.get_format("mopout")
>>> mopout_fmt.is_input_format, mopout_fmt.is_output_format
(True, False)

Instead of asking for all available formats, you can ask for only the input formats, or only the output formats, using
chemfp.toolkit.get_input_formats or chemfp.toolkit.get_output_formats:

>>> from __future__ import print_function
>>> import chemfp
>>> for toolkit_name in ("openbabel", "openeye", "rdkit"):
... T = chemfp.get_toolkit(toolkit_name)
... print(toolkit_name, "has", len(T.get_input_formats()), "input formats")
... print(toolkit_name, "has", len(T.get_output_formats()), "output formats")
...
openbabel has 147 input formats
openbabel has 138 output formats
openeye has 16 input formats
openeye has 23 output formats
rdkit has 11 input formats
rdkit has 13 output formats

122 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Determine the format for a given filename

It’s sometimes useful to know what format will be used for a given filename. A filename can be used as a source for a
reader or destination for a writer, and a toolkit might understand a given format when used as input but not as ouput,
or vice-versa.

The function chemfp.toolkit.get_input_format_from_source() returns a chemfp.
base_toolkit.Format for the given filename:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> T.get_input_format_from_source("abc.smi.gz")
Format('rdkit/smi.gz')

This is the same Format object you saw in the previous section. I didn’t mention the compression attribute in that
discussion. It’s “gz” for gzip-ed files, and the empty string “” for uncompressed files.

>>> fmt = T.get_input_format_from_source("abc.smi.gz")
>>> fmt.name
'smi'
>>> fmt.compression
'gz'
>>>
>>> fmt = T.get_input_format_from_source("abc.smi")
>>> fmt.name
'smi'
>>> fmt.compression
''

Asking for a supported format which isn’t an input format raises a ValueError exception:

>>> from chemfp import openbabel_toolkit
>>> openbabel_toolkit.get_input_format_from_source("example.inchikey")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "chemfp/openbabel_toolkit.py", line 143, in get_input_format_from_source
return _format_registry.get_input_format_from_source(source, format)

File "chemfp/base_toolkit.py", line 841, in get_input_format_from_source
format_config = self.get_input_format_config(register_name)

File "chemfp/base_toolkit.py", line 765, in get_input_format_config
% (self.external_name, register_name))

ValueError: Open Babel does not support 'inchikey' as an input format

even though “inchikey” is supported as an output format:

>>> openbabel_toolkit.get_output_format_from_destination("example.inchikey")
Format('openbabel/inchikey')

Yes, there’s a different function to get the format name for a source filename than for a destination filename. Maybe
in the future I’ll support a generic get_format_from_filename(); let me know if that would be useful.

If you ask for a format which doesn’t exist then the functions raises a different ValueError exception:

>>> openbabel_toolkit.get_input_format_from_source("example.does-not-exist")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

1.6. Toolkit API examples 123

chemfp Documentation, Release 3.1

.....
File "/Library/Python/2.7/site-packages/chemfp/base_toolkit.py", line 532, in get_

→˓format_config
% (self.external_name, register_name))

ValueError: Open Babel does not support the 'does-not-exist' format

I’ve found it useful to have a way to override the default guess. It’s amazing how many people use ”.dat” for SMILES
or SDF files, and ”.txt” files for SMILES. The format lookup functions support a second, optional parameter, which is
the format name to use.

>>> openbabel_toolkit.get_input_format_from_source("example.does-not-exist", "smi.gz")
Format('openbabel/smi.gz')

This exists so that code like:

if format is not None:
fmt = T.get_format(format)

else:
fmt = T.get_format_from_source(filename)

can be replaced with:

fmt = T.get_format_from_source(filename, format)

Working with a format object is useful when combined with format’s reader_args and writer_arg functions discussed
in Specify a SMILES delimiter through reader_args

>>> fmt = openbabel_toolkit.get_input_format_from_source("input.smi")
>>> fmt.get_default_writer_args()
{'explicit_hydrogens': False, 'isomeric': True, 'delimiter': None, 'options': None,
→˓'canonicalization': 'default'}
>>> fmt.get_writer_args_from_text_settings({
... "explicit_hydrogens": "true",
... "isomeric": "false",
... "delimiter": "tab"})
{'explicit_hydrogens': True, 'isomeric': False, 'delimiter': 'tab'}

Parse the id and the molecule at the same time

In this section you’ll learn how to parse a structure record, as a string, to extract both the identifier and the native
molecule object.

Usually you want both the molecule and its id. You could parse the molecule then use T.get_id(mol) to get the
id, but that’s extra work, it leads to awkward looking code, and is slower than having chemfp do the work for you
when it parses the molecule.

Instead, use chemfp.toolkit.parse_id_and_molecule():

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>
>>> T.parse_id_and_molecule("C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a", "smi
→˓")
(u'vitamin a', <rdkit.Chem.rdchem.Mol object at 0x1035f14b0>)

Note that the identifier is a Unicode string. This is new with chemfp 3.0. Earlier versions returned byte string instead.

If there is no id/title field then the id will either be None or the empty string, depending on the toolkit and format:

124 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> T.parse_id_and_molecule("C", "smi")
(None, <rdkit.Chem.rdchem.Mol object at 0x1035f14b0>)

Instead of testing for the empty string or None, your code you should use “if not id:” to test for a missing id:

>>> id, mol = T.parse_id_and_molecule("C", "smi")
>>> if not id:
... print("Missing id!")
...
Missing id!

Specify alternate error behavior

In this section you’ll learn how to use the errors parameter to have chemfp.toolkit.parse_molecule()
return None rather than raise an exception, and to have it print a report about the failing molecule.

The string “Q” is not a valid SMILES string. All of the toolkits will fail to parse it, and the chemfp toolkit I/O adapter
by default raises an exception when that happens:

>>> from chemfp import openbabel_toolkit
>>> openbabel_toolkit.parse_molecule("Q", "smistring")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
...

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot parse the SMILES 'Q'
>>>
>>> rdkit_toolkit.parse_molecule("Q", "smistring")
[01:14:30] SMILES Parse Error: syntax error for input: 'Q'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
...

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot parse the SMILES string 'Q'
>>>
>>> from chemfp import openeye_toolkit
>>> openeye_toolkit.parse_molecule("Q", "smistring")
Warning: Problem parsing SMILES:
Warning: Q
Warning: ^

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
...
File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: OEChem cannot parse the smistring record: 'Q'

On the other hand, “[NH8]” is a valid SMILES, but RDKit by default will reject it as chemically unreasonable, while
OEChem and Open Babel are less strict and treat it as a molecular graph rather than a chemical molecule.

I’ll write a program which checks which toolkits will parse “[NH8]”

1.6. Toolkit API examples 125

chemfp Documentation, Release 3.1

I call this "check_NH8.py"
from __future__ import print_function
import chemfp
allowed = []; rejected = []
for name in chemfp.get_toolkit_names():
T = chemfp.get_toolkit(name)
try:
T.parse_molecule("[NH8]", "smistring")

except ValueError:
rejected.append(name)

else:
allowed.append(name)

print("Allowed:", allowed, "Rejected:", rejected)

% python check_NH8.py
[01:25:49] Explicit valence for atom # 0 N, 8, is greater than permitted
Allowed: ['openeye', 'openbabel'] Rejected: ['rdkit']

I think the try/except/else is sometimes harder to understand than returning an error value, because it’s harder to see
the control flow. I can ask chemfp.toolkit.parse_molecule() to ignore errors, which causes it to return
a None object rather than raise an exception. turns the above loop into the following:

for name in chemfp.get_toolkit_names():
T = chemfp.get_toolkit(name)
mol = T.parse_molecule("[NH8]", "smistring", errors="ignore")
if mol is None:
rejected.append(name)

else:
allowed.append(name)

The errors option is more useful in later sections, when parsing multiple records.

The errors parameter can also take the value report. Like ignore, this will return a None when there is an
error rather than raise an exception. It will also write a consistent, cross-toolkit error message to stderr, including the
SMILES string that failed if the input is a SMILES:

>>> for name in chemfp.get_toolkit_names():
... T = chemfp.get_toolkit(name)
... T.parse_molecule("Q", "smistring", errors="report")
... T.parse_molecule("[NH8]", "smistring", errors="report")
...
Warning: Problem parsing SMILES:
Warning: Q
Warning: ^

ERROR: OEChem cannot parse the smistring record: 'Q'. Skipping.
<oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
→˓0x104a9ffc0> >
[01:31:22] SMILES Parse Error: syntax error for input: 'Q'
ERROR: RDKit cannot parse the SMILES string 'Q'. Skipping.
[01:31:22] Explicit valence for atom # 0 N, 8, is greater than permitted
ERROR: RDKit cannot parse the SMILES string '[NH8]'. Skipping.
ERROR: Open Babel cannot parse the SMILES 'Q'. Skipping.
<openbabel.OBMol; proxy of <Swig Object of type 'OpenBabel::OBMol *' at 0x10756bab0> >

The chemfp.toolkit.parse_id_and_molecule() function also takes the errors parameter. If the struc-
ture could not be parsed then the second component of the tuple (the molecule) will be None. The first component
(the id) may or or may not be None, depending on the underlying implementation:

126 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> from chemfp import rdkit_toolkit
>>> rdkit_toolkit.parse_id_and_molecule("Q q-ane", "smi", errors="ignore")
[01:33:48] SMILES Parse Error: syntax error for input: 'Q'
(None, None)
>>>
>>> from chemfp import openeye_toolkit
>>> openeye_toolkit.parse_id_and_molecule("Q q-ane", "smi", errors="ignore")
Warning: Problem parsing SMILES:
Warning: Q q-ane
Warning: ^

(None, None)
>>>
>>> from chemfp import openbabel_toolkit
>>> openbabel_toolkit.parse_id_and_molecule("Q q-ane", "smi", errors="ignore")
('q-ane', None)

Future versions of chemfp may work to normalize this behavior, or let the caller choose a specific behavior.

Specify a SMILES delimiter through reader_args

In this section you’ll learn how to parse a SMILES record as a set of delimited fields instead of the default of a SMILES
string followed by a title, and some of the limitations of chemfp’s attempt at a consistent cross-toolkit SMILES record
parser.

You might think that the SMILES file format is well defined, but it sadly isn’t. Different toolkits have slightly different
interpretations for a SMILES record format. Consider the SMILES record:

C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a

The original Daylight definition is that a SMILES record is single line, which starts with the SMILES string. The
SMILES string ends with the first whitespace character or the end of the line, and if there was a whitespace character
than the rest of the line is the title. OpenEye follows this definition, as does chemfp. That’s why the previous example
extracted “vitamin A” as the record id.

However, RDKit treats a SMILES file record as a space or tab separated set of fields, where the first field is the
SMILES, the second field is the id/title and additional columns may store other properties. RDKit would use “vitamin”
as the record id for this record. (RDKit can also be configured to interpret the first line as column names. Chemfp
does not currently support this option, though I plan to have a cross-platform implementation in a future release.)

Chemfp normalizes the SMILES record parser API so that all toolkits by default expect the Daylight format. Use the
optional reader_args dictionary to specify an alternate interpretation:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>
>>> smiles = "C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a"
>>> T.parse_id_and_molecule(smiles, "smi", reader_args={"delimiter": "whitespace"})
(u'vitamin', <rdkit.Chem.rdchem.Mol object at 0x10f5ccfa0>)

In this case I asked it to parse the record as a set of whitespace delimited fields. If you have tab-separated fields, where
a space inside of a field is not part of the delimiter, then use the “tab” delimiter:

>>> T.parse_id_and_molecule("O=O\tmolecular oxygen\t31.9988\n", "smi",
... reader_args={"delimiter": "tab"})
(u'molecular oxygen', <rdkit.Chem.rdchem.Mol object at 0x10fbe9590>)

The supported delimiters are:

1.6. Toolkit API examples 127

chemfp Documentation, Release 3.1

• to-eol - (default) everything past the first whitespace is interpreted as the id/title;

• tab or “\t” - the fields are tab-separated; the first field is the SMILES and the second the id;

• space or ” ” - the fields are space-separated;

• whitespace - the fields are whitespace-separated;

• native - use the native interpretation for the given toolkit;

While chemfp strives for cross-toolkit portability, it is not perfect. Leading and trailing whitespace might not be
supported, so the first character of the SMILES record must also be the first character of the SMILES string. Also,
the toolkit is free to interpret the first whitespace as the delimiter despite the reader_args setting. You can see the
difference between RDKit and OEChem toolkits in the following, where the record is tab-separated but OEChem
always stops parsing a SMILES at the first whitespace:

>>> smiles = "O=O\tmolecular oxygen\n"
>>>
>>> from chemfp import openeye_toolkit
>>> openeye_toolkit.parse_id_and_molecule(smiles, "smi", reader_args={"delimiter":
→˓"space"})
(u'molecular', <oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *
→˓' at 0x10fbe0090> >)
>>>
>>> from chemfp import rdkit_toolkit
>>> rdkit_toolkit.parse_id_and_molecule(smiles, "smi", reader_args={"delimiter":
→˓"space"})
[01:38:59] SMILES Parse Error: syntax error for input: 'O=O molecular'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
...

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot parse the SMILES 'O=O\tmolecular'

Neither the SMILES parser nor the other parsers validate the full contents of the reader_args dictionary. Extra items
are ignored. This is deliberate because it lets you combine, say, SMILES and SDF parameters in the same dictionary
without needing to check the specific format first.

To a lesser extent, it also makes it easier to specify parameters which work across multiple toolkit versions. For
example, the most recent version of OEChem’s SMILES parsers added a quiet option, which chemfp will support in
the future. Your code can have a {“quiet”: True} without first checking to see if this version of chemfp is new enough
to support the parameter.

WARNING: As a result, it’s very easy to specify a key with a typo, which is ignored, and not notice that it nothing
happens.

WARNING #2: Really, I’ve been bitten by this a few times. Be extra cautious to check that you are using the right
keys.

Specify an output SMILES delimiter through writer_args

In this section you’ll learn how to create a SMILES record with a tab character separating the SMILES from the title
using the writer_args parameter of chemfp.toolkit.create_string().

By default create_string uses a space character to separate the SMILES from the rest of the id:

128 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>
>>> mol = T.parse_molecule("O=O molecular oxygen\n", "smi")
>>> T.create_string(mol, "smi")
u'O=O molecular oxygen\n'

To use a tab character instead, pass in a writer_args dictionary with a “delimiter” of “tab”:

>>> T.create_string(mol, "smi", writer_args={"delimiter": "tab"})
u'O=O\tmolecular oxygen\n'

The writer_args delimiter also accepts “whitespace”, “space”, “to-eol” and the other values from reader_args. Only
“tab” and “\t” will use a tab character as the delimiter; all of the the others will use a space character.

Neither the SMILES writer nor the other writers validate the full contents of the writer_args dictionary. Extra items
are ignored. This is deliberate because it lets you combine, say, SMILES and SDF parameters in the same dictionary
without needing to check the specific format first. It also makes it easier to specify parameters which work across
multiple toolkit versions.

WARNING: As a result, it’s very easy to specify a key with a typo, which is ignored, and not notice that it nothing
happens.

WARNING #2: Really, I’ve been bitten by this a few times. Be extra cautious to check that you are using the right
keys.

RDKit-specific SMILES reader_args and writer_args

In this section you’ll learn how to pass toolkit-specific parameters to the RDKit toolkit functions to parse and create a
SMILES string. You will need the RDKit toolkit.

Earlier I showed that RDKit by default does a sanitization check to verify that the input is correct.

>>> from chemfp import rdkit_toolkit
>>> mol = rdkit_toolkit.parse_molecule("[NH8]", "smistring", errors="ignore")
[01:46:17] Explicit valence for atom # 0 N, 8, is greater than permitted
>>> mol is None
True

The underlying RDKit code to parse a SMILES string, MolFromSmiles, takes a sanitize parameter. The default, True,
tells it to do the sanitization step, while False disables it.

Use the reader_args dictionary to pass the sanitize parameter to the underlying toolkit function:

>>> mol = rdkit_toolkit.parse_molecule("[NH8]", "smistring", reader_args={"sanitize":
→˓False})
>>> mol
<rdkit.Chem.rdchem.Mol object at 0x107590a60>
>>> from rdkit import Chem
>>> Chem.MolToSmiles(mol)
'[NH8]'

Use the writer_args dictionary to pass toolkit-specific parameters to RDKit’s MolToSmiles:

>>> mol = rdkit_toolkit.parse_molecule("c1ccccc1[16OH]", "smistring")
>>> rdkit_toolkit.create_string(mol, "smistring")
u'[16OH]c1ccccc1'
>>> rdkit_toolkit.create_string(mol, "smistring",
... writer_args={"isomericSmiles": False})

1.6. Toolkit API examples 129

http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolfiles-module.html#MolFromSmiles

chemfp Documentation, Release 3.1

u'Oc1ccccc1'
>>> rdkit_toolkit.create_string(mol, "smistring",
... writer_args={"kekuleSmiles": True, "allBondsExplicit": True})
u'[16OH]-C1:C:C:C:C:C:1'

See Get the default reader_args or writer_args for a format for a description of how to get the default reader and writer
arguments for a given format, and use help(rdkit_toolkit.read_molecules) and help(rdkit_toolkit.
open_molecule_writer) to get a more human-readable description.

OpenEye-specific SMILES reader_args and writer_args

In this section you’ll learn how to pass toolkit-specific parameters to the OEChem toolkit functions to parse and create
a SMILES string. You will need the OEChem toolkit. See the next section for specific details about aromaticity.

By default the OEChem SMILES parser is tolerant of bad SMILES. I believe it’s too tolerant, because will gladly
parse what I think are invalid SMILES, like “C-=C”:

>>> from chemfp import openeye_toolkit
>>> mol = openeye_toolkit.parse_molecule("C-=C", "smistring")
>>> openeye_toolkit.create_string(mol, "smistring")
u'C=C'

The developers at OpenEye recognize that pedantic folk like me exist. The OEChem SMILES parser has a “strict”
mode, which I can enable in chemfp through the “flavor” parameter of the reader_args dictionary:

>>> mol = openeye_toolkit.parse_molecule("C-=C", "smistring",
... reader_args={"flavor": "Strict"})
Warning: Problem parsing SMILES:
Warning: Bond without end atom.
Warning: C-=C
Warning: ^

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

.... lines omitted
File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: OEChem cannot parse the smistring record: 'C-=C'

The underlying OEParseSmiles() function takes the optional strict and canon parameters. Why does chemfp use the
term “flavor”? Why the capitalization for “Strict”?

Historically the low-level OEChem functions took individual parameters, like the positional arguments canon and
strict:

>>> mol = OEGraphMol()
>>> OEParseSmiles(mol, "C-=C", False, True)
Warning: Problem parsing SMILES:
Warning: Bond without end atom.
Warning: C-=C
Warning: ^

False

(I wrote “historically” because more recent versions have format-specific options classes, like OEParseSmilesOptions
for SMILES. These collect all of the configuration options into a single parameter, which is easier to pass around.)

130 Chapter 1. List of chapters

http://docs.eyesopen.com/toolkits/python/oechemtk/OEChemFunctions.html#OEChem::OEParseSmiles
http://docs.eyesopen.com/toolkits/python/oechemtk/OEChemClasses/OEParseSmilesOptions.html

chemfp Documentation, Release 3.1

On the other hand, the high-level molecule parsers take a single “flavor” integer value to specify the options for a given
format. This flavor is usually expressed as the union of a set of bitmasks. I’ll show how OEChem’s Python API uses
the flavor parameter.

The following OEChem code reads a SMILES file in the default non-strict mode (with no specified flavor):

% cat example.smi
C=-C bad
CCC good
% python

...
>>> from __future__ import print_function
>>> from openeye.oechem import *
>>> ifs = oemolistream("example.smi")
>>> for mol in ifs.GetOEGraphMols():
... print(mol.GetTitle(), mol.NumAtoms())
...
bad 2
good 3

while the following sets the SMILES flavor to use “strict” mode:

>>> ifs = oemolistream("example.smi")
>>> ifs.SetFlavor(OEFormat_SMI, OEIFlavor_SMI_Strict)
True
>>> for mol in ifs.GetOEGraphMols():
... print(mol.GetTitle(), mol.NumAtoms())
...
Warning: Problem parsing SMILES:
Warning: Bond without end atom.
Warning: C=-C bad
Warning: ^

Warning: Error reading molecule "" in Canonical stereo SMILES format.
good 3

(You can see some terminology differences between me and OpenEye in the warning message. The “Canonical” and
“stereo” are only meaningful as a description of the output format, not the input format, and I use the traditional term
“isomeric” while they highlight the more important stereochemistry aspect. I also got confused because I thought at
first the “Canonical” had something to do with OEIFlavor_SMI_Canon.)

I decided to base chemfp openeye_toolkit API on the high-level “flavor” API of OEChem, which is better
documented and requires less work on my part to implement than low-level functions. But I also decided to extend it
to support a string value, and not just an integer.

To explain how that works, I’ll switch from describing reader_args to writer_args, because raising an exception with
the “Strict” option gets boring, fast.

The OEChem SMILES output flavors are: OEOFlavor_SMI_AtomMaps, OEOFlavor_SMI_AtomStereo,
.... and you know what? The OEOFlavor_SMI_ prefix is part of what makes the flavors hard to use
in Python, so I’ll omit the prefix in chemfp. The OEChem SMILES output flavors are: AtomMaps,
AtomStero, BondStereo, Canonical, ExtBonds, Hydrogens, ImpHCount, Isotopes, Kekule,
RGroups, SmiMask, and SuperAtoms. There are also Default and DEFAULT which are the bitwise union
RGroups|Isotopes|AtomStereo|BondStereo|AtomMaps|Canonical.

In chemfp you can specify the fields as a “|” or ”,” separated list of flavor flags, without the prefix. Here are several
different ways to specify the default settings for isomeric canonical SMILES string output:

1.6. Toolkit API examples 131

http://docs.eyesopen.com/toolkits/python/oechemtk/molreadwrite.html#flavored-input-and-output

chemfp Documentation, Release 3.1

>>> mol = openeye_toolkit.parse_molecule("[16O][*:1]", "smistring")
>>> openeye_toolkit.create_string(mol, "smistring")
u'[R1][16O]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": ""})
u'[R1][16O]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "Default"})
u'[R1][16O]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor":
→˓"RGroups|Isotopes|AtomStereo|BondStereo|AtomMaps|Canonical"})
u'[R1][16O]'

These settings override any options which might be implied by the format name. Thus, even though “smistring” is
supposed to generate an isomeric canonical SMILES, I can use the writer_args to remove the isomeric component
from the flavor:

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "RGroups|AtomStereo|BondStereo|AtomMaps|Canonical"})
u'[R1][O]'

While I used “|” as the separator, I can equally use ”,”, as in:

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "Isotopes,Canonical"})
'*[16O]'

OEChem uses the bar as a bitwise-or operator which merges the different flags. I added the comma as an alternative
to the vertical bar because chemfp has additional syntax for removing options. The following removes the “RGroups”
option from the isomeric and non-isomerical formats defaults, but otherwise leaves the defaults alone:

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "Default,-RGroups"})
u'[*:1][16O]'
>>>
>>> openeye_toolkit.create_string(mol, "canstring",
... writer_args={"flavor": "Default,-RGroups"})
u'[*:1][O]'

(The terms are evaluated from left to right, so you can delete a term then add it back if you want.)

Writing this as Default|-RGroups caused the C programmer mind in me to gasp in bewilderment. (“The bitwise-
or with the negative of the RGroups bitflags?!!”)

You don’t need to specify the OEChem flavor using a flavor string. You can also specify it as an integer:

>>> from openeye.oechem import *
>>> (OEOFlavor_SMI_Isotopes|OEOFlavor_SMI_AtomStereo|OEOFlavor_SMI_BondStereo|
... OEOFlavor_SMI_AtomMaps|OEOFlavor_SMI_Canonical)
121
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": 121})
u'[*:1][16O]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": 0})
u'[O]*'

132 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

or (and this might be a bit excessive) as a string-encoded integer:

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "121"})
u'[*:1][16O]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "0"})
u'[O]*'

Chemfp tries to be helpful. It will include the list of available flavor names in the exception if it doesn’t understand
what you gave it:

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "chocolate"})
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
File "chemfp/openeye_toolkit.py", line 428, in create_string

return _toolkit.create_string(mol, format, id, writer_args, errors)
...

File "chemfp/_openeye_toolkit.py", line 895, in parse_flavor
% (self.register_name, term, available_flavors))

ValueError: OEChem smi format does not support the 'chocolate'
flavor option. Available flavors are: AllBonds, AtomMaps,
AtomStereo, BondStereo, Canonical, ExtBonds, Hydrogens,
ImpHCount, Isotopes, Kekule, RGroups, SuperAtoms

See Get the default reader_args or writer_args for a format for a description of how to get the default
reader and writer arguments for a given format, and use help(openeye_toolkit.read_molecules) and
help(openeye_toolkit.open_molecule_writer) to get a more human-readable description.

OpenEye-specific aromaticity

In this section you’ll learn how chemfp handles OpenEye’s aromaticity parameter. You will need the OEChem toolkit,
and you should read the previous section to understand some of the terminology.

Note: the OEGraphSim fingerprints are not affected by the aromaticity of the reader because they ensure that the
molecules are always perceived using “openeye” aromaticity before generating the fingerprint.

The OpenEye toolkit supports the “openeye”, “daylight”, “tripos”, “mdl”, and “mmff” aromaticity models. In the
high-level API, which is meant for reading and writing files or file-like objects, the aromaticity is an aspect of the
flavor integer. If unspecified, OEChem uses the appropriate default aromaticity model for that format. As a result,
aromaticity perception is required for both reading and writing files.

The low-level API handles file processing and aromaticity perception as distinct steps. This API can also process a
single record directly, while the high-level API requires wrapping the record in a file-like object and then reading the
first molecule from it.

The chemfp toolkit API is a high-level API for both files and records, which means I had to implement record conver-
sion routines on top of OEChem’s low-level API. Consequently, some of the details are different between the file I/O
and record I/O APIs; the most significant being that the record I/O routines also support a “none” aromaticity.

The following shows the default aromaticity proceessing in action:

>>> from chemfp import openeye_toolkit
>>> mol = openeye_toolkit.parse_molecule("C1=CC=CC=C1", "smistring")
>>> [bond.IsAromatic() for bond in mol.GetBonds()]
[True, True, True, True, True, True]

1.6. Toolkit API examples 133

chemfp Documentation, Release 3.1

Automatic aromaticity perception is normally the right thing to do, because different toolkits and even different ver-
sions of the same toolkit may have different ideas of what is aromatic, and it’s best to ensure that they are consistently
interpreted.

Aromaticity perception isn’t needed when you know that the input aromaticity is correct and unambiguous. My timings
show that aromaticity perception takes about half of the time needed to parse a SMILES string. If the string comes
from a good data source, like a database record where OEChem created the SMILES, then you can nearly double the
performance by omitting the perception step.

What does “ambiguous” mean? Consider azulene, which can be described by the SMILES “c1ccc2cccc2cc1”. The
fusion bond is not aromatic, while the peripheral bonds form a 10 pi electron system. In SMILES, an unspecified
bond means “single or aromatic”. If one of the terminal atoms is aliphatic then the bond must be a single bond. But
as the fusion bond in azulene shows, it’s possible for an unspecified bond with terminal aromatic atoms to still be
non-aromatic. The above SMILES is ambiguous, and OEChem needs to do a full aromaticity analysis to determine
that the fusion bond is not aromatic.

An unambiguous SMILES for azulene is “c1ccc-2cccc2cc1”, where the fusion bond is marked explicitly as a single
bond. The SMILES parser can use the simpler rule that an unspecified ring bond is aromatic whenever both terminal
atoms are aromatic, and not require the lengthy aromatic perception step to determine that. OEChem generates un-
ambiguous SMILES, so if you know OEChem generated the SMILES then you can recover the original aromaticity
directly.

(As a side note, Daylight first introduced this in 4.71, and used fluorene (“C1c2ccccc2-c3ccccc13”) as the prototypical
case. Daylight’s rule is to include the “-” for a single bond between two aromatic atoms, while OEChem’s rule is to
include the “-” for a single bond between two aromatic atoms and which is in a ring. Ring identification is much easier
than aromaticity perception.)

So where was I ... ah, right, specifing the aromaticity model. I decided to separate aromaticity from the rest of the
flavor flags, and specify it with its own reader_args and writer_args field. It’s easiest to see using beneze in Kekule
form:

>>> mol = openeye_toolkit.parse_molecule("C1=CC=CC=C1", "smistring",
... reader_args={"aromaticity": "none"})
>>>
>>> [bond.IsAromatic() for bond in mol.GetBonds()]
[False, False, False, False, False, False]
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"aromaticity": "none"})
'C1=CC=CC=C1'

NOTE: the aromaticity flags are volatile. If you don’t specify the “none” aromaticity model then chemfp.toolkit.
create_string() will reperceive aromaticity using the “openeye” aromaticity model and possibly reassign the
aromaticity flags.

>>> openeye_toolkit.create_string(mol, "smistring")
u'c1ccccc1'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"aromaticity": "none"})
u'c1ccccc1'

This is consistent with how OEChem’s high-level operations also modify the input molecule when creating output.
I’m not fully happy with it. OEChem also has a “ConstMolecule” version, so this detail may change in the future.

Open Babel-specific SMILES reader_args and writer_args

In this section you’ll learn how to pass toolkit-specific parameters to the Open Babel toolkit functions to create a
SMILES string. You will need the Open Babel toolkit.

134 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

As far as I can tell, Open Babel does not have configuration options to change the default SMILES parser, so chemfp
has no toolkit-specific reader_args for that toolkit. Open Babel does have configuration options to change the default
SMILES output routines. These can be set in chemfp with the writer_args dictionary.

Open Babel uses an options string to change the configuration. The string “i U smilesonly” generates non-
isomeric SMILES output, where the atom ordering is determined by the InChI’s canonicalization algorithm (“Univer-
sal SMILES”), and where the identifier is excluded from the SMILES output.

Did you know all of that? I didn’t. Some of these options are only documented in the code. It’s also difficult for
chemfp to handle since some of the options conflict with how chemfp thinks of things. For example, chemfp is in
charge of including the identifier, so it will always enable “smilesonly”, and it’s difficult for the “cansmiles” output,
which is non-isomeric, to know if an options string wants to override the default”i” option that it requires.

I ended up making my own writer_args API to have more explicit control over the individual parameters:

• explicit_hydrogens - boolean

• isomeric - boolean

• canonicalization - a string like “default”, “none”, “universal”, “anticanonical”, or “inchified”

• options - the Open Babel options string (if you must use it; using it may break things if you are not very careful.)

Here’s an example of how to disable isomeric support for the “smistring” output, which would normally generate an
isomeric SMILES:

>>> from chemfp import openbabel_toolkit
>>> mol = openbabel_toolkit.parse_molecule("[16O]=O", "smistring")
>>> openbabel_toolkit.create_string(mol, "smistring")
u'[16O]=O'
>>> openbabel_toolkit.create_string(mol, "smistring",
... writer_args={"isomeric": False})
u'O=O'

I can also enable isomeric SMILES for the “canstring” format, which is normally non-isomeric:

>>> openbabel_toolkit.create_string(mol, "canstring")
u'O=O'
>>> openbabel_toolkit.create_string(mol, "canstring",
... writer_args={"isomeric": True})
u'[16O]=O'

Open Babel supports several different canonicalization algorithms. Perhaps the most unusual one is “anticanonical”,
which uses random numbers for the atom ordering algorithm. The same molecule can generate different SMILES
strings across multiple calls, so it’s the antithesis of “canonical”:

>>> for i in range(5):
... print(openbabel_toolkit.create_string(mol, "smistring",
... writer_args={"canonicalization": "anticanonical"}))
...
[16O]=O
[16O]=O
O=[16O]
[16O]=O
[16O]=O

See Get the default reader_args or writer_args for a format for a description of how to get the default
reader and writer arguments for a given format, and use help(openbabel_toolkit.read_molecules) and
help(openbabel_toolkit.open_molecule_writer) to get a more human-readable description.

1.6. Toolkit API examples 135

chemfp Documentation, Release 3.1

Get the default reader_args or writer_args for a format

In this section you’ll learn how to get the default reader_args and writer_args for a given format.

As you’ve seen, each toolkit format can have its own reader_args and writer_args parameters, and chemfp layers its
own format types (like “smistring”) on top of the native formats. It’s easy to forget the specific parameters for a given
format, much less the default values.

The get_default_reader_args() and get_default_writer_args() methods of the Format object
return the respective default arguments:

>>> from chemfp import rdkit_toolkit
>>> fmt = rdkit_toolkit.get_format("smi")
>>> fmt.get_default_reader_args()
{'delimiter': None, 'has_header': False, 'sanitize': True}
>>> fmt.get_default_writer_args()
{'isomericSmiles': True, 'delimiter': None, 'kekuleSmiles': False, 'allBondsExplicit
→˓': False, 'canonical': True}

You can sometimes use this information to see how chemfp maps its format types to the toolkit parameters. In RDKit,
the difference between chemfp’s “smi” and “can” formats is that isomericSmiles is True for the first and False for the
second:

>>> rdkit_toolkit.get_format("can").get_default_writer_args()
{'isomericSmiles': False, 'delimiter': None, 'kekuleSmiles': False, 'allBondsExplicit
→˓': False, 'canonical': True}

While writing this documentation I realized that the OEChem toolkit shows neither the default flavor nor the default
aromaticity for a given format type. I will likely fix that in a future version of chemfp.

Convert text settings into reader and writer arguments

In this section you’ll learn how to convert text-based configuration settings into the appropriate reader_args or
writer_args dictionary.

The reader_args and writer_args take native Python values, including integers and booleans. In practice these will
often be defined in a configuration file, through command-line options, or as CGI parameters. The Format meth-
ods get_reader_args_from_text_settings() and get_writer_args_from_text_settings()
convert a text-based settings dictionary into the appropriate arguments dictionary with native Python objects as values.
(These are methods of the Format object, because the parameter details are format-specific.)

The following shows an example using the RDKit toolkit’s “sdf” format to get reader_args from a dictionary of text
settings:

>>> from chemfp import rdkit_toolkit as T
>>>
>>> sdf_format = T.get_format("sdf")
>>> sdf_format.get_default_reader_args()
{'strictParsing': True, 'removeHs': True, 'sanitize': True}
>>>
>>> sdf_format.get_reader_args_from_text_settings({
... "strictParsing": "true",
... "removeHs": "False",
... "sanitize": "0"})
{'strictParsing': True, 'removeHs': False, 'sanitize': False}

The boolean setting parser converts “true”, “True”, and “1” to Python’s True, and “false”, “False”, and “0” to Python’s
False. Otherwise it raises a ValueError.

136 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

The following shows an equivalent example for RDKit’s SDF writer_args:

>>> sdf_format.get_default_writer_args()
{'kekulize': True, 'includeStereo': False}
>>> sdf_format.get_writer_args_from_text_settings({
... "kekulize": "false",
... "includeStereo": "True"})
{'kekulize': False, 'includeStereo': True}

WARNING: these functions will ignore unknown keys. This was done to allow the text settings dictionary to contain
settings for other toolkits and formats. As a result, typos are harder to detect, because they will be ignored.

See argparse text settings to reader and writer args for an example of converting text settings from the command-line
into reader and writer arguments.

Multi-toolkit reader_args and writer_args

In this section you’ll learn how to configure reader_args and writer_args so the same dictionary can be used to
configure multiple toolkits and formats.

Sometimes you don’t know which toolkit will be used for parsing, but you do know that you want Open Babel,
OEChem, and RDKit to act in non-standard ways. For example, the choice of toolkit may depend on the user-defined
fingerprint type, or simply (as in the following example) depend on user input.

The reader_args and writer_args will ignore unknown parameters, which lets you combine arguments for different
toolkits into a single dictionary. As the toolkits use completely different parameter names (except a couple, like
“delimiter”, which are supposed to act the same for all toolkits), there’s no conflict in the names for a given format.

The following defines a reader_args dictionary and a writer_args dictionary with parameters for each supported
toolkit, then enters a loop. The loop asks the user for a SMILES string, or the name of the toolkit to use, or “q”
to quit the loop. It will parse each SMILES into a molecule, then generate a SMILES output, although with decidedly
strange parameters:

from __future__ import print_function
import chemfp
from chemfp import rdkit_toolkit as T # use your default toolkit of choice

try:
raw_input # Python 2 name

except NameError:
raw_input = input # Python 3

reader_args = {
"sanitize": False, # RDKit,
"flavor": "Default|Strict", # OEChem
"aromaticity": "none", # OEChem

}

writer_args = {
"kekuleSmiles": True, # RDKit
"canonicalization": "anticanonical", # Open Babel
"aromaticity": "daylight", # OEChem

}

print("Using", T.name, "toolkit")
while 1:

query = raw_input("SMILES, toolkit name, or 'q' to quit? ")
if not query or query == "q":

1.6. Toolkit API examples 137

chemfp Documentation, Release 3.1

break

if query in ("rdkit", "openeye" ,"openbabel"):
try:

T = chemfp.get_toolkit(query)
except ValueError:

print("Toolkit %r not available" % (query,))
print("Using", T.name, "toolkit")
continue

mol = T.parse_molecule(query, "smistring", reader_args=reader_args, errors="ignore")
if mol is None:
print("Toolkit", T.name, "could not parse query as SMILES")
continue

smiles = T.create_string(mol, "smistring", writer_args=writer_args, errors="ignore")
if not smiles:
print("Toolkit", T.name, "could not convert the molecule to SMILES")
continue

print(" -->", smiles)

I saved the above to a script and then ran it. It starts using RDKit, where I’ve set the reader’s “sanitize” to False so
RDKit won’t perceive aromaticity on input, and set the writer’s “kekuleSmiles” to show explicit aromatic bond types:

Using rdkit toolkit
SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C1O
--> OC1=CC=CC=C1

SMILES, toolkit name, or 'q' to quit? c1ccccc1O
--> OC1:C:C:C:C:C:1

I then switch to the OpenEye toolkit, show that it is operating with “strict” added to the default reader flavor, and
convert a couple of SMILES to canonical SMILES to show the output uses the Daylight aromaticity model instead of
the default:

SMILES, toolkit name, or 'q' to quit? openeye
SMILES, toolkit name, or 'q' to quit? C==C
Warning: Problem parsing SMILES:
Warning: Bond without end atom.
Warning: C==C
Warning: ^

Toolkit openeye could not parse query as SMILES
Using openeye toolkit
SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C1O
--> c1ccc(cc1)O

SMILES, toolkit name, or 'q' to quit? c1ccccc1O
--> c1ccc(cc1)O

Finally, I switched to the Open Babel toolkit and showed that it generates “anti-canonical” SMILES, where the span-
ning tree priority order for SMILES output is randomly assigned:

SMILES, toolkit name, or 'q' to quit? openbabel
Using openbabel toolkit
SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C1O
--> Oc1ccccc1

SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C1O
--> Oc1ccccc1

SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C1O

138 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

--> c1ccc(cc1)O
SMILES, toolkit name, or 'q' to quit? c1ccccc1O
--> Oc1ccccc1

SMILES, toolkit name, or 'q' to quit? c1ccccc1O
--> c1c(O)cccc1

SMILES, toolkit name, or 'q' to quit? q

See argparse text settings to reader and writer args for an example of using multi-toolkit reader_args and writer_args.

Qualified reader and writer parameters names

In this section you’ll learn how to use qualified parameter names. These give fine-grained control over the configuration
options for each toolkit and format.

The previous section pointed out that the three toolkits use different parameter names, so for a given format you can
combine the toolkit-specific reader_args into one unified dictionary and writer_args into another unified dictionary.
However, within a toolkit the same parameter name can be reused for different formats, with different meanings.

This best example is for the chemfp.openeye_toolkit, where the reader_args and writer_args for all formats
support the “flavor” and “aromaticity” parameters. The following shows examples where I might use a different flavor
for the SMILES and InChI outputs, to get something other than the default representation:

>>> from chemfp import openeye_toolkit
>>> mol = openeye_toolkit.parse_molecule("CC([O-])=O", "smistring")
>>>
>>> openeye_toolkit.create_string(mol, "smistring")
u'CC(=O)[O-]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "Default|ImpHCount"})
u'[CH3]C(=O)[O-]'
>>>
>>> openeye_toolkit.create_string(mol, "inchistring")
u'InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)/p-1'
>>> openeye_toolkit.create_string(mol, "inchistring",
... writer_args={"flavor": "Default|FixedHLayer"})
u'InChI=1/C2H4O2/c1-2(3)4/h1H3,(H,3,4)/p-1/fC2H3O2/q-1'

Chemfp uses “qualified” parameter names to handle this situation. For example, the qualified name “smistring.flavor”
is the flavor parameter for the smistring format:

>>> writer_args = {
... "smistring.flavor": "Default|ImpHCount",
... "inchistring.flavor": "Default|FixedHLayer",
... }
>>> mol = openeye_toolkit.parse_molecule("CC([O-])=O", "smistring")
>>> openeye_toolkit.create_string(mol, "smistring", writer_args=writer_args)
u'[CH3]C(=O)[O-]'
>>> openeye_toolkit.create_string(mol, "inchistring", writer_args=writer_args)
'InChI=1/C2H4O2/c1-2(3)4/h1H3,(H,3,4)/p-1/fC2H3O2/q-1'

WARNING: there are six SMILES-related formats (“smi”, “can”, “usm”, “smistring”, “canstring”, and “usmstring”)
so to be complete you’ll need to specify values for all of them. There are also two InChI-related formats (“inchi” and
“inchistring”).

A “fully qualified” name looks like “openeye.smistring.flavor”. The first term is the toolkit, the second the format
name, and the last the parameter name. At present there is no real need for fully qualified names because the toolkits
don’t share any parameter names except for a couple which are supposed to be identical across all toolkits.

1.6. Toolkit API examples 139

chemfp Documentation, Release 3.1

The following demonstration, which is more a parlor trick than something useful, shows how to have each toolkit use
a different SMILES delimiter:

>>> from __future__ import print_function
>>> import chemfp
>>>
>>> reader_args = {
... "rdkit.smi.delimiter": "tab",
... "openbabel.smi.delimiter": "whitespace",
... "openeye.smi.delimiter": "to-eol",
... }
>>>
>>> for toolkit_name in ("rdkit", "openbabel", "openeye"):
... T = chemfp.get_toolkit(toolkit_name)
... id, mol = T.parse_id_and_molecule("C\tabc def\tghi", "smi",
... reader_args=reader_args)
... print(toolkit_name, "sees the id", repr(id))
...
rdkit sees the id u'abc def'
openbabel sees the id u'abc'
openeye sees the id u'abc def\tghi'

(As a reminder, the ‘delimiter’ implementation is not perfect. A toolkit may accept the first whitespace after the
SMILES term as a valid delimiter even if it doesn’t match the actual parameter, and a toolkit may decide to stop
parsing the SMILES term at the first whitespace.)

The final type of qualified parameter looks like “openeye.*.aromaticity”, where the first term is the toolkit name, the
second term is “*”, and the third term is the parameter name. This is most useful if you want OEChem to enforce the
same aromaticity across all formats, or have the RDKit parsers ignore sanitization, with configuration entries like:

{"openeye.*.aromaticity": "daylight",
"rdkit.*.sanitize": False}

However, as only OEChem supports “aromaticity” and only RDKit supports “sanitize”, you could also write this as
simply:

{"aromaticity": "daylight",
"sanitize": False}

The reason qualifier exist, even if not currently needed, is because I predict there will be parameter name conflicts in
the future. That possibility affects the API enough that I wanted a solution now.

Qualified parameter priorities

In this section you’ll learn the priority order when multiple terms try to specify the same parameter.

In the previous section you learned how “delimiter”, “smi.delimiter”, “rdkit.*.delimiter” and “rdkit.smi.delimiter” can
all be used to set the delimiter style for RDKit’s “smi” format. If more then one term is specified, which one wins?

Chemfp checks for the parameters in the following order:

1. rdkit.smi.delimiter

2. rdkit.*.delimiter

3. smi.delimiter

4. delimiter

140 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

The parameter with the highest ranking determines the setting, as the following shows:

>>> from chemfp import rdkit_toolkit as T
>>> id, mol = T.parse_id_and_molecule("C methane 16.04246", "smi",
... reader_args={"delimiter": "to-eol",
... "smi.delimiter": "whitespace"})
>>> id
u'methane'
>>> id, mol = T.parse_id_and_molecule("C methane 16.04246", "smi",
... reader_args={"rdkit.*.delimiter": "to-eol",
... "smi.delimiter": "whitespace"})
>>> id
u'methane 16.04246'
>>> id, mol = T.parse_id_and_molecule("C methane 16.04246", "smi",
... reader_args={"rdkit.*.delimiter": "to-eol",
... "rdkit.smi.delimiter": "whitespace"})
>>> id
u'methane'

One way to remember it is the longest name has priority.

It can be confusing to have a large dictionary with multiple format and toolkit qualifiers. The
get_unqualified_reader_args() and get_unqualified_writer_args() methods of Format ob-
ject will return the fully unqualified reader_args and writer_args for that format:

>>> fmt = T.get_format("smi")
>>> fmt.get_unqualified_reader_args({
... "delimiter": "to-eol",
... "smi.delimiter": "whitespace",
... })
{'delimiter': 'whitespace', 'has_header': False, 'sanitize': True}
>>> fmt.get_unqualified_writer_args({
... "delimiter": "space",
... "smi.delimiter": "tab",
... })
{'isomericSmiles': True, 'delimiter': 'tab', 'kekuleSmiles': False, 'allBondsExplicit
→˓': False, 'canonical': True}

This can also be helpful if you think you made a typo; get the unqualified reader_args and see if the result has the
arguments you think it should have.

Qualified names and text settings

In this section you’ll learn how the qualified names also apply to text settings.

Earlier you learned that text settings are string-based keys and values, which might come from the command-line, a
configuration file, or some other text-based source. These need to be converted into Python values before they can be
used as reader_args or writer_args.

A Format object can convert a dictionary of text settings into the correct argument dictionary. To get a Format object,
ask the toolkit for the format of the given name:

>>> from chemfp import rdkit_toolkit as T
>>> fmt = T.get_format("sdf")
>>> fmt.get_default_reader_args()
{'strictParsing': True, 'removeHs': True, 'sanitize': True}

1.6. Toolkit API examples 141

chemfp Documentation, Release 3.1

The section Convert text settings into reader and writer arguments showed how to convert the text settings with
unqualified names into a reader_args dictionary:

>>> fmt.get_reader_args_from_text_settings({
... "strictParsing": "false",
... "removeHs": "false",
... })
{'strictParsing': False, 'removeHs': False}

The text settings dictionary also supports qualified parameter names, including handling the priority resolution de-
scribed in Qualified parameter priorities:

>>> fmt.get_reader_args_from_text_settings({
... "strictParsing": "false",
... "sdf.strictParsing": "true",
... "removeHs": "false",
... "rdkit.*.removeHs": "true",
... "rdkit.sdf.sanitize": "false",
... })
{'strictParsing': True, 'removeHs': True, 'sanitize': False}

If you stare at it for a bit you’ll see that “sdf.strictParsing” has a higher priority than “strictParsing” and “rd-
kit.*.removeHs” is higher than “removeHs”, which is how it’s supposed to work.

Read molecules from an SD file or stdin

In this section you’ll learn how to read an SD file and iterate through its records as toolkit molecules. You will need
Compound_027575001_027600000.sdf.gz from PubChem.

Time to get back to molecules! The chemfp.toolkit.read_molecules() function reads molecules from a
structure file:

from __future__ import print_function
from chemfp import rdkit_toolkit as T # use your toolkit of choice
for mol in T.read_molecules("Compound_014550001_014575000.sdf.gz"):

print(T.create_string(mol, "smistring"))

By default it uses the filename extension to figure out the format and compression type. You can specify it yourself, if
you wish, using the format option:

from __future__ import print_function
from chemfp import rdkit_toolkit as T # use your toolkit of choice
for mol in T.read_molecules("Compound_014550001_014575000.sdf.gz",

format="sdf.gz"):
print(T.create_string(mol, "smistring"))

Examples of valid format values are “smi”, “can”, and “usm” (but not the *string variants like “smistring”, because
those aren’t record-based formats), and “sdf”, as well as gzip-compressed versions like “smi.gz” and “sdf.gz”.

(For Open Babel the ”.gz” extension does nothing as Open Babel will auto-detect and handle gzip compressed input.)

If the first parameter (the source parameter) is the Python None value then the toolkit will read from stdin. As there’s
no filename, chemfp can’t look at the extension to figure out the format, so it assumes the input is in “smi” format, that
is, an uncompressed SMILES file.

Therefore, to read an SD file from stdin you must specify the format. The following program reads a gzip compressed
SD file from stdin, convert it to SMILES, and find the 10 most common characters used in the SMILES strings:

142 Chapter 1. List of chapters

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz

chemfp Documentation, Release 3.1

This file is named 'count_smiles_characters.py'
from __future__ import print_function
from collections import Counter
from chemfp import rdkit_toolkit as T # use your toolkit of choice

symbol_counts = Counter()
for mol in T.read_molecules(None, "sdf.gz"):
smiles = T.create_string(mol, "smistring")
symbol_counts.update(smiles)

for symbol, count in symbol_counts.most_common(10):
print("%5d: %r" % (count, symbol))

Now to try it on a data set:

% python count_smiles_characters.py < Compound_014550001_014575000.sdf.gz
50826: 'C'
38147: 'c'
21010: '('
21010: ')'
15316: 'O'
12676: '1'
9054: '='
7444: '2'
5755: '@'
5427: '['

(I double-checked; the next most common is indeed ‘]’ with 5427 occurrences, which you probably expected. :)

Read ids and molecules from an SD file at the same time

In this section you’ll learn how to read an SD file and iterate through its records as the two-element tuple of (id,
molecule). You will need the Compound_027575001_027600000.sdf.gz from PubChem, which was used in the pre-
vious section.

In an earlier section, Parse the id and the molecule at the same time, you learned how to parse a structure
record to get both the identifier and the molecule at the same time. The toolkit function chemfp.toolkit.
read_ids_and_molecules() is the equivalent for reading from a structure file.

In the following example I’ll use the RDKit toolkit to create a tab-separated file with the id in the first column, the
number of carbon atoms in the second, and the SMILES in the third. For brevity, I’ll display only the first 10 records,
which also gives a nice example of when to use itertools.islice:

from __future__ import print_function
from itertools import islice
from chemfp import rdkit_toolkit
filename = "Compound_014550001_014575000.sdf.gz"
reader = rdkit_toolkit.read_ids_and_molecules(filename)

for id, mol in islice(reader, 0, 10):
num_carbons = sum(1 for atom in mol.GetAtoms() if atom.GetAtomicNum() == 6)
smiles = rdkit_toolkit.create_string(mol, "smistring")
print(id, num_carbons, smiles, sep="\t")

(See the next section for a description of how the line with the sum() works.)

Here’s the output, and a spot check shows the carbon counts are correct:

1.6. Toolkit API examples 143

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz
https://docs.python.org/2/library/itertools.html#itertools.islice

chemfp Documentation, Release 3.1

14550001 9 O=[N+]([O-])c1ccc(O)c(CSCCO)c1
14550002 9 Nc1ccc(O)c(CSCCO)c1
14550003 8 CSCc1cc(N)ccc1O
14550004 7 Cc1[nH]ncc1C(C)C
14550005 12 O=C([O-])c1ccc2cc(C(=O)[O-])ccc2c1.[K+].[K+]
14550010 10 O=C(O)CN(Cc1ccccc1)CP(=O)(O)O
14550011 10 CCO[Si]1(C)OC(=O)c2ccccc2O1
14550044 54 CCCCCCCCCCCCCCCCCC(=O)[O-].CCCCCCCCCCCCCCCCCC(=O)[O-].
→˓CCCCCCCCCCCCCCCCCC(=O)[O-].[Gd+3]
14550045 19
→˓O=C(O)CCCCCCCCCCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
14550054 14 c1ccc(SCSCSc2ccccc2)cc1

What’s fun is that RDKit and OEChem both implement mol.GetAtoms() and atom.GetAtomicNum() so to
port the above from RDKit to OEChem is trivial; replace rdkit_toolkit with openeye_toolkit!

The Open Babel port isn’t quite as easy because Open Babel has a different way to get the atoms in a molecule. To
make it easy to copy and paste, here’s the equivalent code for Open Babel:

from __future__ import print_function
from itertools import islice
from chemfp import openbabel_toolkit
filename = "Compound_014550001_014575000.sdf.gz"
reader = openbabel_toolkit.read_ids_and_molecules(filename)

for id, mol in islice(reader, 0, 10):
num_carbons = sum(1 for atom_idx in range(mol.NumAtoms())

if mol.GetAtom(atom_idx+1).GetAtomicNum() == 6)
smiles = openbabel_toolkit.create_string(mol, "smistring")
print(id, num_carbons, smiles, sep="\t")

Read ids and molecules using an SD tag for the id

In this section you’ll learn how to use the id_tag to get the id from one of the SD tags, rather than from the record’s
title. You will need the Compound_027575001_027600000.sdf.gz from PubChem, which was used in the previous
section. I’ll also explain an idiom for how to count the number of records in an iterator.

Sometimes you would rather use a tag value as the id rather than the title line of the SDF record. This is critical for
ChEBI data set and older ChEMBL data sets, which leave the title line (mostly) blank. In this case, use the id_tag to
specify the tag to use.

The following example modifies the RDKit code from previous code to use PUB-
CHEM_IUPAC_SYSTEMATIC_NAME as the id, rather than the title line:

from __future__ import print_function
from itertools import islice
from chemfp import rdkit_toolkit
filename = "Compound_014550001_014575000.sdf.gz"
reader = rdkit_toolkit.read_ids_and_molecules(filename, id_tag="PUBCHEM_IUPAC_
→˓SYSTEMATIC_NAME")

for id, mol in islice(reader, 0, 10):
num_carbons = sum(1 for atom in mol.GetAtoms() if atom.GetAtomicNum() == 6)
smiles = rdkit_toolkit.create_string(mol, "smistring")
print(id, num_carbons, smiles, sep="\t")

The first 7 lines of output is:

144 Chapter 1. List of chapters

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_027575001_027600000.sdf.gz

chemfp Documentation, Release 3.1

2-(2-hydroxyethylsulfanylmethyl)-4-nitro-phenol 9 O=[N+]([O-
→˓])c1ccc(O)c(CSCCO)c1
4-azanyl-2-(2-hydroxyethylsulfanylmethyl)phenol 9 Nc1ccc(O)c(CSCCO)c1
4-azanyl-2-(methylsulfanylmethyl)phenol 8 CSCc1cc(N)ccc1O
5-methyl-4-propan-2-yl-1H-pyrazole 7 Cc1[nH]ncc1C(C)C
dipotassium;naphthalene-2,6-dicarboxylate 12 O=C([O-])c1ccc2cc(C(=O)[O-
→˓])ccc2c1.[K+].[K+]
2-[(phenylmethyl)-(phosphonomethyl)amino]ethanoic acid 10
→˓O=C(O)CN(Cc1ccccc1)CP(=O)(O)O
2-ethoxy-2-methyl-1,3,2-benzodioxasilin-4-one 10 CCO[Si]1(C)OC(=O)c2ccccc2O1

You might have found the “sum(1 for atom in)” a bit odd. I agree with you. It is, however, the standard
way in Python to count the number of elements in the iterator which match a given condition. I’ll break it down so
you can understand how it works.

A list comprehension iterates through each element in an iterator (in the following it iterates over the characters in a
string) and returns a list:

>>> [c for c in "Hello"]
['H', 'e', 'l', 'l', 'o']

Add an “if” to it to operate on only a subset of the characters:

>>> [c for c in "Hello" if c != "l"]
['H', 'e', 'o']

I could use len() of this to get the number of non-“l” characters, but that would require making a list only to throw
it away. There’s another route to the same answer. To get there, use the value 1 for each character rather than the
character itself:

>>> [1 for c in "Hello" if c != "l"]
[1, 1, 1]

Then use sum() to sum the values, which in this case is also the number of elements in the list:

>>> sum([1 for c in "Hello" if c != "l"])
3

Unlike len(), sum() only needs an iterator, not a list. I can replace the list comprehension with a generator comprehen-
sion, to get:

>>> sum(1 for c in "Hello" if c != "l")
3

Going back to the RDKit/OEChem expression:

num_carbons = sum(1 for atom in mol.GetAtoms() if atom.GetAtomicNum() == 6)

I hope you can see how this counts the number of atoms in the molecule whose atomic number is 6. Or, if you want
another way to think of it, the expression is the same as:

num_carbons = 0
for atom in mol.GetAtoms():

if atom.GetAtomicNum() == 6:
num_carbons += 1

1.6. Toolkit API examples 145

chemfp Documentation, Release 3.1

Read from a string instead of a file

In this section you’ll learn how to read molecules from a string containing multiple SMILES records.

In the section Read molecules from an SD file or stdin you learned how to read molecules from a structure file or stdin.
Sometimes the input structures come from a string. For example, if a web page has a form with a text box, where users
can paste in a set of SMILES or SDF records and submit the form, then the web application on the server will likely
receive those records as a single string.

When the records are in a string instead of a file, use chemfp.toolkit.read_molecules_from_string().
It’s very similar to chemfp.toolkit.read_molecules(), except that the first parameter, content, is the string
instead of the source filename, and the second parameter, format, is required. (chemfp doesn’t try to auto-detect the
format from the content.)

The following reads the records from a string containing two simple SMILES records and prints the number of non-
implicit atoms for each one. I’ve included implementations for all three toolkits; use the one(s) that are available to
you:

from __future__ import print_function
from chemfp import rdkit_toolkit
content = ("C methane 16.04246\n"

"O=O water 31.9988\n")

for mol in rdkit_toolkit.read_molecules_from_string(content, "smi"):
print("RDKit:", mol.GetNumAtoms())

from chemfp import openeye_toolkit
for mol in openeye_toolkit.read_molecules_from_string(content, "smi"):

print("OEChem:", mol.NumAtoms())

from chemfp import openbabel_toolkit
for mol in openbabel_toolkit.read_molecules_from_string(content, "smi"):

print("Open Babel:", mol.NumAtoms())

When I run the above (on a computer where all three supported toolkits are installed), the above reports:

RDKit: 1
RDKit: 2
OEChem: 1
OEChem: 2
Open Babel: 1
Open Babel: 2

I would like to improve the output a bit to also include the record id in the output. The toolkit func-
tion chemfp.toolkit.read_ids_and_molecules_from_string() is similar to chemfp.toolkit.
read_molecules_from_string() except that it iterates through the (id, toolkit molecule) tuple rather than just
the molecule:

>>> from __future__ import print_function
>>> from chemfp import rdkit_toolkit
>>> content = ("C methane 16.04246\n"
... "O=O water 31.9988\n")
>>> for (id, mol) in rdkit_toolkit.read_ids_and_molecules_from_string(content, "smi"):
... print("RDKit:", repr(id), mol.GetNumAtoms())
...
RDKit: 'methane 16.04246' 1
RDKit: 'water 31.9988' 2

146 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

You can see that the default SMILES reader assumes the rest of the line is the id. The file and string record read-
ers take a reader_args parameter just like chemfp.toolkit.parse_id_and_molecule(). I’ll specify the
“whitespace” delimiter so the parser uses only the second word as the id:

>>> for (id, mol) in rdkit_toolkit.read_ids_and_molecules_from_string(content, "smi",
... reader_args={"delimiter": "whitespace"}):
... print("RDKit:", repr(id), mol.GetNumAtoms())
...
RDKit: 'methane' 1
RDKit: 'water' 2

See Specify a SMILES delimiter through reader_args for more details about setting the “delimiter” reader_args.

The string readers, like the file readers, also support the id_tag option to get the id from an SD tag instead of the title
line. See Read ids and molecules using an SD tag for the id for more details about using the id_tag.

The reader may reuse molecule objects!

In this section you’ll learn that the OEChem and Open Babel toolkits reuse the same molecule object, which means
you can’t save a molecule for later.

Suppose you want to read all of the molecules from a file into a list. It’s very tempting to write it as:

>>> import chemfp
>>> from chemfp import openeye_toolkit as T
>>> mols = list(T.read_molecules_from_string("C methane\nO water\n", "smi"))

This does not work for the openeye_toolkit or the openbabel_toolkit:

>>> mols
[<openeye.oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
→˓0x10326ba40> >,
<openeye.oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
→˓0x10326ba40> >]
>>> T.create_string(mols[0], "smistring")
u''
>>> T.create_string(mols[1], "smistring")
u''

This is because the underlying reader for those two toolkits reuse the same molecule object. You can see that in the
above, which returns the same OEGraphMol object (with id 0x10326ba40) for each record. The reason why Open
Eye decided to reuse the object is to get better performance. Clearing the molecule object is faster than deleting it and
reallocating a new one.

In addition, the OEChem reader code does a “clear molecule” followed by “read next record or stop”. At the end of
the file there is no record, so the reader ends with a clear molecule. That explains why the OEGraphMol produces an
empty SMILES string for the last couple of lines in the above code.

The only portable way to load a list of molecules is to use chemfp.toolkit.copy_molecule(), as in:

>>> from chemfp import openeye_toolkit as T
>>> mols = [T.copy_molecule(mol) for mol in T.read_molecules_from_string("C
→˓methane\nO water\n", "smi")]
>>> mols
[<openeye.oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
→˓0x10328a810> >,
<openeye.oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
→˓0x100c78320> >]

1.6. Toolkit API examples 147

chemfp Documentation, Release 3.1

>>> T.create_string(mols[0], "smistring")
u'C'
>>> T.create_string(mols[1], "smistring")
u'O'

I don’t really like this solution because the RDKit reader doesn’t need a copy, so the extra copy is pure overhead.

Future versions of chemfp will likely have a reader_arg to specify if it’s okay to reuse a molecule object or if a new
one must be used each time.

Write molecules to a SMILES file

In this section you will learn how to write toolkit molecules into a structure file. You will need Com-
pound_014550001_014575000.sdf.gz from PubChem, which is a different PubChem file than what I used in earlier
sections.

Chemfp can write toolkit molecules to a file in a given format. I’ll start by making an RDKit molecule, though the
same API works with Open Babel and OEChem:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("c1ccccc1O phenol", "smi")

Use chemfp.toolkit.open_molecule_writer() to create a writer object. By default it will look at the
output filename extension to figure out the format and compression type, and if that doesn’t work it defaults to SMILES
output:

>>> writer = T.open_molecule_writer("example.smi")

The fingerprint writer has several methods to write a molecule to the file. If you write a molecule by itself it will use
the molecule’s own id (in this case, “phenol”):

>>> writer.write_molecule(mol)

Or, use write_id_and_molecule() if you want to specify an alternate id:

>>> writer.write_id_and_molecule("something else", mol)

WARNING: The toolkit implementation may temporarily change the toolkit molecule’s own identifier in order to get
the correct output. You should not alter the molecule’s id in another thread while calling this function.

Let’s see if it worked, by closing the writer (otherwise some of the output may be in an internal buffer) and reading
the file:

>>> writer.close()
>>> print(open("example.smi").read())
Oc1ccccc1 phenol
Oc1ccccc1 something else

The write_molecules() method is optimized for passing in a list or iterator of molecule objects, and
write_ids_and_molecules() is the equivalent if you have (id, molecule) pairs. For example, the following
converts an SD file into a compressed SMILES file:

from chemfp import rdkit_toolkit as T # use your toolkit of choice
reader = T.read_molecules("Compound_014550001_014575000.sdf.gz")
writer = T.open_molecule_writer("example.smi.gz")
writer.write_molecules(reader)

148 Chapter 1. List of chapters

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz

chemfp Documentation, Release 3.1

These are optional, but recommended. Even better would be
to use the context manager described in the next section.
writer.close()
reader.close()

If you have a list (or iterator) of molecules, then use the write_molecules() method.

The open function also supports the format parameter, so you can specify “smi” or “sdf.gz” some other combination
of structure format and compression type:

writer = T.open_molecule("wrong_extensions.smi", format="sdf.gz")

Reader and writer context managers

In this section you’ll learn how to use chemfp’s readers and writers to close the file, rather than depend on Python’s
garbage collector or manual “close()”. You will need Compound_014550001_014575000.sdf.gz from PubChem.

In the previous section, Write molecules to a SMILES file, you learned how to convert an SD file into a SMILES file.
At the end was a small program with optional “close()” statements. These are optional because Python’s garbage
collector and chemfp work together. When a chemfp reader or writer is no longer needed, the garbage collector asks
chemfp to clean up, and chemfp closes the native toolkit’s file object.

This is fine for a simple script or function, but sometimes you want more control over when the file is closed. You can
call the writer’s close() method yourself, but it’s really easy to forget to do that.

Python supports “context managers”, which carry out certain actions when a block of code finishes. See PEP 343 if
you want the full details. For chemfp you only need to know that the reader and writer context managers will always
close the file at the end of the block.

A normal Python file context manager works like this:

>>> with open("example.txt", "w") as outfile:
... outfile.write("I am here.\n")
...
>>> print(repr(open("example.txt").read()))
'I am here.\n'

If instead I use one file object to write the data and another to read the file, without a flush() or close() by the writer,
then there’s a syncronization problem:

>>> outfile = open("example.txt", "w")
>>> outfile.write("I am here.\n")
>>> print(repr(open("example.txt").read()))
''

Why does this print the empty string? The output text is still in an internal buffer, which isn’t written to the disk until
the close call:

>>> outfile.close()
>>> print(repr(open("example.txt").read())
'I am here.\n'

The same problem occurs with molecule output:

>>> from chemfp import rdkit_toolkit as T # can also use openbabel_toolkit
>>> mol = T.parse_molecule("C=O carbon monoxide", "smi")

1.6. Toolkit API examples 149

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz
https://www.python.org/dev/peps/pep-0343

chemfp Documentation, Release 3.1

>>> writer = T.open_molecule_writer("example.smi")
>>> writer.write_molecule(mol)
>>> open("example.smi").read()
''
>>> writer.close()
>>> open("example.smi").read()
'C=O carbon monoxide\n'

Note: this problem does not occur with the openeye_toolkit. Most likely that toolkit always flushes its output buffers
after each molecule.

The chemfp readers and writers support a context manager, so you can use the same solution you would for regular
files:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("C=O carbon monoxide", "smi")
>>> with T.open_molecule_writer("example.smi") as writer:
... writer.write_molecule(mol)
...
>>> open("example.smi").read()
'C=O carbon monoxide\n'

With the context manager concept firmly in mind, the following is the way I prefer to write the conversion script from
the previous section:

from chemfp import rdkit_toolkit as T # use your toolkit of choice

with T.read_molecules("Compound_014550001_014575000.sdf.gz") as reader:
with T.open_molecule_writer("example.smi.gz") as writer:
writer.write_molecules(reader)

That said, if you really want to depend on the garbage collector, you can also write it with one (or two) fewer lines:

from chemfp import rdkit_toolkit as T # use your toolkit of choice
T.open_molecule_writer("example.smi.gz").write_molecules(

T.read_molecules("Compound_014550001_014575000.sdf.gz"))

Write molecules to stdout in a specified format

In this section you’ll learn how to specify the structure writer’s output format, and to write to stdout instead of to a file.

The function chemfp.toolkit.open_molecule_writer() supports a format parameter, in case you don’t
want chemfp to determine the output format and compression based on the filename extension.

For example, if the destination is None (instead of a filename) then chemfp will write the output to stdout. Since
Python’s None object doesn’t have an extension, it will write the molecules as uncompressed SMILES. If you want to
write to stdout in SDF format you will have to specify the output format, like the following:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("O=O molecular oxygen", "smi")
>>> with T.open_molecule_writer(None, "sdf") as writer:
... writer.write_molecule(mol)
...
molecular oxygen

RDKit

2 1 0 0 0 0 0 0 0 0999 V2000

150 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0
M END
$$$$
>>> with T.open_molecule_writer(None, "inchikey") as writer:
... writer.write_molecule(mol)
...
MYMOFIZGZYHOMD-UHFFFAOYSA-N molecular oxygen

Write molecules to a string (and a bit of InChI)

In this section you’ll learn how to write toolkit molecules into memory, and when finished to get the result as a string.

The previous sections showed examples of writing molecules to a file or to stdout. Sometimes you want
to save the records as a string; perhaps to send a response for a web request or display the contents in a
text pane of a GUI. The function chemfp.toolkit.open_molecule_writer_to_string() creates a
MoleculeStringWriter which stores the output records into memory. Once the writer is closed, the memory
contents can be retrieved as a string with MoleculeStringWriter.getvalue().

For a bit of variation, the following example uses the “inchi” output format, and the openbabel_toolkit:

>>> from chemfp import openbabel_toolkit as T # use your toolkit of choice
>>> alanine = T.parse_molecule("O=C(O)[C@@H](N)C alanine", "smi")
>>> glycine = T.parse_molecule("C(C(=O)O)N glycine", "smi")
>>> writer = T.open_molecule_writer_to_string("inchi")
>>> writer.write_molecules([alanine, glycine])
>>> writer.close()
>>> print(writer.getvalue())
InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1 alanine
InChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5) glycine

You should know that there’s no well-defined “inchi” file format, only an InChI string. I decided to follow Open
Babel’s lead and say that the “inchi” format has one record per line, where each line contains the InChI string followed
by a delimiter, followed by the id (if available) on the rest of the line.

The InChI output writer_args supports an “include_id” parameter. The default, True, includes the id, while the fol-
lowing example sets it to False to have only the InChI string on the line:

>>> with T.open_molecule_writer_to_string("inchi",
... writer_args={"include_id": False}) as writer:
... writer.write_molecule(alanine)
... writer.write_molecule(glycine)
...
>>> print(writer.getvalue())
InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1
InChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5)

I also used the context manager so the code would be a bit shorter and, I think, clearer. It’s up to you to decide if
write_molecules() with a 2-element list is clear than two write_molecule() lines.

Handling errors when reading molecules from a string

In this section you’ll learn how to ignore errors and improve error reporting when reading from a string, rather then
accept the default of raising an exception and stopping. The examples will use a string containing SMILES records,

1.6. Toolkit API examples 151

chemfp Documentation, Release 3.1

but the same principles apply to any format.

If you’ve used the chemfp readers on real-world data sets you might have noticed that the RDKit and Open Babel ones
sometimes raise an exception, saying that a given record could not be parsed. I’ll demonstrate with a string containing
four SMILES records:

>>> content = ("C methane\n" +
... "CN(C)(C)(C)C pentavalent nitrogen\n" +
... "Q Q-ane\n" +
... "[U] uranium\n")
>>>

RDKit doesn’t like the pentavalent nitrogen, and chemfp’s rdkit_toolkit stops processing at that record:

>>> from chemfp import rdkit_toolkit
>>> with rdkit_toolkit.read_ids_and_molecules_from_string(content, "smi") as reader:
... for id, mol in reader:
... print(id)
...
methane
[16:11:12] Explicit valence for atom # 1 N, 5, is greater than permitted
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
File "chemfp/_rdkit_toolkit.py", line 286, in _iter_read_smiles_ids_and_molecules
error_handler.error("RDKit cannot parse the SMILES %s" % (_compat.myrepr(smiles),

→˓), location)
File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot parse the SMILES 'CN(C)(C)(C)C',
file '<string>', line 2, record #2: first line is 'CN(C)(C)(C)C pentavalent nitrogen'

Open Babel doesn’t care about the too-high valence on the nitrogen, but doesn’t like the non-SMILES in the third
record:

>>> from chemfp import openbabel_toolkit
>>> with openbabel_toolkit.read_ids_and_molecules_from_string(content, "smi") as
→˓reader:
... for id, mol in reader:
... print(id)
...
methane
pentavalent nitrogen
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
File "chemfp/_openbabel_toolkit.py", line 894, in _iter_column_records
% (format_name, myrepr(smi_string)), location)

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot parse the SMILES 'Q', file '<string>', line 3,
→˓record #3: first line is 'Q Q-ane'

To round things out, OEChem accepts pentavalent nitrogen and skips the bad SMILES at a lower level than what
chemfp uses, so there’s no exception:

>>> from chemfp import openeye_toolkit
>>> with openeye_toolkit.read_ids_and_molecules_from_string(content, "smi") as reader:
... for id, mol in reader:

152 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

... print(id)

...
methane
pentavalent nitrogen
Warning: Problem parsing SMILES:
Warning: Q Q-ane
Warning: ^

Warning: Error reading molecule "" in Canonical stereo SMILES format.
uranium

I’ll emphasize that point. The openeye_toolkit uses OEChem’s high-level reader, which provides no information about
if OEChem skipped a record with a failure. Chemfp therefore cannot provide more information about the failures,
whether as an exception or an improved error message.

I’m certain that nearly everyone wants the reader to ignore the few records that can’t be parsed by the underlying
toolkit. The readers and writers support the errors option. The default value of “strict” tells chemfp to raise an
exception when it detects a parse failure, and “ignore” tells it to ignore the error and go on to the next record:

>>> with rdkit_toolkit.read_ids_and_molecules_from_string(
... content, "smi", errors="ignore") as reader:
... for id, mol in reader:
... print(id)
...
methane
[16:13:45] Explicit valence for atom # 1 N, 5, is greater than permitted
[16:13:45] SMILES Parse Error: syntax error for input: 'Q'
uranium
>>> with openbabel_toolkit.read_ids_and_molecules_from_string(
... content, "smi", errors="ignore") as reader:
... for id, mol in reader:
... print(id)
...
methane
pentavalent nitrogen
uranium

The “strict” default comes from my long-held belief that it’s better to be strict first, and detect problems early, than
to let them intrude. My resolve is weakening, because it’s been rare to find that I can make use of that information.
The biggest counter-example is when I specify one format but the file is actually in another format, in which case the
reader skips a lot of garbage. For example, a SMILES reader, pointed to a SD file or a compressed SMILES file, will
try hard to make sense of the data and end up ignoring almost everything. I haven’t decided if I will change the default
policy.

I’ve also found that the toolkits aren’t that helpful at identifying which record failed. Take a look at the RDKit warning:

[16:13:45] Explicit valence for atom # 1 N, 5, is greater than permitted

It says that I did this in the late afternoon, and the reason for the failure, but says very little about the record with the
problem.

To help improve this, and to send still more garbage, err, I mean helpful messages to stderr, chemfp supports a “report”
errors value. It’s the same as “ignore” except that it also displays more details about the failure location:

>>> with rdkit_toolkit.read_ids_and_molecules_from_string(
... content, "smi", errors="report") as reader:
... for id, mol in reader:
... print(id)

1.6. Toolkit API examples 153

chemfp Documentation, Release 3.1

...
methane
[16:14:52] Explicit valence for atom # 1 N, 5, is greater than permitted
ERROR: RDKit cannot parse the SMILES 'CN(C)(C)(C)C', file '<string>', line 2, record
→˓#2: first line is 'CN(C)(C)(C)C pentavalent nitrogen'. Skipping.
[16:14:52] SMILES Parse Error: syntax error for input: 'Q'
ERROR: RDKit cannot parse the SMILES 'Q', file '<string>', line 3, record #3: first
→˓line is 'Q Q-ane'. Skipping.
uranium
>>> with openbabel_toolkit.read_ids_and_molecules_from_string(
... content, "smi", errors="report") as reader:
... for id, mol in reader:
... print(id)
...
methane
pentavalent nitrogen
ERROR: Open Babel cannot parse the SMILES 'Q', file '<string>', line 3, record #3:
→˓first line is 'Q Q-ane'. Skipping.
uranium

The quality of the error message depends on the toolkit and the format. The best messages are for the Open Babel and
RDKit SMILES readers and InChI readers, because I decided to have chemfp identify the records for those formats
itself, instead of using the underlying toolkits to read the file. Chemfp still uses the underlying toolkit to convert the
individual record into a native toolkit molecule.

I did this because I found the the SMILES and InChI reader performance was the same, and by writing my own parsers
I had the ability to report line numbers and improve the error messages.

The examples so far used the read_ids_and_molecules_from_string function. The
read_molecules_from_string function also supports the errors option, with the same meaning.

>>> sizes = []
>>> with openbabel_toolkit.read_molecules_from_string(
... content, "smi", errors="report") as reader:
... for mol in reader:
... sizes.append(mol.NumAtoms())
...
ERROR: Open Babel cannot parse the SMILES 'Q', file '<string>', line 3, record #3:
→˓first line is 'Q Q-ane'. Skipping.
>>> sizes
[1, 6, 1]

Handling errors when reading molecules from a file

In this section you’ll learn how to how to ignore errors and improve error reporting when reading from SD file, rather
then accept the default of raising an exception and stopping. The examples will use an SD file, but the same principles
apply to any format.

In the previous section you learned that when the readers encounter a error, the default behavior is to raise a Python
exception and how to use the error parameter to ignore those errors or to provide a more detailed error report.

The file-based readers, chemfp.toolkit.read_molecules() and chemfp.toolkit.
read_ids_and_molecules(), can be configured the same way, that is:

When there is an error, raise an exception and stop (this is the default)
T.read_molecules(filename)
T.read_molecules(filename, errors="strict")

154 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

T.read_ids_and_molecules(filename)
T.read_ids_and_molecules(filename, errors="strict")

When there is an error, go on to the next record
T.read_molecules(filename, errors="ignore")
T.read_ids_and_molecules(filename, errors="ignore")

When there is an error, print an error message to stderr then
go on to the next record
T.read_molecules(filename, errors="report")
T.read_ids_and_molecules(filename, errors="report")

To show it in action, I’ll construct an SD file with three records. The first will contain a trivalent oxygen, the second a
corrupt record, and the third will be atomic nitrogen. I’ll use OEChem to help me make the file.

from chemfp import openeye_toolkit as T
mol1 = T.parse_molecule("O#C trivalent", "smi") # RDKit won't like this
mol2 = T.parse_molecule("[U] Q-record", "smi") # I'll corrupt this record
mol3 = T.parse_molecule("[N] nitrogen", "smi") # This one is fine
with T.open_molecule_writer_to_string("sdf") as writer:

writer.write_molecules([mol1, mol2, mol3])
content = writer.getvalue()
replace the "U" with the nonsense "Qq"
content = content.replace("U ", "Qq")
Save
open("bad_data.sdf", "w").write(content)

Here’s what the output file bad_data.sdf it looks like, so you can copy&paste if you wish:

trivalent
-OEChem-04251716112D

2 1 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
1.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 0 0 0 0
M END
$$$$
Q-record

-OEChem-04251716112D

1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 Qq 0 0 0 0 0 0 0 0 0 0 0 0

M END
$$$$
nitrogen

-OEChem-04251716112D

1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 N 0 0 0 0 0 15 0 0 0 0 0 0

M END
$$$$

I’ll try to read that file using the native RDKit reader, which skips records it can’t parse:

>>> from rdkit import Chem
>>> reader = Chem.ForwardSDMolSupplier("bad_data.sdf")
>>> ids = [mol.GetProp("_Name") for mol in reader if mol is not None]

1.6. Toolkit API examples 155

chemfp Documentation, Release 3.1

[04:27:44] Explicit valence for atom # 0 O, 3, is greater than permitted
[04:27:44] ERROR: Could not sanitize molecule ending on line 8
[04:27:44] ERROR: Explicit valence for atom # 0 O, 3, is greater than permitted
[04:27:44]

Post-condition Violation
Element 'Qq' not found
Violation occurred on line 90 in file /Users/dalke/ftps/rdkit-Release_2016_09_3/Code/
→˓GraphMol/PeriodicTable.h
Failed Expression: anum > -1

[04:27:44] Unexpected error hit on line 14
[04:27:44] ERROR: moving to the begining of the next molecule
>>> ids
['nitrogen']

As expected, RDKit could only extract one record of the three. It helpfully points out the line number of the records it
couldn’t parse (lines 8 and 14)

Now I’ll do the same using chemfp’s rdkit_toolkit interface and the default error handler, which is strict:

>>> from chemfp import rdkit_toolkit
>>> ids = []
>>> for id, mol in rdkit_toolkit.read_ids_and_molecules("bad_data.sdf"):
... ids.append(id)
...
[15:41:07] Explicit valence for atom # 0 O, 3, is greater than permitted
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "chemfp/_rdkit_toolkit.py", line 1252, in _iter_read_sdf_structures
error_handler.error("Could not parse molecule block", location)

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Could not parse molecule block, file 'bad_data.sdf', line 1,
→˓record #1: first line is 'trivalent'

It stops at the first error and raise an exception. The exception contains some information about the error location,
including the filename, line number, record number, and the contents of the first line of the file.

How does chemfp get that information? Under the covers chemfp uses its own parser, from the text_toolkit to
read each record, then passes that record to RDKit to turn the record into a molecule. This gives chemfp a bit more
control over error reporting. Originally this was also faster than using RDKit’s own ForwardSDMolSupplier, but
now chemfp is about 10% slower. A future implementation may offer a run-time choice of which implementation to
use, in case you want better performance at the expense of less detailed error information.

Pass in either “ignore” or “report” as the errors option if you want chemfp to skip records with an error keep
on processing. I’ll use “report” to show what the error reporting looks like:

>>> from chemfp import rdkit_toolkit
>>> ids = []
>>> for id, mol in rdkit_toolkit.read_ids_and_molecules(
... "bad_data.sdf", errors="report"):
... ids.append(id)
...
[15:50:23] Explicit valence for atom # 0 O, 3, is greater than permitted

156 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

ERROR: Could not parse molecule block, file 'bad_data.sdf', line 1, record #1: first
→˓line is 'trivalent'. Skipping.
[15:50:23]

Post-condition Violation
Element 'Qq' not found
Violation occurred on line 90 in file /Users/dalke/ftps/rdkit-Release_2016_09_3/Code/
→˓GraphMol/PeriodicTable.h
Failed Expression: anum > -1

ERROR: Could not parse molecule block, file 'bad_data.sdf', line 10, record #2: first
→˓line is 'Q-record'. Skipping.
>>> ids
[u'nitrogen']

RDKit’s own error messages from ForwardSDMolSupplier, like “Unexpected error hit on line 14” / “moving to the
begining of the next molecule”, have disappeared, because chemfp handles record extraction. The sanitization error
message about explicit valence remains because RDKit still does that work.

Note also that under Python 2.7 chemfp returns a Unicode string for the id, rather than the byte string that the native
RDKit API returns.

That was RDKit. What about Open Babel?

>>> from __future__ import print_function
>>> from chemfp import openbabel_toolkit
>>> with openbabel_toolkit.read_ids_and_molecules(
... "bad_data.sdf", "sdf", errors="strict") as reader:
... for id, mol in reader:
... print("Read", repr(id), "first atom:", mol.GetAtom(1).GetAtomicNum())
...
Read u'trivalent' first atom: 8
==============================

*** Open Babel Warning in GetAtomicNum
Cannot understand the element label Qq.

Read u'Q-record' first atom: 0
Read u'nitrogen' first atom: 7

Open Babel reads all three records even in strict mode, though that odd “Qq” atom causes it to print a warning message.
(It is hard for chemfp to capture that warning message, so I don’t.) Interestingly, it turns that atom into a “*” atom,
with atomic number 0. To double check, I’ll read the list of molecules, then write them all out as SMILES:

>>> mols = []
>>> with openbabel_toolkit.read_molecules("bad_data.sdf") as reader:
... mols = [openbabel_toolkit.copy_molecule(mol) for mol in reader]
...
==============================

*** Open Babel Warning in GetAtomicNum
Cannot understand the element label Qq.

>>> len(mols)
3
>>> with openbabel_toolkit.open_molecule_writer(None, "smi") as writer:
... writer.write_molecules(mols)
...
C#[O] trivalent

* Q-record

1.6. Toolkit API examples 157

chemfp Documentation, Release 3.1

[N] nitrogen

OEChem also parses that “Qq” record as an atom with atomic number of 0, though it doesn’t even give me a warning
message:

>>> from chemfp import openeye_toolkit
>>> with openeye_toolkit.read_ids_and_molecules(
... "bad_data.sdf", errors="strict") as reader:
... for id, mol in reader:
... print("Read", repr(id), [a.GetAtomicNum() for a in mol.GetAtoms()])
...
Read u'trivalent' [8, 6]
Read u'Q-record' [0]
Read u'nitrogen' [7]

I totally didn’t expect the toolkits to parse an unknown atom type like “Qq”!

In any case, OEChem will skip records which it could not parse, and there’s no easy way for chemfp to get that
information, so in practice the “strict” and “report” options are meaningless.

Ignore errors in create_string() and create_bytes()

In this section you’ll learn how to ignore errors when converting a molecule into a string or byte record.

Some molecules cannot be represented in some formats. The easiest example is the molecule from the SMILES “*”,
which contains a single atom with the atomic number 0 and cannot be represented in InChI:

>>> from chemfp import rdkit_toolkit as T
>>> mol = T.parse_molecule("*", "smistring")
>>> T.create_string(mol, "smistring")
u'[*]'
>>> T.create_string(mol, "inchistring")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "chemfp/rdkit_toolkit.py", line 428, in create_string
return _toolkit.create_string(mol, format, id, writer_args, errors)

....
File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot create the InChI string

By default the chemfp.toolkit.create_string() and chemfp.toolkit.create_bytes() functions
will raise an exception if the molecule cannot be converted into the given record format. Use the errors parameter
to specify that behavior. Just like with file reading, the default value is “strict”, “ignore” will return None if
there was an error, and “report” will return None and also print some information about the failure to stderr. (Error
reporting is more useful for writing

The following uses “ignore”:

>>> from __future__ import print_function
>>> import chemfp
>>> for toolkit in ("openbabel", "rdkit", "openeye"):
... T = chemfp.get_toolkit(toolkit)
... mol = T.parse_molecule("*", "smistring")
... result = T.create_string(mol, "inchistring", errors="ignore")
... print(toolkit, "returned", repr(result))

158 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

...
==============================

*** Open Babel Warning in InChI code
#0 :Unknown element(s): Xx

==============================

*** Open Babel Error in InChI code
InChI generation failed

openbabel returned None
[18:10:46] ERROR: Unknown element(s): *
rdkit returned None
Warning: Unable to create InChI from molecule '' with wild card atoms:
→˓OEAtomBase::GetAtomicNum() == 0.
openeye returned None

The following uses “report”. You can see the only addition is the new line ‘ERROR: Open Babel cannot cre-
ate the InChI string. Skipping.’ For a bit of variation, I also changed things to use create_bytes instead of
create_string:

>>> from chemfp import openbabel_toolkit as T
>>> mol = T.parse_molecule("*", "smistring")
>>> result = T.create_bytes(mol, "inchistring", errors="report")
==============================

*** Open Babel Warning in InChI code
#0 :Unknown element(s): Xx

==============================

*** Open Babel Error in InChI code
InChI generation failed

ERROR: Open Babel cannot create the InChI string. Skipping.
>>> result is None
True

Ignore errors when writing molecules

In this section you’ll learn how to ignore errors and improve error reporting when writing a file, rather than accept the
default of raising an exception and stopping. You will need a copy of ChEBI_lite.sdf.gz.

It’s not unusal for there to be a few input records which cannot be parsed into a molecule. It’s much less common to
come across a molecule which cannot be turned into a record. The SMILES and SD file formats are able to handle a
wide range of chemistry. Even R-groups, which can’t directly be expressed as SMILES, can be represented in one of
several conventions, like [*:1] for R1.

There are no such conventions for InChI. As you saw in the previous section, it’s easy to make a molecule to InChI
converter fail if the structure contains a “*” atom.

The functions chemp.toolkit.open_molecule_writer(), chemp.toolkit.
open_molecule_writer_to_string(), and chemp.toolkit.open_molecule_writer_to_bytes()
return a molecule writer. This can be used to write a single molecule at a time, or to write molecule multiples from an
iterator.

What happens if I try to convert the ChEBI file into an InChI file?

>>> reader = T.read_molecules("ChEBI_lite.sdf.gz")
>>> writer = T.open_molecule_writer("chebi.inchi")
>>> writer.write_molecules(reader)
Warning: Unable to create InChI from molecule '' with wild card atoms:
→˓OEAtomBase::GetAtomicNum() == 0.
Traceback (most recent call last):

1.6. Toolkit API examples 159

ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz

chemfp Documentation, Release 3.1

File "<stdin>", line 1, in <module>
File "chemfp/base_toolkit.py", line 265, in write_molecules
_compat.raise_tb(err[0], err[1])

File "chemfp/_openeye_toolkit.py", line 354, in _gen_write_inchi_structures
error_handler.error(errmsg, location)

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: OEChem cannot create the InChI string, file 'chebi.inchi', record
→˓#3

The third record could not be converted to an InChI string, and the warning message that OEChem printed to the
termal shows that the molecule contained a wildcard atom, that is, the “*” atom. But, did it really?

>>> reader = T.read_molecules("ChEBI_lite.sdf.gz")
>>> for i in range(3):
... mol = next(reader)
... print(T.create_string(mol, "smistring"))
...
c1cc(c(cc1[C@@H]2[C@@H](Cc3c(cc(cc3O2)O)O)O)O)O
C[C@]12CC[C@H](C1)C(C2=O)(C)C

*C(=O)OC(CO)CO[R1]

That shows “R1”, not an R-group. What’s going on? “R1” isn’t even a valid SMILES.

This is an OEChem extension to SMILES. The default output SMILES flavor includes the flag “RGroups”, which

[c]ontrols whether atoms with atomic number zero (as determined by the OEAtomBase::GetAtomicNum
method), and a non-zero map index (as determined by the OEAtomBase::GetMapIdx method) should be
displayed using the [R1] notation. In this notation, the integer value following the R corresponds to the
atom’s map index. When this flag isn’t set, such atoms are written in the Daylight convention [*:1]. –
OEChem documenation

I’ll redo the loop but this time disable the RGroup using the writer_args option to set the flavor to “Default,
-RGroups”, that is, the default value but without RGroups being set:

>>> reader = T.read_molecules("ChEBI_lite.sdf.gz")
>>> for i in range(5):
... mol = next(reader)
... print(T.create_string(mol, "smistring",
... writer_args={"flavor": "Default,-RGroups"}))
...
c1cc(c(cc1[C@@H]2[C@@H](Cc3c(cc(cc3O2)O)O)O)O)O
C[C@]12CC[C@H](C1)C(C2=O)(C)C

C(=O)OC(CO)CO[:1]
C[C@]12CC[C@@H]3c4ccc(cc4CC[C@H]3[C@@H]1C[C@H](C2=O)O)O
c1cc(c(c(c1)Cl)C#N)Cl

That indeed gives [*:1] which is the wildcard atom that InChI complains about.

The molecule writers support the same errors option as the molecule readers. The default value is “strict”,
which means to raise an exception. To ignore errors, use “ignore”, and to ignore errors except to report a message
to standard out, use “report”.

>>> from chemfp import openeye_toolkit as T # use your toolkit of choice
>>> reader = T.read_ids_and_molecules("ChEBI_lite.sdf.gz", id_tag="ChEBI ID", errors=
→˓"ignore")
>>> writer = T.open_molecule_writer("chebi.inchi", errors="report")
>>> writer.write_ids_and_molecules(reader)

160 Chapter 1. List of chapters

http://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemConstants/OESMILESFlag.html#OEChem::OESMILESFlag::RGroups

chemfp Documentation, Release 3.1

The first few and last few lines of output are:

Warning: Unable to create InChI from molecule '' with wild card atoms:
→˓OEAtomBase::GetAtomicNum() == 0.
ERROR: OEChem cannot create the InChI string, file 'chebi.inchi', record #3. Skipping.
Warning: Unsupported Sgroup information ignored
Warning: Unsupported Sgroup information ignored
Warning: Unable to create InChI from molecule '' with wild card atoms:
→˓OEAtomBase::GetAtomicNum() == 0.
ERROR: OEChem cannot create the InChI string, file 'chebi.inchi', record #13.
→˓Skipping.
Warning: Stereochemistry corrected on atom number 2 of
Warning: Unable to create InChI from molecule '' with wild card atoms:
→˓OEAtomBase::GetAtomicNum() == 0.
ERROR: OEChem cannot create the InChI string, file 'chebi.inchi', record #133.
→˓Skipping.

...
ERROR: OEChem cannot create the InChI string, file 'chebi.inchi', record #94443.
→˓Skipping.
Warning: Stereochemistry corrected on atom number 8 of
Warning: Stereochemistry corrected on atom number 13 of
Warning: Stereochemistry corrected on atom number 36 of

where the lines starting “ERROR: OEChem” come from chemfp, and the others come from OEChem at a lower-level.
(Alas, the “report” isn’t as helpful as it should be. I would like it to include the output id in the error message, but all
it gives is the record number. Perhaps it will be in the next release?)

All told, there were 94633 of which 88839 could be written out. I got these numbers from the writer’s location
property (see Location information: filename, record_format, recno and output_recno, below). Its recno is the
number of records sent to the writer, and output_recno is the number of records actually written:

>>> writer.location.recno
94633
>>> writer.location.output_recno
88839

Reader and writer format metadata

In this section you’ll learn about the format metadata attribute of the readers and writers. You will need Com-
pound_014550001_014575000.sdf.gz from PubChem if you want to reproduce this for yourself.

Each reader and writer has a metadata attribute, which stores some information about the parameters used to open
it:

>>> from chemfp import rdkit_toolkit as T
>>> reader = T.read_molecules("Compound_014550001_014575000.sdf.gz")
>>> reader.metadata
FormatMetadata(filename='Compound_014550001_014575000.sdf.gz',
record_format='sdf', args={'strictParsing': True, 'removeHs': True, 'sanitize': True})
>>> writer = T.open_molecule_writer(None, "sdf")
>>> writer.metadata
FormatMetadata(filename='<stdout>', record_format='sdf', args={'kekulize': True,
→˓'includeStereo': False})

The metadata for a structure reader and writer is a chemfp.base_toolkit.FormatMetadata instances, and
not the chemfp.Metadata for a fingerprint reader and writer.

1.6. Toolkit API examples 161

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz

chemfp Documentation, Release 3.1

The filename attribute is best effort at a string representation of the source or destination. It can either be the
original filename (if there is one), the strings “<stdin>” or “<stdout>” for stdin/stout, the string “<string>” if reading
or writing to memory, the source or destination’s “name” attribute if a file object, or None if all else fails.

The record_format attribute is the format name for the record, which is the same as the input file format except
without any compression. As you can see in the above example, the “sdf.gz” reader has a record_format of “sdf”.
This parameter is useful when you want use the text_toolkit to extract records because you pass the text reader’s
record format as the format for the chemistry toolkit’s toolkit.parse_molecule().

The args attribute is the processed reader_args or writer_args, without any namespacing. For now it’s mostly avail-
able for debugging purposes, so you can see how the toolkit layer actually processed your arguments. In the future
there will be a way to turn this into a text settings dictionary.

Location information: filename, record_format, recno and output_recno

In this section you’ll learn the basics of the chemfp.io.Location API, you’ll learn how to get the location object
for each reader and writer, and you’ll learn about the recno and output_recno location attributes.

(See the next section for details about the lineno, offsets, record, and other location properties which are not
available for every toolkit format.)

The reader and writers track information about the current state of the reader and writer. Some of this information is
more generally useful, and available through the location attribute of each reader and writer:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> content = "C methane\nO=O oxygen\n"
>>> reader = T.read_molecules_from_string(content, "smi")
>>> reader.location
Location('<string>')
>>> loc = reader.location
>>> loc.filename
'<string>'
>>> loc.record_format
'smi'

If there is no actual filename then filename is “<string>” for string-based I/O, “<stdin>” when reading from stdin,
and “<stdout>” when writing to stdout. (The latter two occur when the source or destination parameter, respectively,
are None.) The record_format is the record format name, without any compression suffix:

>>> writer = T.open_molecule_writer("example.sdf.gz")
>>> writer.location.filename
'example.sdf.gz'
>>> writer.location.record_format
'sdf'
>>> writer.close()

All of the toolkit readers and writers support the recno location property, which is the number of records which have
been read or written. A recno of 0 means that no records have been read:

>>> reader = T.read_molecules_from_string(content, "smi")
>>> loc = reader.location
>>> loc.recno
0
>>> next(reader)
<rdkit.Chem.rdchem.Mol object at 0x10fb06e50>
>>> loc.recno
1
>>> next(reader)

162 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

<rdkit.Chem.rdchem.Mol object at 0x10fb06ec0>
>>> loc.recno
2

While you could use the recno property for simple enumeration, as in the folllowing:

>>> from __future__ import print_function
>>> with T.read_ids_and_molecules_from_string(content, "smi") as reader:
... loc = reader.location
... for id, mol in reader:
... print("record number:", loc.recno, "id:", id)
...
record number: 1 id: methane
record number: 2 id: oxygen

I would prefer that you write it with the “enumerate()” function, as in:

>>> with T.read_ids_and_molecules_from_string(content, "smi") as reader:
... for recno, (id, mol) in enumerate(reader, 1):
... print("record number:", recno, "id:", id)
...
record number: 1 id: methane
record number: 2 id: oxygen

The enumerate() function is both faster and more expected for this sort of code. The recno property exists more to
help with error reporting, and to report summary information, like:

>>> print("Read", reader.location.recno, "records")
Read 2 records

The output writers distinguish between recno, which is the number of molecules that chemfp tried to save, and
output_recno, which is the number of molecules that could actually be saved. This occurs because some molecules
cannot be written to a given format, like the SMILES “*” which has no InChI representation:

>>> from chemfp import openbabel_toolkit
>>> writer = openbabel_toolkit.open_molecule_writer("example.inchi")
>>> parse_molecule = openbabel_toolkit.parse_molecule
>>> writer.write_molecule(parse_molecule("c1ccccc1O", "smistring"))
>>> writer.location.recno
1
>>> writer.location.output_recno
1
>>> writer.write_molecule(parse_molecule("*", "smistring"))
==============================

*** Open Babel Warning in InChI code
#0 :Unknown element(s): Xx

==============================

*** Open Babel Error in InChI code
InChI generation failed

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/dalke/cvses/cfp-3x/docs/tmp/chemfp/base_toolkit.py", line 253, in

→˓write_molecule
_compat.raise_tb(err[0], err[1])

File "<string>", line 1, in raise_tb
File "/Users/dalke/cvses/cfp-3x/docs/tmp/chemfp/_openbabel_toolkit.py", line 1314,

→˓in _gen_write_delimited_structures
% (format_name,), location)

1.6. Toolkit API examples 163

https://docs.python.org/2/library/functions.html#enumerate

chemfp Documentation, Release 3.1

File "/Users/dalke/cvses/cfp-3x/docs/tmp/chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot create the InChI string, file 'example.inchi',
→˓record #2
>>> writer.location.recno
2
>>> writer.location.output_recno
1

Location information: record position and content

In this section you’ll learn how to get position information for each record and information about the content of each
record. You will need the RDKit toolkit or Open Babel toolkit. (Unfortunately for me, OEChem doesn’t have a way
to get this information, and my hybrid parser with improved error reporting proved to be much slower than OEChem’s
native performance.) You will also need Compound_014550001_014575000.sdf.gz from PubChem.

(See the previous section for details about the filename, record_format, recno and output_recno location
properties, which are available for every toolkit format.)

Sometimes you want to know where a record is located in a file. You might want to report that the unusable record
started on line 12345 of a given file, or you might want to index a file to implement random access lookup.

The underlying toolkits do not implement this functionality. Instead, chemfp includes its own SMILES and SDF file
readers. These know enough about the formats to extract a single record, then pass the record to the toolkit to turn
into a molecule. This lets chemfp track the line number of the start of the record, its byte range, the text of the current
record, and other details.

Timings show that the hybrid parser for the SMILES formats are no slower than the native RDKit and Open Babel
readers, and that the hybrid SDF parser a bit slower than RDKit’s native parser (about 10%) and slower than Open
Babel’s native parser. In all cases, OEChem native parsers leave chemfp in the dust.

As a consequence, the rdkit_toolkit and openbabel_toolkit SMILES readers track more detailed record
information, but the openeye_toolkit one does not. (The text_toolkit of course always tracks that infor-
mation.) Here is an example which works for rdkit_toolkit and openbabel_toolkit:

>>> from __future__ import print_function
>>> from chemfp import openbabel_toolkit as T # or rdkit_toolkit
>>> content = "C methane\nO=O oxygen\n"
>>> reader = T.read_ids_and_molecules_from_string(content, "smi")
>>> loc = reader.location
>>> for id, mol in reader:
... print("id:", repr(id), "lineno:", loc.lineno, "byte range:", loc.offsets)
... print(" record content:", repr(loc.record))
... print(" first line:", repr(loc.first_line))
...
id: 'methane' lineno: 1 byte range: (0, 10)

record content: b'C methane\n'
first line: 'C methane'

id: 'oxygen' lineno: 2 byte range: (10, 21)
record content: b'O=O oxygen\n'
first line: 'O=O oxygen'

>>> content[0:10]
'C methane\n'
>>> content[10:21]
'O=O oxygen\n'

164 Chapter 1. List of chapters

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz

chemfp Documentation, Release 3.1

(Note: if the input record is a Unicode string then it will be converted into a UTF-8 encoded byte string. The start and
end positions are coordinates in the encoded byte string, not the text string.)

The location instance of the rdkit_toolkit SDF reader gives access to many details about the current parser state:

>>> from chemfp import rdkit_toolkit
>>> reader = rdkit_toolkit.read_molecules("Compound_014550001_014575000.sdf.gz")
>>> next(reader)
<rdkit.Chem.rdchem.Mol object at 0x1104c9830>
>>> reader.location.lineno
1
>>> reader.location.offsets
(0, 4227)
>>> reader.location.first_line
'14550001'
>>> next(reader)
<rdkit.Chem.rdchem.Mol object at 0x1104c97c0>
>>> reader.location.lineno
166
>>> reader.location.offsets
(4227, 8399)
>>> reader.location.first_line
'14550002'

The openbabel_toolkit and openeye_toolkit implementations by default don’t track this level of detail, because their
native readers are faster than when I can manage in a hybrid reader. Consequently, those values are None:

>>> from chemfp import openbabel_toolkit
>>> reader = openbabel_toolkit.read_molecules("Compound_014550001_014575000.sdf.gz")
>>> next(reader)
<openbabel.OBMol; proxy of <Swig Object of type 'OpenBabel::OBMol *' at 0x1106a9030> >
>>> print(reader.location.lineno)
None
>>> print(reader.location.offsets)
None
>>> print(reader.location.first_line)
None

There is experimental support to use Open Babel in hybrid mode. The reader_args supports an “implementation” op-
tion. The default of None, or “openbabel”, tells chemfp to use Open Babel’s native parser, while specifying “chemfp”
tells it to use chemfp’s own SDF record parser:

>>> openbabel_toolkit.get_format("sdf").get_default_reader_args()
{'implementation': None, 'perceive_0d_stereo': False, 'perceive_stereo': False,
→˓'options': None}
>>> reader = openbabel_toolkit.read_molecules("Compound_014550001_014575000.sdf.gz",
... reader_args={"implementation": "chemfp"})
>>> next(reader)
<openbabel.OBMol; proxy of <Swig Object of type 'OpenBabel::OBMol *' at 0x1106a9de0> >
>>> reader.location.lineno
1
>>> reader.location.offsets
(0, 4227)
>>> reader.location.first_line
'14550001'

If user-defined selection of the back-end implementation works well, I may add similar support for the openeye_toolkit,
for those who want the increased level of location detail despite the large performance impact.

1.6. Toolkit API examples 165

chemfp Documentation, Release 3.1

The RDKit “sdf” reader always uses the hybrid. This is for historical reasons. The hybrid solution was once always
faster than the native ForwardSDMolSupplier. That has since changed, and ForwardSDMolSupplier is about 10%
faster. At some point I will add an ‘implementation’ option so you can switch between performance and improved
error reporting.

Writing your own error handler (Experimental)

In this section you’ll learn how to write your own error handler. This is an advanced topic. Bear in mind that this is
highly experimental and very likely to change. I hope you can provide feedback about how to improve it.

In earlier sections you learned that when the errors parameter is “strict”, the parser will raise an exception if there’s a
problem with a record. When it’s “ignore”, the record parsers return None as the molecule, while the file and string
readers skip the failing record. When it’s “report”, the result is the same as “ignore” except that extra information
about the failure is written to stderr.

The errors parameter can also take an object which implements the “errors()” method as in the following:

import sys
class OopsHandler(object):

def error(self, msg, location=None):
if location is None:

sys.stderr.write("Oops! %s. Skipping.\n" % (msg,))
else:

sys.stderr.write("Oops! %s, %s. Skipping.\n" % (msg, location.where()))

The msg is a string describing the error, and location contains the chemfp.io.Location for the given record.
Here’s what it looks like in action:

>>> from __future__ import print_function
>>> import sys
>>> from chemfp import rdkit_toolkit as T
>>> T.parse_molecule("Q", "smistring", errors=OopsHandler())
>>> T.parse_molecule("Q", "smistring", errors=OopsHandler())
[13:21:58] SMILES Parse Error: syntax error for input: 'Q'
Oops! RDKit cannot parse the SMILES string 'Q'. Skipping.
>>> for mol in T.read_molecules_from_string("Q Q-ane\nC methane\n", "smi",
... errors=OopsHandler()):
... print("Processed", mol)
...
[13:22:47] SMILES Parse Error: syntax error for input: 'Q'
Oops! RDKit cannot parse the SMILES 'Q', file '<string>', line 1, record #1: first
→˓line is 'Q Q-ane'. Skipping.
Processed <rdkit.Chem.rdchem.Mol object at 0x1013f0990>

The location’s where() method tries to give useful information based on the location’s filename, line number, record
number, and the first line of the record (up to the first 40 characters).

It’s easy to see how to modify this to send the errors to a logger, or save them up to display in a GUI.

For the hybrid parsers, which give access to the raw record, you can do more advanced processing, like extract the title
lines of any SDF record which RDKit can’t handle. The following will make an SDF-formatted string containing three
records, where the second record is a 5-valent nitrogren that RDKit can’t parse. It will then try to parse the string, and
store the ids for records which couldn’t be parsed.

from __future__ import print_function
from rdkit import Chem
from chemfp import rdkit_toolkit

166 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Use RDKit to make an SD file which RDKit cannot parse.
methane = rdkit_toolkit.parse_molecule("C methane", "smi")
Bypass normal sanitization so RDKit will read 5-valent nitrogens
pentavalent_n = rdkit_toolkit.parse_molecule("CN(C)(C)(C)C pentavalent N",

"smi", reader_args={"sanitize": False})

Chem.SanitizeMol(pentavalent_n, Chem.SanitizeFlags.SANITIZE_SETHYBRIDIZATION)
oxygen = rdkit_toolkit.parse_molecule("O=O oxygen", "smi")

Use the three molecules to make an SD file as a string
with rdkit_toolkit.open_molecule_writer_to_string("sdf") as writer:

writer.write_molecules([methane, pentavalent_n, oxygen])

sdf_content = writer.getvalue()

User-defined error handler
class CaptureIds(object):

def __init__(self):
self.ids = []

def error(self, msg, location):
self.ids.append(location.first_line)

capture_ids = CaptureIds()

for mol in rdkit_toolkit.read_molecules_from_string(sdf_content, "sdf",
errors=capture_ids):

pass

print("Could not parse:", capture_ids.ids)

The content of sdf_content is:

methane
RDKit

1 0 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

M END
$$$$
pentavalent N

RDKit

6 5 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

1 2 1 0
2 3 1 0
2 4 1 0
2 5 1 0
2 6 1 0

M END
$$$$
oxygen

RDKit

1.6. Toolkit API examples 167

chemfp Documentation, Release 3.1

2 1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0
M END
$$$$

and the output from the above is:

[13:26:45] Explicit valence for atom # 1 N, 5, is greater than permitted
Could not parse: [u'pentavalent N']

The fingerprint type documentation includes another example of how to write an error handler.

A Babel-like structure format converter

In this section you’ll learn how to use the chemfp toolkit API to create a Babel-like structure file format converter.
This section goes into more details of how to develop real-world software using chemfp.

Pat Walters and Matt Stahl started Babel in the 1990s as a command-line program to convert from one chemical
structure format to another. This developed over the years, and after a major rewrite became the LGPL toolkit “OELib”,
OpenEye’s first commercial chemistry toolkit. OpenEye’s next rewrite lead to OEChem, a proprietary chemistry
toolkit. OELib was still available, and others continued to develop it. It became Open Babel, and structure file format
conversion is still Open Babel’s forte.

A full Babel-like program includes features to add and remove hydrogens of different sorts, select or reject structures
based on substructure or other features, add 2D or 3D coordinates, and more. You cannot use chemfp for that. All
chemfp can do is read structure files into a given toolkit’s molecule object, and write molecule objects to a given
format.

Even that basic ability is useful. I’ll explain how to write such a converter yourself. I’ll use as my example file the
following, “example.smi”:

c1ccccc1O phenol
C methane
O=O molecular oxygen

Here’s a minimal conversion program to convert the above into “example.sdf”:

from chemfp import rdkit_toolkit as T # use your toolkit of choice

reader = T.read_molecules("example.smi")
writer = T.open_molecule_writer("example.sdf")
writer.write_molecules(reader)

That code depends on Python’s garbage collection to close the output file handle. This is fine for a script, but a longer
running program may want to have more explicit control over closing the file handle and use a context manager (see
Reader and writer context managers):

from chemfp import rdkit_toolkit as T # use your toolkit of choice

with T.read_molecules("example.smi") as reader:
with T.open_molecule_writer("example.sdf") as writer:

writer.write_molecules(reader)

168 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

With that we have enough to build our first Babel program, which takes the input and output filenames on the
command-line. I’ll call this program “cbabel.py”, for “chemfp babel”, and have it implement the command-line

usage: cbabel.py [-h] input_filename output_filename

I’ll use argparse from Python’s standard library to handle command-line argument processing. The “nargs=1” in
the following says that the input_filename and output_filename must exist, and only one filename is allowed. Argparse
will save those in a list of size 1, which is why I use [0] to get the actual string I’m interested in:

import argparse
from chemfp import rdkit_toolkit as T

parser = argparse.ArgumentParser(
description = "A minimial chemical structure file converter"
)

parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

args = parser.parse_args()

with T.read_molecules(args.input_filename[0]) as reader:
with T.open_molecule_writer(args.output_filename[0]) as writer:

writer.write_molecules(reader)

I’ll convert the SMILES into canonical SMILES:

% python cbabel.py example.smi example.can
% cat example.can
Oc1ccccc1 phenol
C methane
O=O molecular oxygen

The only change is that the phenol went from c1ccccc1O to Oc1ccccc1.

I’ll add the ability to read from stdin and stdout. I’ll say that if the input filename is “-” then it will read from stdin,
and if the output filename is “-” then it will write to stdout. (If you have a file named “-” then you’ll have to specify
”./-” to read or write to it.):

import argparse
from chemfp import rdkit_toolkit as T

parser = argparse.ArgumentParser(
description = "A minimial chemical structure file converter"
)

parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

args = parser.parse_args()

Support "-" as stdin/stdout by mapping it to None,
which tells chemfp to use stdin/stout
input_filename = args.input_filename[0]
if input_filename == "-":

input_filename = None

output_filename = args.output_filename[0]
if output_filename == "-":

output_filename = None

1.6. Toolkit API examples 169

https://docs.python.org/2.7/library/argparse.html

chemfp Documentation, Release 3.1

with T.read_molecules(input_filename) as reader:
with T.open_molecule_writer(output_filename) as writer:

writer.write_molecules(reader)

There’s a problem with this! When the input or output format is None, chemfp can’t figure out the format based on
the filename, so will assume that it’s a SMILES file. When I run the above I get SMILES output:

% python cbabel.py example.smi -
Oc1ccccc1 phenol
C methane
O=O molecular oxygen

But what if I want SDF output? I need a way to specify the input and output file formats on the command-line. I’ll use
the -i and -o options to specify those:

from __future__ import print_function
import argparse
from chemfp import rdkit_toolkit as T

parser = argparse.ArgumentParser(
description = "A minimial chemical structure file converter"
)

parser.add_argument("-i", metavar="FORMAT", dest="input_format",
help="input format name", default=None)

parser.add_argument("-o", metavar="FORMAT", dest="output_format",
help="output format name", default=None)

parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

args = parser.parse_args()

Support "-" as stdin/stdout by mapping it to None,
which tells chemfp to use stdin/stout
input_filename = args.input_filename[0]
if input_filename == "-":

input_filename = None

output_filename = args.output_filename[0]
if output_filename == "-":

output_filename = None

with T.read_molecules(input_filename, args.input_format) as reader:
with T.open_molecule_writer(output_filename, args.output_format) as writer:

writer.write_molecules(reader)

Now I can specify that I want stdout to be in SDF format:

% python x.py -o sdf example.smi - | head -5
phenol

RDKit

7 7 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

In practice, required command-line arguments make life more difficult. For a simple program like this, required
arguments are not a problem, but what if I want to add a command to list the available formats? That option doesn’t
need an input or output filename, but argparse will enforce that requirement anyway.

170 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

There are a couple of ways to solve the problem, but the easiest is to let “-” be the default input and output filename.
That’s easily done by changing:

parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

to:

parser.add_argument("input_filename", nargs="?", default="-",
help="input filename")

parser.add_argument("output_filename", nargs="?", default="-",
help="output filename")

As a result I can add a new --list-formats argument:

parser.add_argument("--list-formats", action="store_true",
help="list the available file formats")

along with the handler for it, which prints information about the toolkit (its name and version string) and each of the
formats. Some of the formats, like “smistring”, don’t have an I/O format (for that, use “smi”), so I need to filter those
out. Also, some of the formats, like “inchikey”, are output only, and some of the toolkit have formats that they read
but don’t write, so I give more details about those:

args = parser.parse_args()

if args.list_formats:
print("Available I/O formats for toolkit %s (%s)" % (T.name, T.software))
for format in T.get_formats():
if not format.supports_io: # skip formats like "smistring" and "inchistring"
continue

if not format.is_output_format:
msg = " (input only)"

elif not format.is_input_format:
msg = " (output only)"

else:
msg = ""

print(" %s%s" % (format.name, msg))
raise SystemExit(0)

For my version of RDKit I get:

% python cbabel.py --list-formats
Available I/O formats for toolkit rdkit (RDKit/2016.09.3)
inchikey (output only)
usm
sdf
can
smi
inchi

If I used openeye_toolkit instead of rdkit_toolkit I get:

Available I/O formats for toolkit openeye (OEChem/20170208)
mol2h
xyz
mopac (output only)
cdx
usm

1.6. Toolkit API examples 171

chemfp Documentation, Release 3.1

smi
inchikey (output only)
skc (input only)
mol2
sdf
mmod
inchi (output only)
oeb
mf (output only)
sln (output only)
can
pdb

The code so far requires RDKit, but chemfp supports OEChem and Open Babel. Why not add the command-line
argument --toolkit to specify an alternate toolkit?

I ‘ll tell argparse that there’s a new --toolkit argument, which defaults to “rdkit” and also allows “openeye” and
“openbabel”:

parser.add_argument("--toolkit", metavar="NAME", choices=("rdkit", "openeye",
→˓"openbabel"),

help="toolkit name", default="rdkit")

I can no longer import the toolkit directly, which I did as:

from chemfp import rdkit_toolkit as T

because that line requires that RDKit be installed. Otherwise it will raise an ImportError exception. While that might
be reasonable if the user wanted to use the rdkit toolkit, it’s not reasonable if the user wanted to use the Open Babel
toolkit and didn’t care to know that RDKit isn’t available.

Instead of a direct import, I’ll use chemfp.get_toolkit() to get the named toolkit. It raises a ValueError with a
useful error message if the toolkit isn’t available or is unknown. If that happens, I’ll exit, and use that message as the
explanation:

import chemfp
... skipped many lines

try:
T = chemfp.get_toolkit(args.toolkit)

except ValueError as err:
raise parser.error(str(err))

After a bit of experimentation I found a small SMILES string which gives a different canonicalization for each of the
supported toolkits, which I present as evidence that it really is using a different toolkit:

% echo "NCC(N)O example" | python cbabel.py --toolkit openbabel
NCC(O)N example
% echo "NCC(N)O example" | python cbabel.py --toolkit rdkit
NCC(N)O example
% echo "NCC(N)O example" | python cbabel.py --toolkit openeye
C(C(N)O)N example

Here’s the final code, so you can see how everything works in context:

import argparse
import chemfp

parser = argparse.ArgumentParser(

172 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

description = "A minimial chemical structure file converter"
)

parser.add_argument("--toolkit", metavar="NAME", choices=("rdkit", "openeye",
→˓"openbabel"),

help="toolkit name", default="rdkit")
parser.add_argument("-i", metavar="FORMAT", dest="input_format",

help="input format name", default=None)
parser.add_argument("-o", metavar="FORMAT", dest="output_format",

help="output format name", default=None)
parser.add_argument("input_filename", nargs="?", default="-",

help="input filename")
parser.add_argument("output_filename", nargs="?", default="-",

help="output filename")

parser.add_argument("--list-formats", action="store_true",
help="list the available file formats")

args = parser.parse_args()

try:
T = chemfp.get_toolkit(args.toolkit)

except ValueError as err:
raise parser.error(str(err))

if args.list_formats:
print("Available I/O formats for toolkit %s (%s)" % (T.name, T.software))
for format in T.get_formats():
if not format.supports_io: # skip formats like "smistring" and "inchistring"
continue

if not format.is_output_format:
msg = " (input only)"

elif not format.is_input_format:
msg = " (output only)"

else:
msg = ""

print(" %s%s" % (format.name, msg))
raise SystemExit(0)

Support "-" as stdin/stdout by mapping it to None,
which tells chemfp to use stdin/stout
input_filename = args.input_filename[0]
if input_filename == "-":

input_filename = None

output_filename = args.output_filename[0]
if output_filename == "-":

output_filename = None

with T.read_molecules(input_filename, args.input_format) as reader:
with T.open_molecule_writer(output_filename, args.output_format) as writer:

writer.write_molecules(reader)

Amazing how the original four lines of code expands to 55. It would be even more if I added full error reporting
instead of letting Python throw an exception on errors.

Speaking of errors, you may want to use hard-coded values of errors="ignore" or errors="report" to
have the parser skip records that the toolkit doesn’t understand, or perhaps pass in that information as a command-line

1.6. Toolkit API examples 173

chemfp Documentation, Release 3.1

argument named --errors, with the possible choices of “strict”, “report”, or “ignore”.

You might also add the -R and -W options to set the reader args and writer args for the formats, but that’s more
complicated than I wanted to describe in this context. See the next section for a description of how to do it.

argparse text settings to reader and writer args

In this section you’ll learn how to use argparse to handle reader args and writer args in the same style that chemfp
does.

The previous section showed how to create a Babel-like structure format conversion program and how to use Python’s
argparse library for command-line processing. That section was getting too long to describe how to support command-
line configuration of the reader args and writer args. In this section I’ll start with a smaller version of the same code.
This one requires an input filename and an output filename on the command-line, and lets the user specify the toolkit:

I put this into a file named "convert.py"
import argparse
import chemfp

parser = argparse.ArgumentParser(
description = "Experiment with -R and -W options"
)

parser.add_argument("--toolkit", metavar="NAME", choices=("rdkit", "openeye",
→˓"openbabel"),

help="toolkit name", default="rdkit")
parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

args = parser.parse_args()

T = chemfp.get_toolkit(args.toolkit)
source = args.input_filename[0]
destination = args.output_filename[0]

with T.read_molecules(source) as reader:
with T.open_molecule_writer(destination) as writer:
writer.write_molecules(reader)

I’ll walk through the process of how to add support for the -R and -W options, to make it possible to say:

python convert.py example.smi example.can --toolkit rdkit -R delimiter=space -W
→˓allBondsExplicit=true

How to get from the command-line to reader and writer arguments

This requires a few conversions. I need to turn the command-line arguments into reader and writer text settings
dictionaries, then convert the text settings into reader_args and and writer_args dictionaries, before finally passing the
reader_args and writer_args to the molecule readers and writers. (See Convert text settings into reader and writer
arguments for more details about converting text settings to reader and writer arguments.)

I’ll use argparse to place the -R and -W option values into separate lists of KEY=VALUE strings, and create a new
function which splits them apart on the “=” to get a dictionary of text settings. Then I’ll use the Format object to
convert the text settings into the correct reader_args and writer_args. The steps will look something like this:

>>> from chemfp import rdkit_toolkit as T
>>>

174 Chapter 1. List of chapters

https://docs.python.org/2.7/library/argparse.html

chemfp Documentation, Release 3.1

>>> format = T.get_format("smi") # Specify the format and user-defined settings
>>> reader_settings = ["delimiter=space"]
>>> writer_settings = ["allBondsExplicit=true"]
>>>
>>> # Using a function yet to be defined, convert the list of
... # reader_settings into a dictionary of string values
...
>>> reader_text_settings = parse_text_settings("-R", reader_settings)
>>> reader_text_settings
{'delimiter': 'space'}
>>>
>>> # Ask the format to turn the string values into string objects
...
>>> format.get_reader_args_from_text_settings(reader_text_settings)
{'delimiter': 'space'}
>>>
>>> # Do the same for the writer arguments
...
>>> writer_text_settings = parse_text_settings("-W", writer_settings)
>>> writer_text_settings
{'allBondsExplicit': 'true'}
>>> format.get_writer_args_from_text_settings(writer_text_settings)
{'allBondsExplicit': True}

For the actual code the input format may be different than the output format. By the way, if you look closely you’ll
see how “allBondsExplicit” in the text settings has a value of “true”, and the string was converted to the Python object
True to be a writer_arg.

To start! First, I need a way to read the list of -R and -W options. I’ll ask argparse to save them into a list, for later
post-processing to get the right values:

parser.add_argument("-R", metavar="KEY=VALUE", dest="reader_settings", action="append
→˓",

help="specify a reader argument", default=[])
parser.add_argument("-W", metavar="KEY=VALUE", dest="writer_settings", action="append
→˓",

help="specify a writer argument", default=[])

This will parse all of the -R terms, like “-R delimiter=space”, into the reader_settings list, and “-W
allBondsExplicit=true” into the writer_settings list, such that:

args.reader_settings == ["delimiter=space"]
args.writer_settings == ["allBondsExplicit=true"]

For that matter, it will also support “-R abc”, and put it into the reader_settings list even though it doesn’t have a “=”
in it. I also need to go through and figure out if any terms are incorrect, and report the problem. I’ll make a function
for this, along with a parameter so any error message can report if a problem comes from the -R or -W command-line
flag:

def parse_text_settings(flag, terms):
text_settings = {}
for term in terms:
left, mid, right = term.partition("=")
if mid != "=":

parser.error("%s setting %r must be of the form KEY=VALUE" %
(flag, term))

text_settings[left] = right
return text_settings

1.6. Toolkit API examples 175

chemfp Documentation, Release 3.1

reader_text_settings = parse_text_settings("-R", args.reader_settings)
writer_text_settings = parse_text_settings("-W", args.writer_settings)

This gives me two text settings dictionaries, where the keys and values are both strings. I’ll use the respective Format
object to convert a text setting dictionary into the correct reader and writer arguments dictionary:

input_format = T.get_input_format_from_source(source)
reader_args = input_format.get_reader_args_from_text_settings(reader_text_settings)
output_format = T.get_output_format_from_destination(destination)
writer_args = input_format.get_writer_args_from_text_settings(writer_text_settings)

All that’s left is to pass the reader_args and writer_args to the reader and writer. Since I already have the input and
output format objects, I’ll pass those in as well, rather than have them guess again based on the source and destination
names:

with T.read_molecules(source, input_format, reader_args=reader_args) as reader:
with T.open_molecule_writer(destination, output_format, writer_args=writer_args)

→˓as writer:
writer.write_molecules(reader)

Converter with -R and -W support

Here’s how it looks when I put it all together:

I put this into a file named "convert.py"
import argparse
import chemfp

parser = argparse.ArgumentParser(
description = "Experiment with -R and -W options"
)

parser.add_argument("--toolkit", metavar="NAME", choices=("rdkit", "openeye",
→˓"openbabel"),

help="toolkit name", default="rdkit")
parser.add_argument("-R", metavar="KEY=VALUE", dest="reader_settings", action="append
→˓",

help="specify a reader argument", default=[])
parser.add_argument("-W", metavar="KEY=VALUE", dest="writer_settings", action="append
→˓",

help="specify a writer argument", default=[])
parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

def parse_text_settings(flag, terms):
text_settings = {}
for term in terms:
left, mid, right = term.partition("=")
if mid != "=":

parser.error("%s setting %r must be of the form KEY=VALUE" %
(flag, term))

text_settings[left] = right
return text_settings

args = parser.parse_args()

176 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

T = chemfp.get_toolkit(args.toolkit)
source = args.input_filename[0]
destination = args.output_filename[0]

input_format = T.get_input_format_from_source(source)
reader_text_settings = parse_text_settings("-R", args.reader_settings)
reader_args = input_format.get_reader_args_from_text_settings(reader_text_settings)

output_format = T.get_output_format_from_destination(destination)
writer_text_settings = parse_text_settings("-W", args.writer_settings)
writer_args = input_format.get_writer_args_from_text_settings(writer_text_settings)

with T.read_molecules(source, input_format, reader_args=reader_args) as reader:
with T.open_molecule_writer(destination, output_format, writer_args=writer_args) as

→˓writer:
writer.write_molecules(reader)

Let’s see it in action. I’ll ask RDKit to include all of the bonds in the output SMILES, including the aromatic bonds,
and I’ll ask it to use the space character as the SMILES delimiter:

% python convert.py example.smi example_output.smi --toolkit rdkit -R delimiter=space
→˓-W allBondsExplicit=true
% cat example_output.smi
O-c1:c:c:c:c:c:1 phenol
C methane
O=O molecular

The lack of “oxygen” in “molecular oxygen” shows that the input SMILES reader used the “space” delimiter instead
of the default “to-eol” delimiter, just as I requested.

The -R and -W settings can also be qualified. (See Qualified reader and writer parameters names.) I’ll have Open
Babel and OEChem use different delimiter styles to get different results:

% python convert.py example.smi example_ob_output.smi --toolkit openbabel \
-R "openbabel.*.delimiter=to-eol" -R "openeye.*.delimiter=whitespace"

% cat example_ob_output.smi
Oc1ccccc1 phenol
C methane
O=O molecular oxygen
%
% python convert.py example.smi example_oe_output.smi --toolkit openeye \

-R "openbabel.*.delimiter=to-eol" -R "openeye.*.delimiter=whitespace"
% cat example_oe_output.smi
c1ccc(cc1)O phenol
C methane
O=O molecular

List the reader and writer arguments for the given formats

Finally, it’s difficult to remember all of the available settings for each input and output format. I’ll add a
--list-args command-line option which shows the available options, and for each option show the current set-
ting, along with an indicator if the current setting is the default value for that format or if the setting comes from the
command-line option.

I need argparse to know about the new option:

1.6. Toolkit API examples 177

chemfp Documentation, Release 3.1

parser.add_argument("--list-args", action="store_true",
help="list the available input and output options")

and for the rest I replace the last three lines of the earlier code with:

if args.list_args:
Make a helper function to display the arguments
def report_args(format, msg, default_args, specified_args):
print("%s %s:" % (format.name, msg))
Merge the arguments; command-line overrides defaults;
all_args = default_args.copy()
all_args.update(specified_args)
for name, value in sorted(all_args.items()):

Was the name specified via -R/-W or is it a default?
where = "from command-line" if name in specified_args else "default value"
print(" %s: %r (%s)" % (name, value, where))

report_args(input_format, "reader arguments (-R)",
input_format.get_default_reader_args(), reader_args)

report_args(output_format, "writer arguments (-W)",
output_format.get_default_writer_args(), writer_args)

else:
with T.read_molecules(source, input_format, reader_args=reader_args) as reader:
with T.open_molecule_writer(destination, output_format, writer_args=writer_args)

→˓as writer:
writer.write_molecules(reader)

(See Get the default reader_args or writer_args for a format for more details on the default reader and writer argu-
ments.)

With those changes, the output using the new --list-args is:

% python convert.py example.smi example_output.smi --toolkit rdkit \
? -R delimiter=space -W allBondsExplicit=true --list-args
smi reader arguments (-R):

delimiter: 'space' (from command-line)
has_header: False (default value)
sanitize: True (default value)

smi writer arguments (-W):
allBondsExplicit: True (from command-line)
canonical: True (default value)
delimiter: None (default value)
isomericSmiles: True (default value)
kekuleSmiles: False (default value)

Creating a specialized record parser

In this section you’ll learn how to make a specialized function to parse an record into a toolkit molecule. This function
is somewhat faster than calling the more general purpose toolkit.parse_id_and_molecule() and might be
used when you need to convert a lot of individual records into a molecule.

Sometimes you need to parse a lot of records which don’t come from a file. For example, substructure search is
typically split into a screening stage based on substructure fingerprints, followed by the atom-by-atom substructure
search. The screening stage returns identifiers and the substructure search takes molecules, so in between them is code
to look up a record based on its id and convert the result to a molecule.

178 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Assuming a database record API where “db[id]” returns the record for a given id, that lookup function might look
like this:

def get_molecules(db, id_iter, toolkit, format, reader_args=None):
for id in id_iter:

record = db[id]
mol = toolkit.parse_molecule(record, format, reader_args=reader_args)
yield mol

(A more complex implementation should handle when the record id doesn’t exist, or can’t be converted into a
molecule.)

This isn’t as fast as it could be. The toolkit.parse_molecule() function validates that the format and
reader_args are correct and figures out the right parameters for the underlying toolkit code. It’s a waste of time
to redo those checks for every single call.

The function also promises that the caller will get a new molecule each time. That promise isn’t needed for substructure
screening. Timing tests with OEChem show that reusing the same molecule is faster than creating a new one. For
example, this OEChem code:

mol = OEGraphMol()
for i in xrange(100000):

OEParseSmiles(mol, "c1ccccc1Oc1ccccc1")
mol.Clear()

takes about 60% of the time as this code:

for i in xrange(100000):
mol = OEGraphMol()
OEParseSmiles(mol, "c1ccccc1Oc1ccccc1")

(Bear in mind that this code isn’t doing aromaticity perception, which roughly halves the performance.)

The function toolkit.make_id_and_molecule_parser() returns a specialized function to parse records,
based on the specified parameters:

>>> from chemfp import rdkit_toolkit as T
>>> parser = T.make_id_and_molecule_parser("smi")
>>> parser("c1ccccc1O phenol")
(u'phenol', <rdkit.Chem.rdchem.Mol object at 0x107559980>)

For RDKit it’s about 10-15% faster to use the specialized function instead of the general purpose toolkit.
parse_molecule():

>>> from __future__ import print_function
>>> from chemfp import rdkit_toolkit as T
>>> import time
>>>
>>> smiles = "c1ccccc1Oc1ccccc1"
>>> if 1:
... t1 = time.time()
... for i in xrange(10000):
... mol = T.parse_molecule(smiles, "smi")
... print("Standard time:", time.time()-t1)
...
Standard time: 2.32303786278
>>> parser = T.make_id_and_molecule_parser("smi")
>>> if 1:
... t1 = time.time()

1.6. Toolkit API examples 179

chemfp Documentation, Release 3.1

... for i in xrange(10000):

... id, mol = parser(smiles)

... print("Specialized time:", time.time()-t1)

...
Specialized time: 2.74086713791

The toolkit.make_id_and_molecule_parser() function parameters are almost identical to the ones
in toolkit.parse_id_and_molecule(), and with the same meaning. The only difference is that
make_id_and_molecule_parser does not support the record parameter. Instead, it returns a function which
takes the record and returns the (id, toolkit molecule) pair:

>>> from chemfp import rdkit_toolkit
>>> parser = rdkit_toolkit.make_id_and_molecule_parser(
... "smi", reader_args={"delimiter": "whitespace"}, errors="ignore")
>>> parser("c1ccccc1O methane 16.04246")
(u'methane', <rdkit.Chem.rdchem.Mol object at 0x108dc9d00>)
>>> parser("Q q-ane")
[14:23:02] SMILES Parse Error: syntax error for input: 'Q'
(None, None)

WARNING: The function that make_id_and_molecule_parser() returns may reuse the underlying molecule
object. Calling the function again may change the molecule returned in previous call:

>>> from chemfp import openeye_toolkit
>>> parser = openeye_toolkit.make_id_and_molecule_parser("smi")
>>> id, mol = parser("C")
>>> mol.NumAtoms()
1
>>>
>>> parser("CCC")
(None, <oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
→˓0x10a487600> >)
>>> mol.NumAtoms()
3

RDKit doesn’t support molecule reuse so rdkit_toolkit returns a new molecule. Open Babel does support reuse and
openbabel_toolkit will reuse the molecule. However, my tests using Open Babel show a barely detectable performance
improvement if I reuse a molecule vs. creating a new one each time. Future versions of chemfp may change the default,
and may add an implementation option to specify if a new molecule should be returned each time.

In multithreaded code you should create a new parser for each thread.

You might have noticed there is no “make_molecule_parser()”. While it would be useful, it takes time to
develop, test, and document, and it wasn’t useful enough for this release. Let me know if you would like it in the
future.

Molecule API: Get and set the molecule id

In this section you’ll learn how to get and set the molecule id for a toolkit molecule.

Sometimes you want to get or set toolkit molecule id. This should be pretty rare because the input routines all support a
way to get the identifier in parallel with the molecule, and the output routines all support a way to specify an identifier.

One exception is if you read molecules from an SD file where you want to use one of the SD tag values as the identifier
rather than the title line at the top of the record. This can occur with the ChEBI data set:

180 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> from chemfp import rdkit_toolkit as T
>>> reader = T.read_ids_and_molecules("ChEBI_lite.sdf.gz", id_tag="ChEBI ID")
>>> next(reader)
(u'CHEBI:90', <rdkit.Chem.rdchem.Mol object at 0x10d4a9360>)
>>> id, mol = _
>>> id
u'CHEBI:90'
>>> mol
<rdkit.Chem.rdchem.Mol object at 0x10d4a9360>
>>> mol.GetProp("_Name")
''
>>> print(reader.location.record[:200])

Marvin 01211310252D

22 24 0 0 0 0 999 V2000
-2.8644 -0.2905 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.8656 -1.1176 0.0000 C 0 0 0 0 0 0 0

>>>

Note: in Python 3, the location.record is a byte string and the last output line is:

>>> print(reader.location.record[:200])
b'\n Marvin 01211310252D \n\n 22 24 0 0 0 0 999 V2000
\n -2.8644 -0.2905 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0\n -2.
8656 -1.1176 0.0000 C 0 0 0 0 0 0 0 '

The above used the RDKit-specific way to get the special “_Name” property and show that it’s the empty string. The
location object for the rdkit_toolkit SDF reader is able to show the raw text for the current record. In the above I used
the location.record to show that the record indeed has no title line.

I might want to tie that id directly to the molecule. For example, a lot of people write code which assume that the
molecule’s name or title is the identifier, because only ChEBI and a scant handful of other databases use an alternative
convention. You can use chemfp to get the appropriate id, then set the correct molecular property.

If I know it’s an RDKit molecule then I could do:

mol.SetProp("_Name", id)

This is not portable. OEChem and Open Babel call this a “title”, and use the molecule’s “GetTitle()” and “SetTitle()”
accession methods to get and set it. For those toolkits I would need to do:

mol.SetTitle(id)

As part of chemfp’s limited molecule API, each chemfp toolkit layer implements a portable helper function named
“get_id()” to get the toolkit-appropriate “identifier”, and “set_id()” to set it. The following shows an example of
converting the title of a SMILES record to upper-case, and generating the corresponding canonical SMILES:

>>> from __future__ import print_function
>>> import chemfp
>>> for toolkit_name in ("rdkit", "openeye", "openbabel"):
... T = chemfp.get_toolkit(toolkit_name)
... mol = T.parse_molecule("c1ccccc1O phenol", "smi")
... T.set_id(mol, T.get_id(mol).upper())
... smiles = T.create_string(mol, "smi")
... print(toolkit_name, "->", repr(smiles))
...
rdkit -> u'Oc1ccccc1 PHENOL\n'

1.6. Toolkit API examples 181

chemfp Documentation, Release 3.1

openeye -> u'c1ccc(cc1)O PHENOL\n'
openbabel -> u'Oc1ccccc1 PHENOL\n'

Please note that this could be written more succinctly by passing the id directly to the chemfp.toolkit.
create_string() function, as:

>>> from __future__ import print_function
>>> import chemfp
>>> for toolkit_name in ("rdkit", "openeye", "openbabel"):
... T = chemfp.get_toolkit(toolkit_name)
... id, mol = T.parse_id_and_molecule("c1ccccc1O phenol", "smi")
... smiles = T. create_string(mol, "smi", id=id.upper())
... print(toolkit_name, "->", repr(smiles))
...
rdkit -> 'Oc1ccccc1 PHENOL\n'
openeye -> 'c1ccc(cc1)O PHENOL\n'
openbabel -> 'Oc1ccccc1 PHENOL\n'

Note: I may add support for an optional id_tag, as in:

T.get_id(mol, id_tag="ChEBI id") # Currently not valid chemfp code!

If you think this would be useful, please let me know about your use case.

Finally, if you want the output record as a UTF-8 encoded byte string rather than a Unicode string then use chemfp.
toolkit.create_bytes() instead of create_string().

Molecule API: Copy a molecule

In this section you’ll learn how to make a copy of a native toolkit molecule.

The chemfp file readers may clear and reuse the underlying toolkit molecule. This is a problem if you want to load all
of the molecules from a data set into memory:

>>> from chemfp import openeye_toolkit
>>> content = "C methane\nO=O oxygen\n"
>>> mols = list(openeye_toolkit.read_molecules_from_string(content, "smi"))
>>> mols
[<oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
→˓0x109776d20> >,
<oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
→˓0x109776d20> >]
>>> mols[0] is mols[1]
True
>>> openeye_toolkit.create_string(mols[0], "smistring")
''
>>> openeye_toolkit.create_string(mols[1], "smistring")
''

You can see that the openeye_toolkit reader reuses the same OEGraphMol, and that the molecule is cleared at the end
of parsing.

In the future there may be a reader_args parameter to tell the reader to make a new molecule for each term. Until
that possible future happens, one work-around is to make a copy of the molecule using the respective chemfp toolkit’s
toolkit.copy_molecule() function:

182 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> from chemfp import openeye_toolkit as T
>>> mols = [T.copy_molecule(mol) for mol in openeye_toolkit.read_molecules_from_
→˓string(content, "smi")]
>>> mols
[<oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
→˓0x10b31e930> >,
<oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
→˓0x10b31e6f0> >]
>>> mols[0] is mols[1]
False
>>> T.create_string(mols[0], "smistring")
'C'
>>> T.create_string(mols[1], "smistring")
'O=O'

The various writers may also modify the molecule, for example, by temporarily changing the molecule id or by
reperceiving aromaticity. If this is a problem then you can use the copy_molecule() as a way to work around it.

This is definitely a work-around solution because it’s currently impossible to know if a copy is needed or not. The
fail-safe solution is to always copy, which will lead to extra copies and slower code when using the rdkit_toolkit. Other
more complicated workarounds might be faster, but the real solution that I hope to implement in the future is to specify
the requested behavior as a parameter.

Molecule API: Working with SD tags

In this section you’ll learn how to work with SD tag data.

Chemfp supports a limited cross-toolkit API for working with SD tags. You can get a value for a single tag, the list of
all tags and values, and add (and potentially replace) a tag with a given name.

NOTE: This is not a general-purpose SD tag API.

The two main goals of the SD tag API are to get a tag’s value (most likely for use as an identifier) and to add a
fingerprint or similarity search result to a molecule. This can be done with the toolkit’s toolkit.add_tag() and
toolkit.get_tag() functions:

>>> from chemfp import rdkit_toolkit as T
>>> mol = T.parse_molecule("O=O oxygen", "smi")
>>> T.add_tag(mol, "score", "0.9851")
>>> T.get_tag(mol, "score")
u'0.9851'
>>> print(T.create_string(mol, "sdf"))
oxygen

RDKit

2 1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0
M END
> <score>
0.9851

$$$$

If a given tag already exists then add_tag() may replace the existing value, or it may add a second tag with the same
name. (Eg, rdkit_toolkit currently replaces an existing tag while openeye_toolkit creates a second entry.) Chemfp does

1.6. Toolkit API examples 183

chemfp Documentation, Release 3.1

no additional error checking, so please be careful about the use of “>” and newline characters in the tag value.

It is sometimes useful to get all of the tags and corresponding values. The toolkit’s toolkit.get_tag_pairs()
function returns these as a list of 2-element tuples, where the first term is the tag name and the second is the value:

>>> T.add_tag(mol, "best_id", "ABC00000123")
>>> T.add_tag(mol, "text", "This continues\nacross multiple\nlines")
>>> T.get_tag_pairs(mol)
[(u'score', u'0.9851'), (u'best_id', u'ABC00000123'), (u'text', u'This
→˓continues\nacross multiple\nlines')]
>>> print(T.create_string(mol, "sdf"))
oxygen

RDKit

2 1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0
M END
> <score>
0.9851

> <best_id>
ABC00000123

> <text>
This continues
across multiple
lines

$$$$

If there are multiple tags with the same name then get_tag() arbitrarily decides which value to return. The
get_tag_pairs() function includes duplicates if the underlying toolkit supports it.

Add fingerprints to an SD file using a toolkit

In this section you’ll learn how to add a fingerprint as a tag to the structures in an SD file using a chemistry toolkit.

The FPS and FPB fingerprint file formats store the record id and the fingerprint, but not the original structure. The
most common way to tie the structure to a fingerprint is to use an SD file, and store the fingerprint as one of the tag
values. (Another is to create a SMILES file variant, also called a CSV file, with the fingerprint as a new column.)

The following will parse an SD file, and for each molecule it will compute the MACCS fingerprints and add the
base64-encoded fingerprint to the molecule using the unimaginative tag name “FP”. It will save the results to the file
named “example.sdf”, which is equally unimaginative:

import sys
import base64
import chemfp

Portable code to convert a fingerprint to a string
which the underlying toolkits will accept.
#
b64encode returns a byte string, which is fine for
all toolkits under Python 2.
if sys.version_info.major == 2:

b64encode = base64.b64encode

184 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

else:
Under Python 3, RDKit and Open Babel accept a byte string.
OEChem does not. Always convert to Unicode.
def b64encode(s):
return base64.b64encode(s).decode("ascii")

Select your toolkit of choice
fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
#fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")
#fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")

T = fptype.toolkit

reader_args = {"rdkit.sdf.removeHs": False}
with T.read_molecules("Compound_014550001_014575000.sdf.gz",

reader_args=reader_args) as reader:
with T.open_molecule_writer("example.sdf") as writer:
for mol in reader:

fp = fptype.compute_fingerprint(mol)
T.add_tag(mol, "FP", b64encode(fp))
writer.write_molecule(mol)

This is a very general purpose solution. It’s easy to change the fingerprint type, or switch the input to a SMILES file
or other supported structure file format.

(Unfortunately, there is no general purpose base64 encoder which works across all toolkits and both Python 2 and
Python 3. Hence the complicated code to do the right thing.)

What it doesn’t do is preserve all of the details of the input records. It converts the input record into a molecule, and
back out to a new record, and the intermediate record doesn’t keep all of the details.

For example, if I use OpenEye-MACCS166 and compare the first record of the original with the first record of the
transformed output then the diff comparison is:

2c2
< -OEChem-03291708342D

> -OEChem-04301702502D
164a165,167
> > <FP>
> AACACAAAgUBgAOImoJBhQt+OKnwb
>

This says that the second line changed, and three new lines were added at line 164.

The second line contains a date stamp, so this isn’t a big change, and the three new lines are the ones I requested. This
doesn’t look like much of a change, but that’s because OEChem was used to make the record in the first place. Open
Babel and RDKit have their own set of differences from the OEChem output defaults. For example, RDKit will sort
the SD tags alphabetically.

I wanted to compare the original OEChem-based PubChem record to the output record from RDKit. I com-
mented/uncommented the fingerprint names to use RDKit instead of OEChem. When I did this originally (since
fixed), I noticed that the atom and bond counts line changed.

The first problem I noticed, before I fixed it, is that the atom and bond counts line changed. The original record has 26
atoms and bonds:

26 26 0 0 0 0 0 0 0999 V2000

1.6. Toolkit API examples 185

chemfp Documentation, Release 3.1

while the RDKit output said there are only 15 atoms and bonds:

15 15 0 0 0 0 0 0 0 0999 V2000

What happened is that RDKit by default will convert explicit hydrogens to implicit hydrogens as part of the input
process, while OEChem does not.

I can disable that in RDKit using the removeHs reader_arg, which is in the code I showed earlier:

reader_args = {"rdkit.sdf.removeHs": False}

With removeHs disabled, the RDKit atom counts match the original atom counts. There are still a few differences in
the molblock.

• RDKit places a “0” in the obsolete 4th field of the counts line, while OEChem leaves it empty.

• RDKit uses the CHG property block and does not include duplicate charge information in the atom line. The
PubChem file only stores charge information in the atom line.

• RDKit leaves the last three fields empty, while PubChem uses 0. These fields are respectively ‘obsolete’, used
for “SSS queries only”, and used for “Reaction, Query”.

That aside, the MACCS fingerprints should be the same, right?

They are not. The RDKit (and Open Babel and CDK) MACCS keys implementations assume that all hydrogens are
implicit. If there are explicit hydrogens then they will likely give a different fingerprint. If you run the above code
using RDKit, with and without removeHs, you’ll see two different values for FP:

AACAAAAAgUBgAKImoBBhSl/Orn0f # RDKit, removeHs=True
AACAAAAAgUBgAKMmoJBhal/Orn0f # RDKit, removeHs=False

See MACCS dependency on hydrogens for a more detailed description of the problem.

I’m left with the unfortunate situation where I can’t preserve the explicit hydrogens without affecting the MACCS
fingerprints. I think the right solution is to fix the SMARTS patterns that RDKit and others use (which is a goal of
chemfp’s own RDMACCS fingerprints).

Another solution for this is to use the text_toolkit to preserve the input SDF record syntax, and combine it with a
chemistry toolkit to get the molecule you want.

Text toolkit examples

The text toolkit separates record parsing from chemical parsing. It understands the basic text structure of SDF and
SMILES-based files and records, but not chemistry. It’s designed with the following use cases in mind:

• add tag data to an input SDF record but keep everything else unchanged. This preserves data which might be
lost by converting to then from a chemical toolkit molecule.

• synchronize operations between multiple toolkits; For example, consider a hybrid fingerprint using both
OEChem and RDKit. The individual RDKit and OEChem SDF readers may get out of synch when on toolkit
can’t parse a record which the other can. In that case, use the text toolkit to read the records then pass the record
to the chemistry toolkit.

• extract tags from an SD file. Chemfp’s sdf2fps uses the text toolkit to get the id and the tag value which contains
the fingerprint.

The text toolkit implements the chemistry toolkit API, except that instead of real molecule objects it uses a thin
wrapper around the text for each wrapper. This chapter uses many of the concepts developed in the chapter on Toolkit
API examples.

186 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Toolkits may modify the molecular structure

In this section you’ll learn that a chemistry toolkit might change details of a structure record so the input record and
output record have some differences, even though the molecular “essence” is preserved. This is meant as an example
for why you might not want to work through a chemistry toolkit molecule for everything.

The section Add fingerprints to an SD file using a toolkit gave an example of using a toolkit to read an SD file, compute
a MACCS fingerprint, add the fingerprint as a new SD tag, and save the result to a new SD file. This is a very common
task.

A problem is that toolkits can apply various normalizations, like aromaticity perception, which change atom and
bond aromaticity assignments. RDKit by default will also convert explicit hydrogens into implicit hydrogens. In that
section, the input record had 26 atoms and bonds while RDKit generated an output record with 15 atoms and bonds.
RDKit may also ‘sanitize’ the structures further (for example, convert ‘neutral 5 coordinate Ns with double bonds to
Os to the zwitterionic form’).

While it’s possible to configure RDKit to keep implicit hydrogens, the RDKit MACCS fingerprinter assumes there
are no explicit hydrogens. You would need to make a copy of the molecule, remove the explicit hydrogens yourself,
generate the fingerprint, and then add the fingerprint to the molecule which still has the explicit hydrogens.

Bear in mind that the number of explicit atoms and bonds is based on the molecular graph model, which is only one
possible representation for the actual chemical molecule. While I said there was a semantic change, the 26 atom
structure and the 15 atom structure are really the same structure, just at different levels of conceptualization.

Toolkits may modify SDF syntax

In this section you’ll see that passing a structure file through a chemistry toolkit and back to the same format will
likely make syntax changes to the record. While not as significant as the previous section, it may help persuade you
that there are cases where you want to work with the original record as text rather than as a molecule.

You will need Compound_014550001_014575000.sdf.gz from PubChem.

I’ll read an SD file to get the first record as a toolkit molecule, save the molecule to SDF format, and compare the
original record with the new one. This is called a round-trip test. Will there be differences?

import chemfp

Select your toolkit of choice
T = chemfp.get_toolkit("openeye")
#T = chemfp.get_toolkit("rdkit")
#T = chemfp.get_toolkit("openbabel")

reader_args = {"rdkit.*.removeHs": False}
with T.read_molecules("Compound_014550001_014575000.sdf.gz",

reader_args=reader_args) as reader:
with T.open_molecule_writer("example.sdf") as writer:

for mol in reader:
writer.write_molecule(mol)
break # only process the first molecule

If I use the “openeye” toolkit and compare its output to the first record of the input then the difference is trivial:

2c2
< -OEChem-03291708342D

> -OEChem-05011700162D

1.7. Text toolkit examples 187

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz

chemfp Documentation, Release 3.1

This difference is shown in the diff utility’s default format. The “2c2” means there was a change in line 2, and the
changed line is also on line 2. The “<” indicates the line in the first file (in this case the original PubChem file) and the
“>” indicates the line in the second file (in this case “example.sdf”). The “---” is to make it easier for humans to see
break between the two files.

But what does that line mean? The “CTfile” (“connection table file”) spec from MDL, err, I mean Accelry, err, I mean
Symyx, err, I mean BIOVIA, gives the full details. The first two characters (both blank here) are the user’s initials, the
next 8 characters (OpenEye uses “-” to pad out “OEChem”) are the program name.

The next six character are the date, followed by 4 characters for the time. The PubChem record was created on
29 March 2017 at 08:34 while I did the transformation on 1 May 2017 at 00:16. The last two characters are the
dimensionality; in this case the structure contains 2D coordinates.

PubChem used OEChem to make the file in the first place, so it’s not too suprising that there weren’t any differences.
What about Open Babel? I changed the toolkit to “openbabel” and re-did the comparison. The first few lines of the
diff were:

2c2
< -OEChem-03291708342D

> OpenBabel05011700222D
4c4
< 26 26 0 0 0 0 0 0 0999 V2000

> 26 26 0 0 0 0 0 0 0 0999 V2000

The 2c2 change you know already, and you can see it was a few minutes hour beween when I ran the OEChem code
and the Open Babel code.

The change to line 4 is meaningless. If you look closely you’ll see that OEChem has a blank in column 12 where Open
Babel has a “0”. The specification say that this field is obsolete, so I think you can do whatever you want there.

The rest of the differences are trivial and semantically meaningless: Open Babel uses two spaces between the “>” and
“<” of a data header line, while OEChem uses one space:

59c59
< > <PUBCHEM_COMPOUND_CID>

> > <PUBCHEM_COMPOUND_CID>

Finally, I’ll use RDKit for the conversion. By default RDKit removes hydrogens, which would leave the result with
15 atoms. Unlike Open Babel, that action is configurable. I told RDKit to never remove hydrogens for any of its
supported formats, via the reader_args:

reader_args = {"rdkit.*.removeHs": False}

(I didn’t actually need the “rdkit.*.” namespace prefix, but the “rdkit” helps as a reminder that this is an RDKit-specific
option.)

There are the familiar changes in the second and fouth lines:

2c2
< -OEChem-03291708342D

> RDKit 2D
4c4
< 26 26 0 0 0 0 0 0 0999 V2000

> 26 26 0 0 0 0 0 0 0 0999 V2000

188 Chapter 1. List of chapters

http://en.wikipedia.org/wiki/Diff_utility
http://accelrys.com/products/informatics/cheminformatics/ctfile-formats/no-fee.php

chemfp Documentation, Release 3.1

RDKit doesn’t include the timestamp so leaves that fields blank. (Then again, just how useful is the timestamp? On
the third hand, the chemfp fingerprint formats include a timestamp as part of the metadata, so it’s odd that I question
having it in another format.)

It’s a bit interesting to see that RDKit changes the charge field of some of the atoms:

8c8
< 6.0010 -3.6550 0.0000 O 0 5 0 0 0 0 0 0 0 0 0 0

> 6.0010 -3.6550 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
10c10
< 6.0010 -2.6550 0.0000 N 0 3 0 0 0 0 0 0 0 0 0 0

> 6.0010 -2.6550 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0

RDKit uses a 0 where the original used 5 (charge = -1) and 3 (charge = +1). My 2002 copy of the specification says
that field is “[r]etained for compatibility with older Ctabs, M CHG and M RAD lines take precedence.” I can see that
the original record and the new one both contain:

M CHG 2 4 -1 6 1
M END

Thus, RDKit isn’t as fully backwards compatible as the other two toolkits. Still, this is mostly a theoretical issue as
I’ve not heard of someone running into a problem with how RDKit works.

Lastly, RDKit sorts the output SD tags alphabetically. I did not expect that.

While I love knowing these sorts of details, none of these (except for the explicit hydrogens) affect the semantic
interpretation. Still, I can think of cases where you want to preserve the original syntax, like if you have fragile code
which expects a “0” at a certain field and will crash if there’s a blank.

The text toolkit “molecules”

In this section you’ll learn about the molecule-like object used by the text_toolkit.

The text_toolkit implements the standard toolkit API, which means it reads and writes “molecules”. Remember that
it isn’t really a chemical molecule but more like a thin layer around a molecule record. Internally these are subclasses
of a TextRecord, though I’ll often refer to them as “text molecules” to distinguish them from the the actual record
as a text string.

Every text molecule has an id attribute, which may be None if there is no identifier, and a record attribute containing
the actual record as a string:

>>> from chemfp import text_toolkit
>>> mol = text_toolkit.parse_molecule("c1ccccc1O benzene", "smi")
>>> mol
SmiRecord(id=u'benzene', record='c1ccccc1O benzene', smiles=u'c1ccccc1O',
encoding='utf8', encoding_errors='strict')
>>> mol.id # a Unicode string
u'benzene'
>>> mol.record # a byte string
'c1ccccc1O benzene'
>>> text_toolkit.create_string(mol, "smistring")
u'c1ccccc1O'
>>> text_toolkit.create_string(mol, "smi")
u'c1ccccc1O benzene\n'
>>> text_toolkit.create_bytes(mol, "smistring")
'c1ccccc1O'

1.7. Text toolkit examples 189

chemfp Documentation, Release 3.1

>>> text_toolkit.create_bytes(mol, "smistring.zlib")
'x\x9cK6L\x06\x01C\x7f\x00\x0fh\x03\x04'
>>>
>>> sdf_record = (
... 'methane\n' +
... '\n' +
... '\n' +
... ' 1 0 0 0 0 0 0 0 0 0999 V2000\n' +
... ' 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0\n' +
... 'M END\n' +
... '$$$$\n')
>>>
>>> sdf_mol = text_toolkit.parse_molecule(sdf_record, "sdf")
>>> sdf_mol
SDFRecord(id_bytes='methane'(id=u'methane'), record='methane\n\n\n 1 0 0 0 0 0
→˓0 0 0 0999 V2000\n 0.0 ...',
encoding='utf8', encoding_errors='strict')
>>> sdf_mol.id
u'methane'
>>> sdf_mol.record[-20:]
'0 0 0\nM END\n$$$$\n'

The record is always uncompressed.

Each of the SMILES-based records has its own unique class:

>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "smi")
SmiRecord(id=u'benzene', record='c1ccccc1O benzene', smiles=u'c1ccccc1O',
encoding='utf8', encoding_errors='strict')
>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "can")
CanRecord(id=u'benzene', record='c1ccccc1O benzene', smiles=u'c1ccccc1O',
encoding='utf8', encoding_errors='strict')
>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "usm")
UsmRecord(id=u'benzene', record='c1ccccc1O benzene', smiles=u'c1ccccc1O',
encoding='utf8', encoding_errors='strict')
>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "smistring")
SmiStringRecord(id=None, record='c1ccccc1O', smiles=u'c1ccccc1O')
>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "canstring")
CanStringRecord(id=None, record='c1ccccc1O', smiles=u'c1ccccc1O')
>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "usmstring")
UsmStringRecord(id=None, record='c1ccccc1O', smiles=u'c1ccccc1O')

and for SMILES records you can access the SMILES directly through the smiles attribute:

>>> text_mol = text_toolkit.parse_molecule("C methane", "smistring")
>>> text_mol.smiles
u'C'

Each text molecule also has a record_format attribute, which is the format name for the record.

>>> text_mol.record_format
'smistring'
>>> sdf_mol.record_format
'sdf'

The record_format values are “smi”, “can”, ..., “usmstring” for the SMILES formats or “sdf” for a file in SDF
format. The record_format will never have a compression suffix.

190 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Unlike the chemistry-backed toolkits, the text_toolkit has no real understanding of chemistry, only a limited knowledge
of the format structure. It will parse an generate garbage:

>>> text_mol = text_toolkit.parse_molecule("garbage", "smi")
>>> text_toolkit.create_string(text_mol, "smi", id="and trash",
... writer_args={"delimiter": "tab"})
u'garbage\tand trash\n'

The encoding and encoding_errors parameters describe the character encoding of the record bytes, and how
to handle errors in converting to or from that encoding. For details see the section Unicode and other character
encoding.

The text toolkit implements the toolkit API

In this section you’ll learn that the text toolkit is a pretty complete implementation of chemfp’s toolkit API.

The text toolkit implements all of the standard toolkit API, except that it doesn’t know how to convert between SMILES
and SDF format. Here are some examples:

>>> from __future__ import print_function
>>> from chemfp import text_toolkit
>>> mol = text_toolkit.parse_molecule("C", "smistring")
>>> text_toolkit.get_id(mol) is None
True
>>> text_toolkit.set_id(mol, u"methane")
>>> text_toolkit.get_id(mol)
u'methane'
>>> text_toolkit.create_string(mol, "smi")
u'C methane\n'
>>> content = "C methane\nO=O molecular oxygen\n"
>>> with text_toolkit.read_ids_and_molecules_from_string(
... content, "smi") as reader:
... for id, mol in reader:
... print("#%d %r" % (reader.location.recno, id))
...
#1 u'methane'
#2 u'molecular oxygen'
>>>
>>> writer = text_toolkit.open_molecule_writer("light.sdf")
>>> for mol in text_toolkit.read_molecules("Compound_014550001_014575000.sdf.gz"):
... mass = text_toolkit.get_tag(mol, "PUBCHEM_EXACT_MASS")
... mass = float(mass)
... if mass > 100.0:
... continue
... cid = text_toolkit.get_tag(mol, "PUBCHEM_COMPOUND_CID")
... print("Found", cid, mass)
... writer.write_molecule(mol)
...
Found 14550416 77.977
Found 14550474 63.948
Found 14550599 84.021
Found 14550603 81.058
Found 14551989 85.053
Found 14556720 86.084
Found 14557343 97.039
Found 14567810 41.02
Found 14567812 57.034

1.7. Text toolkit examples 191

chemfp Documentation, Release 3.1

Found 14567813 57.034
Found 14569188 89.097
Found 14571348 91.027
Found 14572168 86.037
Found 14572871 97.064
Found 14574249 83.032
Found 14574551 98.948
Found 14574635 50.967
Found 14574637 51.048
Found 14574638 65.064
>>> writer.close()
>>> for lineno, line in enumerate(open("light.sdf"), 1):
... print(repr(line))
... if lineno == 4:
... break
...
'14550416\n'
' -OEChem-03291708342D\n'
'\n'
' 6 5 0 0 0 0 0 0 0999 V2000\n'

What you can’t do with the text_toolkit is convert from a SMILES-based format to SDF, or vice-versa. If you try
you’ll either get an exception or a meaningless molecule representation.

While you can convert between the SMILES formats, the text toolkit doesn’t actually modify the SMILES term, so an
input of “[238U]” will have a “canstring” (non-isomeric SMILES) of “[238U]”:

>>> U = text_toolkit.parse_molecule("[235U]", "smistring")
>>> text_toolkit.create_string(U, "canstring")
u'[235U]'

I don’t know if I should make this more strict in the future, and prohibit conversion between “smi”, “can”, and “usm”
formats.

Reading and adding SD tags with the text_toolkit

In this section you’ll learn how to get and set the title line and get and add tag values to an SDF record when you have
the record as a block of text.

There are two ways to get or modify SD tags for an SDFRecord, which is the TextRecord subclass for files in
SDF format. The first is through the standard toolkit API functions chemfp.toolkit.get_tag(), chemfp.
toolkit.get_tag_pairs(), and chemfp.toolkit.add_tag():

>>> from __future__ import print_function
>>> from chemfp import text_toolkit
>>> content = (
... "methane\n" +
... " RDKit \n" +
... "\n" +
... " 1 0 0 0 0 0 0 0 0 0999 V2000\n" +
... " 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0\n" +
... "M END\n" +
... "$$$$\n")
>>> mol = text_toolkit.parse_molecule(content, "sdf")
>>> text_toolkit.add_tag(mol, "MW", "16.04246")
>>> new_record = text_toolkit.create_string(mol, "sdf")
>>> print(new_record)

192 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

methane
RDKit

1 0 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

M END
> <MW>
16.04246

$$$$

>>> new_mol = text_toolkit.parse_molecule(new_record, "sdf")
>>> text_toolkit.get_tag(new_mol, "MW")
u'16.04246'
>>> text_toolkit.get_tag_pairs(new_mol)
[(u'MW', u'16.04246')]

and the second is to use the corresponding methods of the text molecule: TextRecord.get_tag(),
TextRecord.get_tag_pairs(), and TextRecord.add_tag():

>>> new_mol.get_tag_pairs()
[(u'MW', u'16.04246')]
>>> new_mol.get_tag("MW")
u'16.04246'
>>>
>>> text_toolkit.get_tag_pairs(new_mol)
[(u'MW', u'16.04246')]
>>> new_mol.get_tag_pairs()
[(u'MW', u'16.04246')]
>>> new_mol.get_tag("MW")
u'16.04246'
>>> new_mol.add_tag("NUM_ATOMS", "5")
>>> print(text_toolkit.create_string(new_mol, "sdf")[-39:])
> <MW>
16.04246

> <NUM_ATOMS>
5

$$$$

Bear in mind that there is no way to delete a tag. This may be added in the future.

Synchronizing readers from different toolkits through the text toolkit

In this section you’ll learn how to keep two different toolkit parsers synchronized by using the text toolkit to parse the
records, then pass the record over to each toolkit to convert it to a molecule.

A structure file may have a couple of records which cannot be parsed by a toolkit, usually due to odd chemistry
definitions. It’s usually fine to skip those records, which is the purpose of the errors="ignore" setting. (See
Handling errors when reading molecules from a string for more information about the errors parameter.)

Consider the following SMILES file with three lines:

% cat strange.smi
C methane

1.7. Text toolkit examples 193

chemfp Documentation, Release 3.1

C--C ethane not for RDKit
CC ethane for everyone

The first and last are valid SMILES, but “C--C” is invalid. However, Open Babel will accept it, and OEChem will
accept it because the default flavor does not add the “Strict” flavor flag. (See OpenEye-specific SMILES reader_args
and writer_args for more information about OEChem flavors). As a result:

>>> from __future__ import print_function
>>> from chemfp import openeye_toolkit, rdkit_toolkit, openbabel_toolkit
>>> for id, mol in openeye_toolkit.read_ids_and_molecules("strange.smi", errors=
→˓"ignore"):
... print("openeye found", repr(id))
...
openeye found u'methane'
openeye found u'ethane not for RDKit'
openeye found u'ethane for everyone'
>>>
>>> for id, mol in rdkit_toolkit.read_ids_and_molecules("strange.smi", errors="ignore
→˓"):
... print("rdkit found", repr(id))
...
rdkit found u'methane'
[02:10:28] SMILES Parse Error: syntax error for input: 'C--C'
rdkit found u'ethane for everyone'
>>>
>>> for id, mol in openbabel_toolkit.read_ids_and_molecules("strange.smi", errors=
→˓"ignore"):
... print("openbabel found", repr(id))
...
openbabel found u'methane'
openbabel found u'ethane not for RDKit'
openbabel found u'ethane for everyone'

Sometime you want to work with multiple toolkits using the same input molecule. For example, you might want to
compute a hybrid fingerprint, or make a model prediction where the descriptors come from different toolkits.

To do that, use the text_toolkit.read_ids_and_molecules() to read each record as a text molecule, and
pass the actual record to the toolkit.parse_molecule() for each toolkit to get a molecule. Because I specifed
the “ignore” error handler, the molecule will be None if the record could not be parsed. (See Specify alternate error
behavior for more details.):

from chemfp import openeye_toolkit, rdkit_toolkit, openbabel_toolkit
from chemfp import text_toolkit

for id, text_mol in text_toolkit.read_ids_and_molecules("strange.smi", errors="ignore
→˓"):

if openeye_toolkit.parse_molecule(text_mol.record, text_mol.record_format ,
→˓errors="ignore"):

print("openeye parsed", repr(id))
else:

print("openeye could not parse", repr(id))

if rdkit_toolkit.parse_molecule(text_mol.record, text_mol.record_format , errors=
→˓"ignore"):

print("rdkit parsed", repr(id))
else:

print("rdkit could not parse", repr(id))

194 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

if openbabel_toolkit.parse_molecule(text_mol.record, text_mol.record_format ,
→˓errors="ignore"):

print("openbabel parsed", repr(id))
else:

print("openbabel could not parse", repr(id))

The output from running the above is:

openeye parsed 'methane'
rdkit parsed 'methane'
openbabel parsed 'methane'
openeye parsed 'ethane not for RDKit'
[03:23:38] SMILES Parse Error: syntax error for input: C--C
rdkit could not parse 'ethane not for RDKit'
openbabel parsed 'ethane not for RDKit'
openeye parsed 'ethane for everyone'
rdkit parsed 'ethane for everyone'
openbabel parsed 'ethane for everyone'

The above works, but there’s a lot of duplicate code, I don’t like the layout for the output, and there’s bit of extra
overhead to re-interpret the parse_molecule() for each call. I’ll make a space-delimited file as output, and use
toolkit.make_id_and_molecule_parser() to create a specialized parser for each available toolkit:

from __future__ import print_function
import chemfp
from chemfp import text_toolkit

reader = text_toolkit.read_ids_and_molecules("strange.smi")
format = reader.metadata.record_format

column_headers = []
parsers = []
for toolkit_name in ("openeye", "rdkit", "openbabel"):

column_headers.append(toolkit_name)
try:
toolkit = chemfp.get_toolkit(toolkit_name)

except ValueError:
parsers.append(None)

else:
parser = toolkit.make_id_and_molecule_parser(format, errors="ignore")
parsers.append(parser)

column_headers.append("ID")

print(*column_headers, sep="\t") # print the header

for id, text_mol in reader:
columns = []
for parser in parsers:
if parser is None:

columns.append("N/A")
else:

id, mol = parser(text_mol.record)
if mol is not None:

columns.append("Yes")
else:
columns.append("No")

columns.append(id)

1.7. Text toolkit examples 195

chemfp Documentation, Release 3.1

print(*columns, sep="\t")

This writes a tab-delimited file to stdout, ready for import into any spreadsheet program:

openeye rdkit openbabel ID
Yes Yes Yes methane
Yes No Yes ethane not for RDKit
Yes Yes Yes ethane for everyone

(There will also be an error message from RDKit sent to stderr.)

Add multiple toolkit fingerprints to an SD file

In this section you’ll learn how to use multiple toolkits to generate fingerprints for each molecule in an SD file, and
add the fingerprints results back to the record as new SD tags.

In Add fingerprints to an SD file using a toolkit you learned how to use a toolkit to read a file as molecules, compute
a fingerprint for each molecule, and add the fingerprint to the molecule as an SD tag, and save the result to a new SD
file. The processing pipeline converted the input to a toolkit molecule and out again, and in doing so changed other
parts of the record besides the new SD tag.

Sometimes you want to preserve the input as much as you can. For that case you can use the text reader to get text
molecules, pass each text molecule’s record that to the toolkit to compute the fingerprint, add the new fingerprint as a
tag for the text molecule, and save the result to a file.

I’ll do that one better; I’ll generate fingerprints using multiple toolkit and add all of them to the output file. Here’s an
example of what the end of a new record will look like. Note: although the fingerprints are actually on one line, I’ve
folded the long fingerprints across multiple lines so it doesn’t overflow this page.

> <PUBCHEM_BONDANNOTATIONS>
18 20 8
20 21 8
6 18 8
6 8 8
8 21 8

> <rdkit512>
fdcef73b7efeddff9fc5fbfffbf7ff7fddf9ff7fc43d7fa63e853ee3f77bfdbdb5ff
fffbfd67c6b9f3bff1febf7dff9ffefdbf1d3fffeb7f2fff7fe53bfffbff

> <rdkit1024>
7dcc333a76bec9fb1f05fbc57bf4ff5e8579f65fc02c78023a051ea21739d835b15c
96f17d20c2b9708ed1580b24ca9afe55ae1d1dff2a7827f667e021a9e9d68482c601
5ac014e581c45a7adbe74e235c903f78c4154fa6268534c3f15bbd8d95a7ffbbbd47
8611c33ff0f6b67d7d158efd9918265ce15f09ef3a451b7ebabb

> <obfp3>
0400000000b001

$$$$

I’ll break it down into stages. The first is some preamble code to import the modules and configure the input and
output files:

import chemfp

I'll use chemfp's text-based SD parser, so the output SD records

196 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

will be identical to the input records, except to append the new
tags at the end of each record.

from chemfp import text_toolkit

input_filename = "/Users/dalke/databases/pubchem/Compound_001000001_001025000.sdf.gz"
output_filename = "output.sdf.gz"

Next is to get the right SDF parser (a function which converts an SDF record into a identifier and a native toolkit
molecule) and fingerprinter (a function which converts a toolkit molecule into a fingerprint) for each fingerprint
type.

The list of tag names and the corresponding fingerprint types.
wanted_fingerprint_types = (

("rdkit512", "RDKit-Fingerprint fpSize=512"),
("rdkit1024", "RDKit-Fingerprint fpSize=1024"),
("obfp3", "OpenBabel-FP3"),
)

build_data = [] # I'll use this to build the fingerprint data.
toolkit_sdf_record_parsers = {} # I'll use this to convert an SD record into a
→˓molecule.

for output_tag, fingerprint_type_string in wanted_fingerprint_types:
First, get the corresponding fingerprint type.
fingerprint_type = chemfp.get_fingerprint_type(fingerprint_type_string)

Figure out which toolkit to use to parse the SD records.
toolkit = fingerprint_type.toolkit

For each unique toolkit, get a function that turns an SD record into a molecule.
(If multiple fingerprints use the same toolkit then I only
need to parse it once.)
if toolkit.name not in toolkit_sdf_record_parsers:

The "ignore" means to return None on error, rather than raise an exception.
toolkit_sdf_record_parsers[toolkit.name] = toolkit.make_id_and_molecule_

→˓parser("sdf", errors="ignore")

Get a function which turns a molecule into a fingerprint.
fingerprinter = fingerprint_type.make_fingerprinter()

Store this information for record processing.
build_data.append((output_tag, toolkit.name, fingerprinter))

Finally, use the text toolkit to read text molecules for each record, then use the SDF parser to get the id and molecule
from the record text, then the fingerprinter to get the fingerprint from the molecule:

Use the text toolkit to read and write SDF records.
with text_toolkit.open_molecule_writer(output_filename) as writer:

for text_mol in text_toolkit.read_molecules(input_filename):

The text "molecule" .record is the actual text.
record = text_mol.record

Make the fingerprints for each record and append the tag.

For extra performance, cache parsed molecules for future use.
toolkit_mols = {}

1.7. Text toolkit examples 197

chemfp Documentation, Release 3.1

for output_tag, toolkit_name, fingerprinter in build_data:
There's no need to reparse the record if I've seen it before.
if toolkit_name in toolkit_mols:

toolkit_mol = toolkit_mols[toolkit_name]
else:

Parse the record and save the molecule for later.
toolkit_id, toolkit_mol = toolkit_sdf_record_parsers[toolkit_

→˓name](record)
toolkit_mols[toolkit_name] = toolkit_mol

if toolkit_mol is None:
There's no molecule, so no fingerprint. Save the empty string.
text_mol.add_tag(output_tag, "")

else:
Make a fingeprint and save it to the tag as a hex-encoded string.
fp = fingerprinter(toolkit_mol)
text_mol.add_tag(output_tag, fp.encode("hex"))

Write the text molecule to the output stream.
writer.write_molecule(text_mol)

Text toolkit and SDF files

In this section you’ll learn about the specialized SDF reader API to read SDF records and tag values directly instead
of through a text record.

The text toolkit support for the toolkit API lets you use the same code for SDF and SMILES, and switch between
text-based and molecule-based parsers. Genericness comes at a cost. The TextRecord class is a wrapper around
the actual record, so at the least there is some overhead for creating a wrapper for each record.

The text toolkit has special support for reading SDF records as raw byte strings, which are not wrapped in any object.
There several SDF reader variations depending on if you want to read from a file or a string, and if you want to read
the record, the (id, record) pair, or an (id, tag value) pair. These functions are:

• read_sdf_records() - iterate over the records in an SD file

• read_sdf_records_from_string() - the same, but from a string

• read_sdf_ids_and_records() - iterate over the (id, record string) pairs from an SD file

• read_sdf_ids_and_records_from_string() - the same, but from a string

• read_sdf_ids_and_values() - iterator over the (id, value) pairs from an SD file

• read_sdf_ids_and_values_from_string() - the same, but from a string

(Note: while I write this as (id, value), those are just labels. By default it returns (SD title, SD title) pairs, or you can
specify an alternate id_tag and value_tag to get the pairs you want.)

There are also special functions to work with the tag data and title of an SDF record, which take the record string as
input:

• get_sdf_tag() - get a named tag from an SDF record

• add_sdf_tag() - return a new SDF record with the new tag and value at the end of the tag block

• get_sdf_tag_pairs() - return a list of (tag name, tag value) pairs

• get_sdf_id() - return the first line of the SDF record

198 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• set_sdf_id() - return a new SDF record with the new title line

The next few sections will cover some examples of how to use these specialized functions.

Read id and tag value pairs from an SD file

In this section you’ll learn how read the (id, tag value) for each record in an SD file using a specialized SDF reader.
You will need Compound_014550001_014575000.sdf.gz from PubChem.

The specialized SDF readers are faster than the more generic text_toolkit support for the toolkit API. As an example,
I’ll extract the identifer and molecular weight field from a PubChem file using the (slower) chemfp toolkit API:

from __future__ import print_function
from chemfp import text_toolkit

filename = "Compound_014550001_014575000.sdf.gz"
with text_toolkit.read_ids_and_molecules(filename) as reader:

for id, text_mol in reader:
mw = text_mol.get_tag("PUBCHEM_EXACT_MASS")
print(id, mw)

Next I’ll extract it using the (faster) read_sdf_ids_and_values() function, which returns an iterator of the (id,
tag value) pairs. Just like with toolkit.read_ids_and_molecules(), by default the id is the title line of the
SD record, or I can use the id_tag parameter to get it from one of the SD tags. The value_tag has the same meaning;
by default the value is the record’s title, or I can specify an alternate tag name containing the value to use:

from __future__ import print_function
from chemfp import text_toolkit

filename = "Compound_014550001_014575000.sdf.gz"
with text_toolkit.read_sdf_ids_and_values(filename, value_tag="PUBCHEM_EXACT_MASS")
→˓as reader:
for id, mw in reader:
print(id, mw)

Both of these generate output starting with:

14550001 229.041
14550002 199.067
14550003 169.056
14550004 124.1
14550005 291.954
14550010 259.061
14550011 224.05

My timings show that the first, generic implementation takes 0.26 seconds while the second, specialized implemen-
tation takes 0.17 seconds, which is about 33% faster, or enough to save about an hour when parsing PubChem. (The
difference is even larger without the gzip overhead.) That’s why the sdf2fps command-line tool uses this function to
extract the ids and fingerprint values from PubChem files.

Extract the id and atom and bond counts from an SD file

In this section you’ll use a specialized SDF reader iterate over the records of an SD file. You will need Com-
pound_014550001_014575000.sdf.gz from PubChem.

1.7. Text toolkit examples 199

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz

chemfp Documentation, Release 3.1

The “records” returned by read_sdf_records(), read_sdf_records_from_string(),
read_sdf_ids_and_records(), and read_sdf_ids_and_records_from_string() are the ac-
tual record content as a string, and not wrapped in a TextRecord or other class.

For example, the following will read each record from an SD file and use a regular expression to extract the title line,
the number of atoms from the first 3 characters of line 4, and the number of bonds as the second 3 characters of line 4:

from __future__ import print_function
from chemfp import text_toolkit
import re

pat = re.compile(br"(.*)\n.*\n.*\n(...)(...)")

filename = "Compound_014550001_014575000.sdf.gz"
for record in text_toolkit.read_sdf_records(filename):

m = pat.match(record)
id = m.group(1).decode("utf8")
num_atoms = int(m.group(2))
num_bonds = int(m.group(3))
print(id, num_atoms, num_bonds)

The output starts:

14550001 26 26
14550002 26 26
14550003 22 22
14550004 21 21
14550005 24 23
14550010 31 31
14550011 27 28
14550044 166 162

(Bear in mind that there may also be implicit hydrogens, so unless you know that all hydrogens are explicit or implicit,
these numbers may only be roughly useful.)

Records are byte strings

The example code, while short, is still a bit tricky. The reader returns the SD records as byte strings, not Unicode
strings. Why? First and foremost, using Python to read bytes from a file is 2-3x faster than reading Unicode. If all you
care about is reading a couple of fields from the record then it’s faster to work with bytes and convert only those fields.

Second, this is a low-level API meant to give the actual byte representation of the data. Among other things, you should
be able to know exactly where the record is located in the file. You can even do things like handle mixed encodings,
where one tag value is UTF-8 encoded and another is Latin-1 encoded and cannot be read as a value UTF-8.

Python 3 makes a strong distinction between a byte string and a Unicode string. For Python 3, because the record a
byte string, you’ll have to use a byte-based regular expression to parse it, as in:

pat = re.compile(br"(.*)\n.*\n.*\n(...)(...)")

You’ll also have to convert the title bytes to Unicode if you want to print the result, as in:

id = m.group(1).decode("utf8")

Thankfully, int() knows how to read the ASCII digits from a byte string, so I didn’t have to do extra work there.

200 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

SDF-specific parser parameters

In this section you’ll learn that the specialized SDF readers support the standard errors and location , and have a few
special parameters of their own. You will need Compound_014550001_014575000.sdf.gz from PubChem.

All six of the read_sdf_* functions support the same errors and location parameters as the standard toolkit API,
with the same meaning. For example, the following shows where each record is located in the uncompressed file:

from __future__ import print_function
from chemfp import text_toolkit

filename = "Compound_014550001_014575000.sdf.gz"
with text_toolkit.read_sdf_ids_and_records(filename) as reader:
loc = reader.location
for id, record in reader:
start_byte, end_byte = loc.offsets
print("%s at line %d (bytes %d-%d)" % (id, loc.lineno, start_byte, end_byte))

The output starts:

14550001 at line 1 (bytes 0-4227)
14550002 at line 166 (bytes 4227-8399)
14550003 at line 330 (bytes 8399-12140)
14550004 at line 486 (bytes 12140-15744)
14550005 at line 639 (bytes 15744-19838)

See Handling errors when reading molecules from a string for more information about the errors parameter, and
Location information: record position and content for a description of the how to use a Location to the record’s
first line number and start/end offsets in the file.

The six functions do not have a format option, because the format must be “sdf” or “sdf.gz”. Instead, there is a
compression parameter. The default of None selects the compression type based on the filename, if the filename is
available, or assumes the input is uncompressed. Use “gz” if the input is gzip’ed, and “none” or “” if the input is
uncompressed.

The block_size is a tunable parameter, with a default value of 320 KB. The underlying reader reads a block of text then
tries to extract records. When it gets to the end of a block, it reads a new block, and prepends the remaining part of the
old block to the new one before looking for new records.

For performance reasons, the block_size should be several times larger than the largest record. During error recovery,
the reader will read up to 320 KB or 5*block_size, whichever is larger, in order to find the next “$$$$” line and
resynchronize.

Working with SD records as strings

In this section you’ll learn about the helper functions to work with SD record id and tag data when the SD record is a
string. You will need Compound_014550001_014575000.sdf.gz from PubChem.

I’ll use one of the specialized SD file readers, read_sdf_records(), to get the first record from an SD file:

>>> from __future__ import print_function
>>> from chemfp import text_toolkit
>>> record = next(text_toolkit.read_sdf_records("Compound_014550001_014575000.sdf.gz
→˓"))
>>> print(record[:100])
14550001

-OEChem-03291708342D

1.7. Text toolkit examples 201

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_014550001_014575000.sdf.gz

chemfp Documentation, Release 3.1

26 26 0 0 0 0 0 0 0999 V2000
5.1350 0.8450 0.0

I can use get_sdf_tag() and get_sdf_tag_pairs() to get information about the tags in the record:

>>> for tag_name, tag_value in text_toolkit.get_sdf_tag_pairs(record):
... print(tag_name, "=", repr(tag_value[:40]))
...
PUBCHEM_COMPOUND_CID = '14550001'
PUBCHEM_COMPOUND_CANONICALIZED = '1'
PUBCHEM_CACTVS_COMPLEXITY = '209'
PUBCHEM_CACTVS_HBOND_ACCEPTOR = '5'
PUBCHEM_CACTVS_HBOND_DONOR = '2'
PUBCHEM_CACTVS_ROTATABLE_BOND = '4'
PUBCHEM_CACTVS_SUBSKEYS = 'AAADccByOABAAAAAAAAAAAAAAAAAAAAAAAAwAAAA'
PUBCHEM_IUPAC_OPENEYE_NAME = '2-(2-hydroxyethylsulfanylmethyl)-4-nitro'

...
>>> text_toolkit.get_sdf_tag(record, "PUBCHEM_IUPAC_OPENEYE_NAME")
u'2-(2-hydroxyethylsulfanylmethyl)-4-nitro-phenol'

or use add_sdf_tag() to create a new record with a given tag and value added to the end of the tag block:

>>> print(record[-90:])
> <PUBCHEM_BONDANNOTATIONS>
10 13 8
11 14 8
13 14 8
7 10 8
7 9 8
9 11 8

$$$$

>>> new_record = text_toolkit.add_sdf_tag(record, b"VOLUME", b"123.45")
>>> print(new_record[-109:])
> <PUBCHEM_BONDANNOTATIONS>
10 13 8
11 14 8
13 14 8
7 10 8
7 9 8
9 11 8

> <VOLUME>
123.45

$$$$

I can also get the title line of the SD record using get_sdf_id():

>>> text_toolkit.get_sdf_id(record)
'14550001'

or create a new string which is the old string with the title line replaced by a new value:

>>> new_record = text_toolkit.set_sdf_id(record, b"987ZYX")
>>> text_toolkit.get_sdf_id(new_record)
'987ZYX'

202 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Note that I used byte strings, like b"VOLUME" and b"987ZYX". In general the values must be of the same string
type as the record. On the flip side, if you have a Unicode record then you must pass in Unicode strings as values:

>>> unicode_record = record.decode("utf8")
>>> new_record = text_toolkit.set_sdf_id(unicode_record, u"Hello")
>>> new_record[:6]
u'Hello\n'

Unicode and other character encoding

In this section you’ll learn a bit about how the text toolkit deals with different character encodings. This is a hard topic
and I won’t cover it in full details. If you have a problem with Unicode encodings (and hopefuly a support contract)
then contact me and I’ll help that way.

The SDF format is 8-bit clean. The specification itself uses ASCII but fields like the title, the tag name, and the tag
value can contain nearly any byte value. (Some values like newline and ‘<’ and ‘>’ in the tag name, have special
meaning and must not be used.)

Unfortunately, different software handle those non-ASCII values differently. An older Unix system might use the
Latin-1 character set, which is able to handle many European and some non-European languages, but doesn’t have the
Euro currency symbol. Microsoft Windows code page 1252 is effectively a superset of Latin-1, with the Euro symbol
and a several other additional symbols.

There are of course many other symbols. The consensus for new systems is to use UTF-8 encoded Unicode, which
is compatible with 8-bit clean ASCII and can handle most of the world’s languages, plus a large number of symbols.
This encoding may use one, two, or more bytes to represent each symbol.

The Python3 bindings of OpenEye, RDKit, and Open Babel’s have all decided to interpret SD files as UTF-8 encoded.
This consensus is great ... so long as your files are also compatible with UTF-8. But what if they aren’t? What if you
have to read Latin-1 encoded file, or worse, a file where different fields have multiple encodings?

To demonstrate the problem, I’ll construct a problematic file for 𝛽-methylphenethylamine, with an experimental melt-
ing point of 140-142°C, stored in a Latin-1 encoded SD file. For now I’ll use use ‘Beta’ for the name, and ‘DEGREE’
for the temperature, as placeholders for the two non-ASCII characters.

>>> from __future__ import print_function
>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("NCC(c1ccccc1)C", "smi")
>>> T.set_id(mol, "Beta-methylphenethylamine")
>>> T.add_tag(mol, "MP", "140-142DEGREEC")
>>> unicode_record = T.create_string(mol, "sdf")
>>> print(unicode_record)
Beta-methylphenethylamine

RDKit

10 10 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

1 2 1 0

1.7. Text toolkit examples 203

https://en.wikipedia.org/wiki/8-bit_clean

chemfp Documentation, Release 3.1

2 3 1 0
3 4 1 0
4 5 2 0
5 6 1 0
6 7 2 0
7 8 1 0
8 9 2 0
3 10 1 0
9 4 1 0

M END
> <MP>
140-142DEGREEC

$$$$

Next, I’ll replace the ‘DEGREE’ with the corresponding Unicode characters. (I’ll use the long Unicode name to be
explicit.)

>>> unicode_record = unicode_record.replace(u"DEGREE", u"\N{DEGREE SIGN}")
>>> print(unicode_record)
Beta-methylphenethylamine

RDKit

10 10 0 0 0 0 0 0 0 0999 V2000
....

M END
> <MP>
140-142°C

$$$$

Finally, I’ll save it to the file “latin1.sdf”, using the Latin-1 encoding:

>>> open("latin1.sdf", "wb").write(unicode_record.encode("latin1"))

This is not valid UTF-8. In my terminal, the MP tag value looks like:

> <MP>
140-142C

where the “” is the special symbol for REPLACEMENT CHARACTER, meaning that the actual character cannot be
shown.

What happens if I read the file using each of the native toolkit APIs? First, OEChem under both Python 2.7 and Python
3.6:

>>> from openeye.oechem import *
>>> ifs = oemolistream("latin1.sdf")
>>> mol = OEGraphMol()
>>> OEReadMolecule(ifs, mol)
True
>>> OEGetSDData(mol, "MP") # OEChem on Python 2.7
'140-142\xb0C'

>>> OEGetSDData(mol, "MP") # OEChem on Python 3.6
'140-142\udcb0C'

Remember, OEGetSDData() on Python 2.7 returns byte strings, and you’ll need to decode that string manually to get

204 Chapter 1. List of chapters

https://en.wikipedia.org/wiki/Specials_(Unicode_block)#Replacement_character

chemfp Documentation, Release 3.1

the degree symbol. While OEGetSDData() on Python 3.5 returns Unicode strings, but the byte “\xb0” is not a valid
UTF-8 encoding. Instead, OEChem uses the Unicode codepoint “\udcb0”. This is a surrogate for the actual character,
and something I don’t fully understand. Various sources say this is a UTF-16 behavior which isn’t correct UTF-8.
Python doesn’t like it:

>>> print('140-142\udcb0C')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'utf-8' codec can't encode character '\udcb0' in position 7:
→˓surrogates not allowed

Next, Open Babel under both Python 2.7 and Python 3.6:

>>> import openbabel as ob
>>> conv = ob.OBConversion()
>>> mol = ob.OBMol()
>>> conv.ReadFile(mol, "latin1.sdf")
True
>>> mol.GetData("MP").GetValue() # Open Babel on Python 2.7
'140-142\xb0C'

>>> mol.GetData("MP").GetValue() # Open Babel on Python 3.6
'140-142\udcb0C'

Open Babel gives exactly the same results as OEChem.

Finally, RDKit:

>>> from rdkit import Chem
>>> supplier = Chem.ForwardSDMolSupplier("latin1.sdf")
>>> mol = next(supplier)
>>> mol.GetProp("MP") # RDKit on Python 2.7
'140-142\xb0C'

>>> mol.GetProp("MP") # RDKit on Python 3.6
'140-142\xb0C'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb0 in position 7: invalid start
→˓byte

RDKit doesn’t give a surrogate value for the illegal UTF-8 character. Instead, it complains. Which also means there is
no way to get that data from Python.

What do you do if you have to read a Latin-1 encoded SD file? One solution is to use an external tool like iconv to
translate the file to UTF8.

% iconv -f latin1 -t utf-8 < latin1.sdf > utf8.sdf

Another is to use Python to convert the entire file from Latin-1 to UTF8 then pass the transcoded contents to the
toolkit:

>>> content = open("latin1.sdf", "rb").read()
>>> content = content.decode("latin1").encode("utf8")
>>>
>>> from __future__ import print_function
>>> import chemfp
>>> for tk in ("openbabel", "openeye", "rdkit"):
... T = chemfp.get_toolkit(tk)

1.7. Text toolkit examples 205

https://en.wikipedia.org/wiki/Iconv

chemfp Documentation, Release 3.1

... for mol in T.read_molecules_from_string(content, "sdf"):

... print(tk, T.get_tag(mol, "MP"))
openbabel 140-142°C
openeye 140-142°C
rdkit 140-142°C

But if all you want is some of the tag data values, and not the molecule, then you can ask the text_toolkit to read the
record as a “latin1” encoded file:

>>> from chemfp import text_toolkit
>>> for mol in text_toolkit.read_molecules("latin1.sdf", encoding="latin1"):
... print(mol.get_tag("MP"))
...
140-142°C

The content is converted on-demand, that is, only when get_id() or get_tag() are called. The text_toolkit’s
“molecule” stores the encoding so it knows how to decode the fields:

>>> mol.encoding
'latin1'

By the way, if you omit the ‘encoding=”latin1”’ parameter then you’ll get an exception:

>>> for mol in text_toolkit.read_molecules("latin1.sdf"):
... print(mol.get_tag("MP"))
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
File "/Users/dalke/cvses/cfp-3x/docs/tmp/chemfp/_text_toolkit.py", line 258, in get_

→˓tag
return get_sdf_record_tag(self.record, tag, self.encoding, self.encoding_errors)

File "/Users/dalke/cvses/cfp-3x/docs/tmp/chemfp/_text_toolkit.py", line 1474, in
→˓get_sdf_record_tag

return value.decode(encoding, encoding_errors)
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb0 in position 7: invalid start
→˓byte

Mixed encodings and raw bytes

In this section you’ll learn how to get access to the id and tag data as byte strings rather than Unicode strings. This
might be used if you have a perverse file which uses multiple encodings. If you run into that case, let me know - I’ll
give you a sympathy prize for having to deal with it.

In the previous section you learned a few ways to read an Latin-1 encoded SD file. What happens if the title line
contains an id which is UTF-8 encoded while the tag data contains a Latin-1 encoded value? (Or if you have to deal
with a ‘clever’ programmer who put in semi-binary data into a data field. Because that’s the sort of thing we clever
programmers sometimes do.)

The techniques I mentioned in that previous section won’t work because they assume the entire file has the same
encoding.

Instead, use the text_toolkit to read the file, but access it through the byte API rather than the string API.

I need an example file. I’ll start with the “latin1.sdf” file I created for the previous section, which uses a Latin-1
encoded degree symbol in the “MP” tag data. I’ll modify it so the “Beta” in the title line is replaced by the UTF-8
encoded “𝛽” character.

206 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> content = open("latin1.sdf", "rb").read()
>>> mixed_content = content.replace(b"Beta", u"\N{GREEK SMALL LETTER BETA}".encode(
→˓"utf8"))
>>> open("mixed.sdf", "wb").write(mixed_content)

(On Python 3, that last line will return “946”, to indicate that it wrote 946 bytes to the file.)

On a UTF-8 terminal the title line and the MP tag data line are respectively:

On a Latin-1 terminal they are:

How do I get their “real” values? I’ll use the text_toolkit to read the first record from the file:

>>> from chemfp import text_toolkit
>>> mol = next(text_toolkit.read_molecules("mixed.sdf"))
>>> mol
SDFRecord(id_bytes='\xce\xb2-methylphenethylamine'(id=u'\u03b2-methylphenethylamine'),
record='\xce\xb2-methylphenethylamine\n RDKit \n\n 10 10 0 ...',
encoding='utf8', encoding_errors='strict')

The title line is in utf8 so that’s not a problem

>>> print(mol.id)
𝛽-methylphenethylamine

But I won’t be able to read the “MP” field because it’s not UTF-8 encoded:

>>> mol.get_tag("MP")
Traceback (most recent call last):

...
UnicodeDecodeError: 'utf8' codec can't decode byte 0xb0 in position 7: invalid start
→˓byte

Instead, I’ll use get_tag_as_bytes() to get the underlying bytes for the named tag, rather than as converted to a
Unicode string:

>>> mol.get_tag_as_bytes(b"MP")
'140-142\xb0C'

Once I have the bytes, I can decode them as Latin-1:

>>> print(mol.get_tag_as_bytes(b"MP").decode("latin1"))
140-142°C

Note that this function requires the tag name be the byte string which is found in the file. A Unicode name (which is
the default string type under Python 3) will raise an exception:

>>> mol.get_tag_as_bytes(u"MP")
Traceback (most recent call last):

...
ValueError: tag must be a byte string or None

Use method get_tag_pairs_as_bytes() to get the list of all (tag, data) pairs, where both the tag and data are
return as byte strings.

>>> mol.get_tag_pairs_as_bytes()
[('MP', '140-142\xb0C')]

1.7. Text toolkit examples 207

chemfp Documentation, Release 3.1

Finally, use id_bytes to get the raw bytes for the identifier:

>>> mol.id_bytes
'\xce\xb2-methylphenethylamine'

For example, if I read the file as Latin-1 then the Unicode id “MP” tag be what I expected, the id won’t be correct.
Instead, I can get the id_bytes and decode it manually as UTF-8:

>>> mol2 = next(text_toolkit.read_molecules("mixed.sdf", encoding="latin1"))
>>> print(mol2.get_tag("MP"))
140-142°C
>>> mol2.id
u'\xce\xb2-methylphenethylamine'
>>> print(mol2.id)
Î2-methylphenethylamine
>>>
>>> print(mol2.id_bytes.decode("utf8"))
𝛽-methylphenethylamine

chemfp API

This chapter contains the docstrings for the public portion of the chemfp API.

chemfp top-level module

The following functions and classes are in the top-level chemfp module.

chemfp.open(source, format=None, location=None)
Read fingerprints from a fingerprint file

Read fingerprints from source, using the given format. If source is a string then it is treated as a filename. If
source is None then fingerprints are read from stdin. Otherwise, source must be a Python file object supporting
the read and readline methods.

If format is None then the fingerprint file format and compression type are derived from the source filename,
or from the name attribute of the source file object. If the source is None then the stdin is assumed to be
uncompressed data in “fps” format.

The supported format strings are:

•“fps”, “fps.gz” for fingerprints in FPS format

•“fpb” for fingerprints in FPB format

The optional location is a chemfp.io.Location instance. It will only be used if the source is in FPS format.

If the source is in FPS format then open will return a chemfp.fps_io.FPSReader, which will use the
location if specified.

If the source is in FPB format then open will return a chemfp.arena.FingerprintArena and the
location will not be used.

Here’s an example of printing the contents of the file:

from chemfp.bitops import hex_encode
reader = chemfp.open("example.fps.gz")

208 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

for id, fp in reader:
print(id, hex_encode(fp))

Parameters

• source (A filename string, a file object, or None) – The fingerprint
source.

• format (string, or None) – The file format and optional compression.

Returns a chemfp.fps_io.FPSReader or chemfp.arena.FingerprintArena

chemfp.load_fingerprints(reader, metadata=None, reorder=True, alignment=None, format=None)
Load all of the fingerprints into an in-memory FingerprintArena data structure

The function reads all of the fingerprints and identifers from reader and stores them into an in-memory
chemfp.arena.FingerprintArena data structure which supports fast similarity searches.

If reader is a string or has a read attribute then it will be passed to the chemfp.open() function and the
result used as the reader. If that returns a FingerprintArena then the reorder and alignment parameters are
ignored and the arena returned.

If reader is a FingerprintArena then the reorder and alignment parameters are ignored. If metadata is None then
the input reader is returned without modifications, otherwise a new FingerprintArena is created, whose metadata
attribue is metadata.

Otherwise the reader or the result of opening the file must be an iterator which returns (id, fingerprint) pairs.
These will be used to create a new arena.

metadata specifies the metadata for all returned arenas. If not given the default comes from the source file or
from reader.metadata.

The loader may reorder the fingerprints for better search performance. To prevent ordering, use
reorder=False. The reorder parameter is ignored if the reader is an arena or FPB file.

The alignment option specifies the alignment data alignment and padding size for each fingerprint. A value of
8 means that each fingerprint will start on a 8 byte alignment, and use storage space which a multiple of 8 bytes
long. The default value of None will determine the best alignment based on the fingerprint size and available
popcount methods. This parameter is ignored if the reader is an arena or FPB file.

Parameters

• reader (a string, file object, or (id, fingerprint) iterator)
– An iterator over (id, fingerprint) pairs

• metadata (Metadata) – The metadata for the arena, if other than reader.metadata

• reorder (True or False) – Specify if fingerprints should be reordered for better per-
formance

• alignment (a positive integer, or None) – Alignment size in bytes (both
data alignment and padding); None autoselects the best alignment.

• format (None, "fps", "fps.gz", or "fpb") – The file format name if the
reader is a string

Returns chemfp.arena.FingerprintArena

chemfp.read_molecule_fingerprints(type, source=None, format=None, id_tag=None,
reader_args=None, errors=”strict”)

Read structures from source and return the corresponding ids and fingerprints

1.9. chemfp top-level module 209

chemfp Documentation, Release 3.1

This returns an chemfp.fps_io.FPSReader which can be iterated over to get the id and fingerprint for
each read structure record. The fingerprint generated depends on the value of type. Structures are read from
source, which can either be the structure filename, or None to read from stdin.

type contains the information about how to turn a structure into a fingerprint. It can be a string or a
metadata instance. String values look like OpenBabel-FP2/1, OpenEye-Path, and OpenEye-Path/
1 min_bonds=0 max_bonds=5 atype=DefaultAtom btype=DefaultBond. Default values are
used for unspecified parameters. Use a Metadata instance with type and aromaticity values set in order to pass
aromaticity information to OpenEye.

If format is None then the structure file format and compression are determined by the filename’s extension(s),
defaulting to uncompressed SMILES if that is not possible. Otherwise format may be “smi” or “sdf” option-
ally followed by ”.gz” or ”.bz2” to indicate compression. The OpenBabel and OpenEye toolkits also support
additional formats.

If id_tag is None, then the record id is based on the title field for the given format. If the input format is “sdf”
then id_tag specifies the tag field containing the identifier. (Only the first line is used for multi-line values.) For
example, ChEBI omits the title from the SD files and stores the id after the “> <ChEBI ID>” line. In that case,
use id_tag = "ChEBI ID".

The reader_args is a dictionary with additional structure reader parameters. The parameters depend on the
toolkit and the format. Unknown parameters are ignored.

errors specifies how to handle errors. The value “strict” raises an exception if there are any detected errors. The
value “report” sends an error message to stderr and skips to the next record. The value “ignore” skips to the next
record.

Here is an example of using fingerprints generated from structure file:

from chemfp.bitops import hex_encode
fp_reader = chemfp.read_molecule_fingerprints("OpenBabel-FP4/1", "example.sdf.gz")
print("Each fingerprint has", fp_reader.metadata.num_bits, "bits")
for (id, fp) in fp_reader:
print(id, hex_encode(fp))

See also chemfp.read_molecule_fingerprints_from_string().

Parameters

• type (string or Metadata) – information about how to convert the input structure
into a fingerprint

• source (A filename (as a string), a file object, or None to
read from stdin) – The structure data source.

• format (string, or None to autodetect based on the source) – The
file format and optional compression. Examples: “smi” and “sdf.gz”

• id_tag (string, or None to use the default title for the
given format) – The tag containing the record id. Example: “ChEBI ID”. Only
valid for SD files.

• reader_args (dict, or None to use the default arguments) – addi-
tional parameters for the structure reader

• errors (one of "strict", "report", or "ignore") – specify how to han-
dle parse errors

Returns a chemfp.FingerprintReader

210 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

chemfp.read_molecule_fingerprints_from_string(type, content, format, id_tag=None,
reader_args=None, errors=”strict”)

Read structures from the content string and return the corresponding ids and fingerprints

The parameters are identical to chemfp.read_molecule_fingerprints() except that the entire con-
tent is passed through as a content string, rather than as a source filename. See that function for details.

You must specify the format! As there is no source filename, it’s not possible to guess the format based on the
extension, and there is no support for auto-detecting the format by looking at the string content.

Parameters

• type (string or Metadata) – information about how to convert the input structure
into a fingerprint

• content (string) – The structure data as a string.

• format (string) – The file format and optional compression. Examples: “smi” and
“sdf.gz”

• id_tag (string, or None to use the default title for the
given format) – The tag containing the record id. Example: “ChEBI ID”. Only
valid for SD files.

• reader_args (dict, or None to use the default arguments) – addi-
tional parameters for the structure reader

• errors (one of "strict" (raise exception), "report" (send
a message to stderr and continue processing), or "ignore"
(continue processing)) – specify how to handle parse errors

Returns a chemfp.FingerprintReader

chemfp.open_fingerprint_writer(destination, metadata=None, format=None, alignment=8,
reorder=True, tmpdir=None, max_spool_size=None, er-
rors=”strict”, location=None)

Create a fingerprint writer for the given destination

The fingerprint writer is an object with methods to write fingerprints to the given destination. The output format
is based on the format. If that’s None then the format depends on the destination, or is “fps” if the attempts at
format detection fail.

The metadata, if given, is a Metadata instance, and used to fill the header of an FPS file or META block of
an FPB file.

If the output format is “fps” or “fps.gz” then destination may be a filename, a file object, or None for stdout. If
the output format is “fpb” then destination must be a filename.

Some options only apply to FPB output. The alignment specifies the arena byte alignment. By default the
fingerprints are reordered by popcount, which enables sublinear similarity search. Set reorder to False to
preserve the input fingerprint order.

The default FPB writer stores everything into memory before writing the file, which may cause performance
problems if there isn’t enough available free memory. In that case, set max_spool_size to the number of bytes of
memory to use before spooling intermediate data to a file. (Note: there are two independent spools so this may
use up to roughly twice as much memory as specified.)

Use tmpdir to specify where to write the temporary spool files if you don’t want to use the operating system
default. You may also set the TMPDIR, TEMP or TMP environment variables.

Some options only apply to FPS output. errors specifies how to handle recoverable write errors. The value
“strict” raises an exception if there are any detected errors. The value “report” sends an error message to stderr
and skips to the next record. The value “ignore” skips to the next record.

1.9. chemfp top-level module 211

chemfp Documentation, Release 3.1

The location is a Location instance. It lets the caller access state information such as the number of records
that have been written.

Parameters

• destination (a filename, file object, or None) – the output destination

• metadata (a Metadata instance, or None) – the fingerprint metadata

• format (None, "fps", "fps.gz", or "fpb") – the output format

• alignment (positive integer) – arena byte alignment for FPB files

• reorder (True or False) – True reorders the fingerprints by popcount, False leaves
them in input order

• tmpdir (string or None) – the directory to use for temporary files, when
max_spool_size is specified

• max_spool_size (integer, or None) – number of bytes to store in memory be-
fore using a temporary file. If None, use memory for everything.

• location (a Location instance, or None) – a location object used to access
output state information

Returns a chemfp.FingerprintWriter

ChemFPError

class chemfp.ChemFPError
Base class for all of the chemfp exceptions

ParseError

class chemfp.ParseError
Exception raised by the molecule and fingerprint parsers and writers

The public attributes are:

msg
a string describing the exception

location
a chemfp.io.Location instance, or None

Metadata

class chemfp.Metadata

Store information about a set of fingerprints

The public attributes are:

num_bits
the number of bits in the fingerprint

num_bytes
the number of bytes in the fingerprint

212 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

type
the fingerprint type string

aromaticity
aromaticity model (only used with OEChem, and now deprecated)

software
software used to make the fingerprints

sources
list of sources used to make the fingerprint

date
a datetime timestamp of when the fingerprints were made

__repr__()
Return a string like Metadata(num_bits=1024, num_bytes=128, type='OpenBabel/
FP2',)

__str__()
Show the metadata in FPS header format

copy(num_bits=None, num_bytes=None, type=None, aromaticity=None, software=None,
sources=None, date=None)

Return a new Metadata instance based on the current attributes and optional new values

When called with no parameter, make a new Metadata instance with the same attributes as the current
instance.

If a given call parameter is not None then it will be used instead of the current value. If you want to change
a current value to None then you will have to modify the new Metadata after you created it.

Parameters

• num_bits (an integer, or None) – the number of bits in the fingerprint

• num_bytes (an integer, or None) – the number of bytes in the fingerprint

• type (string or None) – the fingerprint type description

• aromaticity (None) – obsolete

• software (string or None) – a description of the software

• sources (list of strings, a string (interpreted as a list
with one string), or None) – source filenames

• date (a datetime instance, or None) – creation or processing date for the
contents

Returns a new Metadata instance

FingerprintReader

class chemfp.FingerprintReader

Base class for all chemfp objects holding fingerprint records

All FingerprintReader instances have a metadata attribute containing a Metadata and can be iter-
atated over to get the (id, fingerprint) for each record.

__iter__()
iterate over the (id, fingerprint) pairs

1.9. chemfp top-level module 213

https://docs.python.org/2/library/datetime.html#module-datetime

chemfp Documentation, Release 3.1

iter_arenas(arena_size=1000)
iterate through arena_size fingerprints at a time, as subarenas

Iterate through arena_size fingerprints at a time, returned as chemfp.arena.FingerprintArena
instances. The arenas are in input order and not reordered by popcount.

This method helps trade off between performance and memory use. Working with arenas is often faster
than processing one fingerprint at a time, but if the file is very large then you might run out of memory, or
get bored while waiting to process all of the fingerprint before getting the first answer.

If arena_size is None then this makes an iterator which returns a single arena containing all of the finger-
prints.

Parameters arena_size (positive integer, or None) – The number of finger-
prints to put into each arena.

Returns an iterator of chemfp.arena.FingerprintArena instances

save(destination, format=None)
Save the fingerprints to a given destination and format

The output format is based on the format. If the format is None then the format depends on the destination
file extension. If the extension isn’t recognized then the fingerprints will be saved in “fps” format.

If the output format is “fps” or “fps.gz” then destination may be a filename, a file object, or None; None
writes to stdout.

If the output format is “fpb” then destination must be a filename.

Parameters

• destination (a filename, file object, or None) – the output destina-
tion

• format (None, "fps", "fps.gz", or "fpb") – the output format

Returns None

get_fingerprint_type()
Get the fingerprint type object based on the metadata’s type field

This uses self.metadata.type to get the fingerprint type string then calls chemfp.
get_fingerprint_type() to get and return a chemfp.types.FingerprintType instance.

This will raise a TypeError if there is no metadata, and a ValueError if the type field was invalid or the
fingerprint type isn’t available.

Returns a chemfp.types.FingerprintType

FingerprintIterator

class chemfp.FingerprintIterator

A chemfp.FingerprintReader for an iterator of (id, fingerprint) pairs

This is often used as an adapter container to hold the metadata and (id, fingerprint) iterator. It supports
an optional location, and can call a close function when the iterator has completed.

A FingerprintIterator is a context manager which will close the underlying iterator if it’s given a close
handler.

Like all iterators you can use next() to get the next (id, fingerprint) pair.

214 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

__init__(metadata, id_fp_iterator, location=None, close=None)
Initialize with a Metadata instance and the (id, fingerprint) iterator

The metadata is a Metadata instance. The id_fp_iterator is an iterator which returns (id, fingerprint)
pairs.

The optional location is a chemfp.io.Location. The optional close callable is called (as close())
whenever self.close() is called and when the context manager exits.

__iter__()
Iterate over the (id, fingerprint) pairs

close()
Close the iterator

The call will be forwarded to the close callable passed to the constructor. If that close is None then
this does nothing.

Fingerprints

class chemfp.Fingerprints

A chemf.FingerprintReader containing a metadata and a list of (id, fingerprint) pairs.

This is typically used as an adapater when you have a list of (id, fingerprint) pairs and you want to
pass it (and the metadata) to the rest of the chemfp API.

This implements a simple list-like collection of fingerprints. It supports:

• for (id, fingerprint) in fingerprints: ...

• id, fingerprint = fingerprints[1]

• len(fingerprints)

More features, like slicing, will be added as needed or when requested.

__init__(metadata, id_fp_pairs)
Initialize with a Metadata instance and the (id, fingerprint) pair list

The metadata is a Metadata instance. The id_fp_iterator is an iterator which returns (id, fingerprint)
pairs.

FingerprintWriter

class chemfp.FingerprintWriter

Base class for the fingerprint writers

The three fingerprint writer classes are:

•chemfp.fps_io.FPSWriter - write an FPS file

•chemfp.fpb_io.OrderedFPBWriter - write an FPB file, sorted by popcount

•chemfp.fpb_io.InputOrderFPBWriter - write an FPB file, preserving input order

Use chemfp.open_fingerprint_writer() to create a fingerprint writer class; do not create
them directly.

All classes have the following attributes:

•metadata - a chemfp.Metadata instance

1.9. chemfp top-level module 215

chemfp Documentation, Release 3.1

•closed - False when the file is open, else True

Fingerprint writers are also their own context manager, and close the writer on context exit.

write_fingerprint(id, fp)
Write a single fingerprint record with the given id and fp to the destination

Parameters

• id (string) – the record identifier

• fp (byte string) – the fingerprint

write_fingerprints(id_fp_pairs)
Write a sequence of (id, fingerprint) pairs to the destination

Parameters id_fp_pairs – An iterable of (id, fingerprint) pairs. id is a string and fingerprint
is a byte string.

close()
Close the writer

This will set self.closed to False.

ChemFPProblem

class chemfp.ChemFPProblem
Information about a compatibility problem between a query and target.

Instances are generated by chemfp.check_fingerprint_problems() and chemfp.
check_metadata_problems().

The public attributes are:

severity
one of “info”, “warning”, or “error”

error_level
5 for “info”, 10 for “warning”, and 20 for “error”

category
a string used as a category name. This string will not change over time.

description
a more detailed description of the error, including details of the mismatch. The description depends on
query_name and target_name and may change over time.

The current category names are:

• “num_bits mismatch” (error)

• “num_bytes_mismatch” (error)

• “type mismatch” (warning)

• “aromaticity mismatch” (info)

• “software mismatch” (info)

chemfp.check_fingerprint_problems(query_fp, target_metadata, query_name=”query”, tar-
get_name=”target”)

Return a list of compatibility problems between a fingerprint and a metadata

216 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

If there are no problems then this returns an empty list. If there is a bit length or byte length mismatch be-
tween the query_fp byte string and the target_metadata then it will return a list containing a ChemFPProblem
instance, with a severity level “error” and category “num_bytes mismatch”.

This function is usually used to check if a query fingerprint is compatible with the target fingerprints. In case of
a problem, the default message looks like:

>>> problems = check_fingerprint_problems("A"*64, Metadata(num_bytes=128))
>>> problems[0].description
'query contains 64 bytes but target has 128 byte fingerprints'

You can change the error message with the query_name and target_name parameters:

>>> import chemfp
>>> problems = check_fingerprint_problems("z"*64, chemfp.Metadata(num_bytes=128),
... query_name="input", target_name="database")
>>> problems[0].description
'input contains 64 bytes but database has 128 byte fingerprints'

Parameters

• query_fp (byte string) – a fingerprint (usually the query fingerprint)

• target_metadata (Metadata instance) – the metadata to check against (usually
the target metadata)

• query_name (string) – the text used to describe the fingerprint, in case of problem

• target_name (string) – the text used to describe the metadata, in case of problem

Returns a list of ChemFPProblem instances

chemfp.check_metadata_problems(query_metadata, target_metadata, query_name=”query”, tar-
get_name=”target”)

Return a list of compatibility problems between two metadata instances.

If there are no probelms then this returns an empty list. Otherwise it returns a list of ChemFPProblem in-
stances, with a severity level ranging from “info” to “error”.

Bit length and byte length mismatches produce an “error”. Fingerprint type and aromaticity mismatches produce
a “warning”. Software version mismatches produce an “info”.

This is usually used to check if the query metadata is incompatible with the target metadata. In case of a problem
the messages look like:

>>> import chemfp
>>> m1 = chemfp.Metadata(num_bytes=128, type="Example/1")
>>> m2 = chemfp.Metadata(num_bytes=256, type="Counter-Example/1")
>>> problems = chemfp.check_metadata_problems(m1, m2)
>>> len(problems)
2
>>> print(problems[1].description)
query has fingerprints of type 'Example/1' but target has fingerprints of type
→˓'Counter-Example/1'

You can change the error message with the query_name and target_name parameters:

>>> problems = chemfp.check_metadata_problems(m1, m2, query_name="input", target_
→˓name="database")
>>> print(problems[1].description)
input has fingerprints of type 'Example/1' but database has fingerprints of type
→˓'Counter-Example/1'

1.9. chemfp top-level module 217

chemfp Documentation, Release 3.1

Parameters

• fp (byte string) – a fingerprint

• metadata (Metadata instance) – the metadata to check against

• query_name (string) – the text used to describe the fingerprint, in case of problem

• target_name (string) – the text used to describe the metadata, in case of problem

Returns a list of ChemFPProblem instances

chemfp.count_tanimoto_hits(queries, targets, threshold=0.7, arena_size=100)
Count the number of targets within threshold of each query term

For each query in queries, count the number of targets in targets which are at least threshold similar to the query.
This function returns an iterator containing the (query_id, count) pairs.

Example:

queries = chemfp.open("queries.fps")
targets = chemfp.load_fingerprints("targets.fps.gz")
for (query_id, count) in chemfp.count_tanimoto_hits(queries, targets, threshold=0.
→˓9):
print(query_id, "has", count, "neighbors with at least 0.9 similarity")

Internally, queries are processed in batches with arena_size elements. A small batch size uses less over-
all memory and has lower processing latency, while a large batch size has better overall performance. Use
arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and not
reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have an
FPS file then that takes extra time to load. At times, if there is a small number of queries, the time to load the
arena from an FPS file may be slower than the direct search using an FPSReader.

If you know the targets are in an arena then you may want to use chemfp.search.
count_tanimoto_hits_fp() or chemfp.search.count_tanimoto_hits_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• arena_size (a positive integer, or None) – The number of queries to pro-
cess in a batch

Returns iterator of the (query_id, score) pairs, one for each query

chemfp.count_tanimoto_hits_symmetric(fingerprints, threshold=0.7)
Find the number of other fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the number of other fingerprints in the same arena which are
at least threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never matches itself.

This function returns an iterator of (fingerprint_id, count) pairs.

Example:

218 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, count) in chemfp.count_tanimoto_hits_symmetric(arena, threshold=0.6):

print(fp_id, "has", count, "neighbors with at least 0.6 similarity")

You may also be interested in chemfp.search.count_tanimoto_hits_symmetric().

Parameters

• fingerprints (a FingerprintArena with precomputed
popcount_indices) – The arena containing the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns An iterator of (fp_id, count) pairs, one for each fingerprint

chemfp.threshold_tanimoto_search(queries, targets, threshold=0.7, arena_size=100)
Find all targets within threshold of each query term

For each query in queries, find all the targets in targets which are at least threshold similar to the query. This
function returns an iterator containing the (query_id, hits) pairs. The hits are stored as a list of (target_id, score)
pairs.

Example:

queries = chemfp.open("queries.fps")
targets = chemfp.load_fingerprints("targets.fps.gz")
for (query_id, hits) in chemfp.id_threshold_tanimoto_search(queries, targets,
→˓threshold=0.8):

print(query_id, "has", len(hits), "neighbors with at least 0.8 similarity")
non_identical = [target_id for (target_id, score) in hits if score != 1.0]
print(" The non-identical hits are:", non_identical)

Internally, queries are processed in batches with arena_size elements. A small batch size uses less over-
all memory and has lower processing latency, while a large batch size has better overall performance. Use
arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and not
reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have an
FPS file then that takes extra time to load. At times, if there is a small number of queries, the time to load the
arena from an FPS file may be slower than the direct search using an FPSReader.

If you know the targets are in an arena then you may want to use
chemfp.search.threshold_tanimoto_search_fp() or chemfp.search.
threshold_tanimoto_search_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• arena_size (positive integer, or None) – The number of queries to process
in a batch

Returns An iterator containing (query_id, hits) pairs, one for each query. ‘hits’ contains a list of
(target_id, score) pairs.

1.9. chemfp top-level module 219

chemfp Documentation, Release 3.1

chemfp.threshold_tanimoto_search_symmetric(fingerprints, threshold=0.7)
Find the other fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the other fingerprints in the same arena which share at least
threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never matches itself.

This function returns an iterator of (fingerprint, SearchResult) pairs. The chemfp.search.SearchResult
hit order is arbitrary.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, hits) in chemfp.threshold_tanimoto_search_symmetric(arena,
→˓threshold=0.75):

print(fp_id, "has", len(hits), "neighbors:")
for (other_id, score) in hits.get_ids_and_scores():

print(" %s %.2f" % (other_id, score))

You may also be interested in the chemfp.search.threshold_tanimoto_search_symmetric()
function.

Parameters

• fingerprints (a FingerprintArena with precomputed
popcount_indices) – The arena containing the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns An iterator of (fp_id, SearchResult) pairs, one for each fingerprint

chemfp.knearest_tanimoto_search(queries, targets, k=3, threshold=0.7, arena_size=100)
Find the k-nearest targets within threshold of each query term

For each query in queries, find the k-nearest of all the targets in targets which are at least threshold similar to
the query. Ties are broken arbitrarily and hits with scores equal to the smallest value may have been omitted.

This function returns an iterator containing the (query_id, hits) pairs, where hits is a list of (target_id, score)
pairs, sorted so that the highest scores are first. The order of ties is arbitrary.

Example:

Use the first 5 fingerprints as the queries
queries = next(chemfp.open("pubchem_subset.fps").iter_arenas(5))
targets = chemfp.load_fingerprints("pubchem_subset.fps")

Find the 3 nearest hits with a similarity of at least 0.8
for (query_id, hits) in chemfp.id_knearest_tanimoto_search(queries, targets, k=3,
→˓threshold=0.8):

print(query_id, "has", len(hits), "neighbors with at least 0.8 similarity")
if hits:

target_id, score = hits[-1]
print(" The least similar is", target_id, "with score", score)

Internally, queries are processed in batches with arena_size elements. A small batch size uses less over-
all memory and has lower processing latency, while a large batch size has better overall performance. Use
arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and not
reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have an
FPS file then that takes extra time to load. At times, if there is a small number of queries, the time to load the
arena from an FPS file may be slower than the direct search using an FPSReader.

220 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

If you know the targets are in an arena then you may want to use
chemfp.search.knearest_tanimoto_search_fp() or chemfp.search.
knearest_tanimoto_search_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• k (positive integer) – The maximum number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• arena_size (positive integer, or None) – The number of queries to process
in a batch

Returns An iterator containing (query_id, hits) pairs, one for each query. The hits are a list of
(target_id, score) pairs, sorted by score.

chemfp.knearest_tanimoto_search_symmetric(fingerprints, k=3, threshold=0.7)
Find the k-nearest fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the nearest k fingerprints in the same arena which have at least
threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never matches itself.

This function returns an iterator of (fingerprint, SearchResult) pairs. The chemfp.search.SearchResult
hits are ordered from highest score to lowest, with ties broken arbitrarily.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, hits) in chemfp.knearest_tanimoto_search_symmetric(arena, k=5,
→˓threshold=0.5):

print(fp_id, "has", len(hits), "neighbors, with scores", end="")
print(", ".join("%.2f" % x for x in hits.get_scores()))

You may also be interested in the chemfp.search.knearest_tanimoto_search_symmetric()
function.

Parameters

• fingerprints (a FingerprintArena with precomputed
popcount_indices) – The arena containing the fingerprints.

• k (positive integer) – The maximum number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns An iterator of (fp_id, SearchResult) pairs, one for each fingerprint

chemfp.count_tversky_hits(queries, targets, threshold=0.7, alpha=1.0, beta=1.0, arena_size=100)
Count the number of targets within threshold of each query term

For each query in queries, count the number of targets in targets which are at least threshold similar to the query.
This function returns an iterator containing the (query_id, count) pairs.

Example:

1.9. chemfp top-level module 221

chemfp Documentation, Release 3.1

queries = chemfp.open("queries.fps")
targets = chemfp.load_fingerprints("targets.fps.gz")
for (query_id, count) in chemfp.count_tversky_hits(

queries, targets, threshold=0.9, alpha=0.5, beta=0.5):
print(query_id, "has", count, "neighbors with at least 0.9 Dice similarity")

Internally, queries are processed in batches with arena_size elements. A small batch size uses less over-
all memory and has lower processing latency, while a large batch size has better overall performance. Use
arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and not
reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have an
FPS file then that takes extra time to load. At times, if there is a small number of queries, the time to load the
arena from an FPS file may be slower than the direct search using an FPSReader.

If you know the targets are in an arena then you may want to use chemfp.search.
count_tversky_hits_fp() or chemfp.search.count_tversky_hits_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• arena_size (a positive integer, or None) – The number of queries to pro-
cess in a batch

Returns iterator of the (query_id, score) pairs, one for each query

chemfp.count_tversky_hits_symmetric(fingerprints, threshold=0.7, alpha=1.0, beta=1.0)
Find the number of other fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the number of other fingerprints in the same arena which are
at least threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never matches itself.

This function returns an iterator of (fingerprint_id, count) pairs.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, count) in chemfp.count_tversky_hits_symmetric(

arena, threshold=0.6, alpha=0.5, beta=0.5):
print(fp_id, "has", count, "neighbors with at least 0.6 Dice similarity")

You may also be interested in chemfp.search.count_tversky_hits_symmetric().

Parameters

• fingerprints (a FingerprintArena with precomputed
popcount_indices) – The arena containing the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns An iterator of (fp_id, count) pairs, one for each fingerprint

chemfp.threshold_tversky_search(queries, targets, threshold=0.7, alpha=1.0, beta=1.0,
arena_size=100)

Find all targets within threshold of each query term

222 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

For each query in queries, find all the targets in targets which are at least threshold similar to the query. This
function returns an iterator containing the (query_id, hits) pairs. The hits are stored as a list of (target_id, score)
pairs.

Example:

queries = chemfp.open("queries.fps")
targets = chemfp.load_fingerprints("targets.fps.gz")
for (query_id, hits) in chemfp.id_threshold_tanimoto_search(

queries, targets, threshold=0.8, alpha=0.5, beta=0.5):
print(query_id, "has", len(hits), "neighbors with at least 0.8 Dice similarity

→˓")
non_identical = [target_id for (target_id, score) in hits if score != 1.0]
print(" The non-identical hits are:", non_identical)

Internally, queries are processed in batches with arena_size elements. A small batch size uses less over-
all memory and has lower processing latency, while a large batch size has better overall performance. Use
arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and not
reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have an
FPS file then that takes extra time to load. At times, if there is a small number of queries, the time to load the
arena from an FPS file may be slower than the direct search using an FPSReader.

If you know the targets are in an arena then you may want to use
chemfp.search.threshold_tversky_search_fp() or chemfp.search.
threshold_tversky_search_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• arena_size (positive integer, or None) – The number of queries to process
in a batch

Returns An iterator containing (query_id, hits) pairs, one for each query. ‘hits’ contains a list of
(target_id, score) pairs.

chemfp.threshold_tversky_search_symmetric(fingerprints, threshold=0.7, alpha=1.0,
beta=1.0)

Find the other fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the other fingerprints in the same arena which share at least
threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never matches itself.

This function returns an iterator of (fingerprint, SearchResult) pairs. The chemfp.search.SearchResult
hit order is arbitrary.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, hits) in chemfp.threshold_tversky_search_symmetric(

arena, threshold=0.75, alpha=0.5, beta=0.5):
print(fp_id, "has", len(hits), "Dice neighbors:")
for (other_id, score) in hits.get_ids_and_scores():

print(" %s %.2f" % (other_id, score))

1.9. chemfp top-level module 223

chemfp Documentation, Release 3.1

You may also be interested in the chemfp.search.threshold_tversky_search_symmetric()
function.

Parameters

• fingerprints (a FingerprintArena with precomputed
popcount_indices) – The arena containing the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns An iterator of (fp_id, SearchResult) pairs, one for each fingerprint

chemfp.knearest_tversky_search(queries, targets, k=3, threshold=0.7, alpha=1.0, beta=1.0,
arena_size=100)

Find the k-nearest targets within threshold of each query term

For each query in queries, find the k-nearest of all the targets in targets which are at least threshold similar to
the query. Ties are broken arbitrarily and hits with scores equal to the smallest value may have been omitted.

This function returns an iterator containing the (query_id, hits) pairs, where hits is a list of (target_id, score)
pairs, sorted so that the highest scores are first. The order of ties is arbitrary.

Example:

Use the first 5 fingerprints as the queries
queries = next(chemfp.open("pubchem_subset.fps").iter_arenas(5))
targets = chemfp.load_fingerprints("pubchem_subset.fps")

Find the 3 nearest hits with a similarity of at least 0.8
for (query_id, hits) in chemfp.id_knearest_tversky_search(

queries, targets, k=3, threshold=0.8, alpha=0.5, beta=0.5):
print(query_id, "has", len(hits), "neighbors with at least 0.8 Dice similarity

→˓")
if hits:

target_id, score = hits[-1]
print(" The least similar is", target_id, "with score", score)

Internally, queries are processed in batches with arena_size elements. A small batch size uses less over-
all memory and has lower processing latency, while a large batch size has better overall performance. Use
arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and not
reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have an
FPS file then that takes extra time to load. At times, if there is a small number of queries, the time to load the
arena from an FPS file may be slower than the direct search using an FPSReader.

If you know the targets are in an arena then you may want to use
chemfp.search.knearest_tversky_search_fp() or chemfp.search.
knearest_tversky_search_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• k (positive integer) – The maximum number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

224 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• arena_size (positive integer, or None) – The number of queries to process
in a batch

Returns An iterator containing (query_id, hits) pairs, one for each query. The hits are a list of
(target_id, score) pairs, sorted by score.

chemfp.knearest_tversky_search_symmetric(fingerprints, k=3, threshold=0.7, alpha=1.0,
beta=1.0)

Find the k-nearest fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the nearest k fingerprints in the same arena which have at least
threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never matches itself.

This function returns an iterator of (fingerprint, SearchResult) pairs. The chemfp.search.SearchResult
hits are ordered from highest score to lowest, with ties broken arbitrarily.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, hits) in chemfp.knearest_tversky_search_symmetric(

arena, k=5, threshold=0.5, alpha=0.5, beta=0.5):
print(fp_id, "has", len(hits), "neighbors, with Dice scores", end="")
print(", ".join("%.2f" % x for x in hits.get_scores()))

You may also be interested in the chemfp.search.knearest_tversky_search_symmetric()
function.

Parameters

• fingerprints (a FingerprintArena with precomputed
popcount_indices) – The arena containing the fingerprints.

• k (positive integer) – The maximum number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns An iterator of (fp_id, SearchResult) pairs, one for each fingerprint

chemfp.get_fingerprint_families()
Return a list of available fingerprint families

Returns a list of chemfp.types.FingerprintFamily instances

chemfp.get_fingerprint_family(family_name)
Return the named fingerprint family, or raise a ValueError if not available

Given a family_name like OpenBabel-FP2 or OpenEye-MACCS166 return the corresponding chemfp.
types.FingerprintFamily .

Parameters family_name (string) – the family name

Returns a chemfp.types.FingerprintFamily instance

chemfp.get_fingerprint_family_names(include_unavailable=False)
Return a set of fingerprint family name strings

The function tries to load each known fingerprint family. The names of the families which could be loaded are
returned as a set of strings.

If include_unavailable is True then this will return a set of all of the fingerprint family names, including those
which could not be loaded.

The set contains both the versioned and unversioned family names, so both OpenBabel-FP2/1 and
OpenBabel-FP2 may be returned.

1.9. chemfp top-level module 225

chemfp Documentation, Release 3.1

Parameters include_unavailable (True or False) – Should unavailable family names
be included in the result set?

Returns a set of strings

chemfp.get_fingerprint_type(type, fingerprint_kwargs=None)
Get the fingerprint type based on its type string and optional keyword arguments

Given a fingerprint type string like OpenBabel-FP2, or RDKit-Fingerprint/1 fpSize=1024, return
the corresponding chemfp.types.FingerprintType.

The fingerprint type string may include fingerprint parameters. Parameters can also be specified through the
fingerprint_kwargs dictionary, where the dictionary values are native Python values. If the same parameter is
specified in the type string and the kwargs dictionary then the fingerprint_kwargs takes precedence.

For example:

>>> fptype = get_fingerprint_type("RDKit-Fingerprint fpSize=1024 minPath=3", {
→˓"fpSize": 4096})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=3 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

Use get_fingerprint_type_from_text_settings() if your fingerprint parameter values are all
string-encoded, eg, from the command-line or a configuration file.

Parameters

• type (string) – a fingerprint type string

• fingerprint_kwargs (a dictionary of string names and Python
types for values) – fingerprint type parameters

Returns a chemfp.types.FingerprintType

chemfp.get_fingerprint_type_from_text_settings(type, settings=None)
Get the fingerprint type based on its type string and optional settings arguments

Given a fingerprint type string like OpenBabel-FP2, or RDKit-Fingerprint/1 fpSize=1024, return
the corresponding chemfp.types.FingerprintType.

The fingerprint type string may include fingerprint parameters. Parameters can also be specified through the
settings dictionary, where the dictionary values are string-encoded values. If the same parameter is specified in
the type string and the settings dictionary then the settings take precedence.

For example:

>>> fptype = get_fingerprint_type_from_text_settings("RDKit-Fingerprint
→˓fpSize=1024 minPath=3",
... {"fpSize": "4096"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=3 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

This function is for string settings from a configuration file or command-line. Use
get_fingerprint_type() if your fingerprint parameters are Python values.

Parameters

• type (string) – a fingerprint type string

• fingerprint_kwargs (a dictionary of string names and Python
types for values) – fingerprint type parameters

Returns a chemfp.types.FingerprintType

226 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

chemfp.has_fingerprint_family(family_name)
Test if the fingerprint family is available

Return True if the fingerprint family_name is available, otherwise False. The family_name may be versioned or
unversioned, like “OpenBabel-FP2/1” or “OpenEye-MACCS166”.

Parameters family_name (string) – the family name

Returns True or False

chemfp.get_max_threads()
Return the maximum number of threads available.

WARNING: this likely doesn’t do what you think it does. Do not use!

If OpenMP is not available then this will return 1. Otherwise it returns the maximum number of threads avail-
able, as reported by omp_get_num_threads().

chemfp.get_num_threads()
Return the number of OpenMP threads to use in searches

Initially this is the value returned by omp_get_max_threads(), which is generally 4 unless you set the environ-
ment variable OMP_NUM_THREADS to some other value.

It may be any value in the range 1 to get_max_threads(), inclusive.

Returns the current number of OpenMP threads to use

chemfp.set_num_threads(num_threads)
Set the number of OpenMP threads to use in searches

If num_threads is less than one then it is treated as one, and a value greater than get_max_threads() is treated as
get_max_threads().

Parameters num_threads (int) – the new number of OpenMP threads to use

chemfp.get_toolkit(toolkit_name)
Return the named toolkit, if available, or raise a ValueError

If toolkit_name is one of “openbabel”, “openeye”, or “rdkit” and the named toolkit is available, then it will
return chemfp.openbabel_toolkit, chemfp.openeye_toolkit, or chemfp.rdkit_toolkit,
respectively.:

>>> import chemfp
>>> chemfp.get_toolkit("openeye")
<module 'chemfp.openeye_toolkit' from 'chemfp/openeye_toolkit.py'>
>>> chemfp.get_toolkit("rdkit")
Traceback (most recent call last):

...
ValueError: Unable to get toolkit 'rdkit': No module named rdkit

Parameters toolkit_name (string) – the toolkit name

Returns the chemfp toolkit

Raises ValueError if toolkit_name is unknown or the toolkit does not exist

chemfp.get_toolkit_names()
Return a set of available toolkit names

The function checks if each supported toolkit is available by trying to import its corresponding module. It
returns a set of toolkit names:

1.9. chemfp top-level module 227

chemfp Documentation, Release 3.1

>>> import chemfp
>>> chemfp.get_toolkit_names()
set(['openeye', 'rdkit', 'openbabel'])

Returns a set of toolkit names, as strings

chemfp.has_toolkit(toolkit_name)
Return True if the named toolkit is available, otherwise False

If toolkit_name is one of “openbabel”, “openeye”, or “rdkit” then this function will test to see if the given toolkit
is available, and if so return True. Otherwise it returns False.

>>> import chemfp
>>> chemfp.has_toolkit("openeye")
True
>>> chemfp.has_toolkit("openbabel")
False

The initial test for a toolkit can be slow, especially if the underlying toolkit loads a lot of shared libraries. The
test is only done once, and cached.

Parameters toolkit_name (string) – the toolkit name

Returns True or False

chemfp.types - fingerprint families and types

A “fingerprint type” is an object which knows how to convert a molecule into a fingerprint. A “fingerprint family” is
an object which uses a set of parameters to make a specific fingerprint type.

>>> import chemfp
>>> fpfamily = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> fpfamily.get_defaults()
{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}
>>>
>>> fptype = fpfamily() # create the default fingerprint type
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'
>>>
>>> fptype = fpfamily(fpSize=1024) # use a non-default value
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'
>>> mol = fptype.toolkit.parse_molecule("c1ccccc1O", "smistring")
>>> fptype.compute_fingerprint(mol)
'\x04\x00\x00\x00\x00\x00\x10\x00\x00\x00 ... x00\x00\x00\x00\x00'

Fingerprint family class

FingerprintFamily

class chemfp.types.FingerprintFamily

A FingerprintFamily is used to create a FingerprintType or get information about its parameters

228 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Two reasons to use a FingerprintFamily (instead of using chemfp.get_fingerprint_type()
or chemfp.get_fingerprint_type_from_text_settings()) are:

•figure out the default arguments;

•given a text settings or parameter dictionary, use the keys from the default argument keys to
remove other parameters before creating a FingerprintType (otherwise the creation function will
raise an exception)

All fingerprint families have the following attributes:

•name - the type name, including version

•toolkit - the toolkit API for the underlying chemistry toolkit, or None

__repr__()
Return a string like ‘FingerprintFamily(<RDKit-Fingerprint/2>)’

name
Read-only attribute.

The full fingerprint name, including the version

base_name
Read-only attribute.

The base fingerprint name, without the version

version
Read-only attribute.

The fingerprint version

toolkit
Read-only attribute.

The toolkit used to implement this fingerprint, or None

__call__(**fingerprint_kwargs)
Create a fingerprint type; keyword arguments can override the defaults

The argument values are native Python values, not string-encoded values:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> fptype = family()
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'
>>> fptype = family(fpSize=1024)
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'

The function will raise an exception for unknown arguments.

Parameters fingerprint_kwargs – the fingerprint parameters

Returns an object implementing the chemfp.types.FingerprintType API

from_kwargs(fingerprint_kwargs=None)
Create a fingerprint type; items in the fingerprint_kwargs dictionary can override the defaults

The dictionary values are native Python values, not string-encoded values:

1.10. chemfp.types - fingerprint families and types 229

chemfp Documentation, Release 3.1

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> fptype = family()
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'
>>> fptype = family.from_kwargs({"fpSize": 1024})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'

The function will raise an exception for unknown arguments.

Parameters fingerprint_kwargs (a dictionary where the values are
Python objects) – the fingerprint parameters

Returns an object implementing the chemfp.types.FingerprintType API

from_text_settings(settings=None)
Create a fingerprint type; settings is a dictionary with string-encoded value that can override the defaults

The dictionary values are string-encoded values, not native Python values. This function exists to help
handle command-line arguments and setting files.:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> fptype = family.from_text_settings()
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'
>>> fptype = family.from_text_settings({"fpSize": "1024"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'

The function will raise an exception for unknown arguments.

Parameters settings (a dictionary where the values are
string-encoded) – the fingerprint text settings

Returns an object implementing the chemfp.types.FingerprintType API

get_kwargs_from_text_settings(settings=None)
Convert a dictionary of string-encoded fingerprint parameters into native Python values

String-encoded values (“text settings”) can come from the command-line, a configuration file, a web reqest,
or other text sources. The fingerprint types need actual Python values. This method converts the first to
the second:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> family.get_kwargs_from_text_settings()
{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}
>>> family.get_kwargs_from_text_settings({"fpSize": "128", "maxPath": "5"})
{'maxPath': 5, 'fpSize': 128, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

Parameters settings (a dictionary where the values are
string-encoded) – the fingerprint text settings

Returns an dictionary of (decoded) fingerprint parameters

get_defaults()
Return the default parameters as a dictionary

230 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

The dictionary values are native Python objects:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> family.get_defaults()
{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

Returns an dictionary of fingerprint parameters

Base fingerprint type

FingerprintType

class chemfp.types.FingerprintType

The base to all fingerprint types

A fingerprint type has the following public attributes:

name
the fingerprint name, including the version

base_name
the fingerprint name, without the version

version
the fingerprint version

toolkit
the toolkit API for the underlying chemistry toolkit, or None

software
a string which characterizes the toolkit, including version information

num_bits
the number of bits in this fingerprint type

fingerprint_kwargs
a dictionary of the fingerprint arguments

The built-in fingerprint types are:

•chemfp.openbabel_types.OpenBabelFP2FingerprintType_v1 -
OpenBabel-FP2/1 - Open Babel FP2

•chemfp.openbabel_types.OpenBabelFP3FingerprintType_v1 -
OpenBabel-FP3/1 - Open Babel FP3

•chemfp.openbabel_types.OpenBabelFP4FingerprintType_v1 -
OpenBabel-FP4/1 - Open Babel FP4

•chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v1 -
OpenBabel-MACCS/1 - Open Babel 166 MACCS keys

•chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v2 -
OpenBabel-MACCS/2 - Open Babel 166 MACCS keys

•chemfp.openbabel_patterns.SubstructOpenBabelFingerprinter_v1
- ChemFP-Substruct-OpenBabel/1 - chemfp’s 881 CACTVS/PubChem-like keys
implemented with Open Babel

1.10. chemfp.types - fingerprint families and types 231

chemfp Documentation, Release 3.1

•chemfp.openbabel_patterns.RDMACCSOpenBabelFingerprinter_v1 -
RDMACCS-OpenBabel/1 - chemfp’s own 166 MACCS keys implemented with Open Babel
(does not include key 44)

•chemfp.openbabel_patterns.RDMACCSOpenBabelFingerprinter_v2 -
RDMACCS-OpenBabel/1 - chemfp’s own 166 MACCS keys implemented with Open Babel

•chemfp.openeye_types.OpenEyeCircularFingerprintType_v2 -
OpenEye-Circular/2 - OEGraphSim circular fingerprints

•chemfp.openeye_types.OpenEyeMACCSFingerprintType_v2 -
OpenEye-MACCS166/2 - OEGraphSim 166 MACCS keys

•chemfp.openeye_types.OpenEyePathFingerprintType_v2 -
OpenEye-Path/2 - OEGraphSim path fingerprints

•chemfp.openeye_types.OpenEyeTreeFingerprintType_v2 -
OpenEye-Tree/2 - OEGraphSim tree fingerprints

•chemfp.openeye_patterns.SubstructOpenEyeFingerprinter_v1 -
ChemFP-Substruct-OpenEye/1 - chemfp’s 881 CACTVS/PubChem-like keys im-
plemented with OEChem

•chemfp.openeye_patterns.RDMACCSOpenEyeFingerprinter_v1 -
RDMACCS-OpenEye/1 - chemfp’s own 166 MACCS keys implemented with OEChem
(does not include key 44)

•chemfp.openeye_patterns.RDMACCSOpenEyeFingerprinter_v2 -
RDMACCS-OpenEye/2 - chemfp’s own 166 MACCS keys implemented with OEChem

•chemfp.rdkit_types.RDKitFingerprintType_v1 - RDKit-Fingerprint/1 - RDKit
path and tree fingerprint

•chemfp.rdkit_types.RDKitFingerprintType_v2 - RDKit-Fingerprint/2 - RDKit
path and tree fingerprint

•chemfp.rdkit_types.RDKitMACCSFingerprintType_v1 - RDKit-MACCS/1 -
RDKit 166 MACCS keys (does not include key 44)

•chemfp.rdkit_types.RDKitMACCSFingerprintType_v2 - RDKit-MACCS/2 -
RDKit 166 MACCS keys

•chemfp.rdkit_types.RDKitMorganFingerprintType_v1 - RDKit-Morgan/1
- RDKit circular fingerprints

•chemfp.rdkit_types.RDKitAtomPairFingerprint_v1 - RDKit-AtomPair/1
- RDKit atom pair fingerprints

•chemfp.rdkit_types.RDKitAtomPairFingerprint_v2 - RDKit-AtomPair/2
- RDKit atom pair fingerprints

•chemfp.rdkit_types.RDKitTorsionFingerprintType_v1 -
RDKit-Torsion/1 - RDKit torsion fingerprints

•chemfp.rdkit_types.RDKitTorsionFingerprintType_v2 -
RDKit-Torsion/2 - RDKit torsion fingerprints

•chemfp.rdkit_types.RDKitTorsionFingerprintType_v3 -
RDKit-Torsion/3 - RDKit torsion fingerprints

•chemfp.rdkit_patterns.SubstructRDKitFingerprintType_v1 -
ChemFP-Substruct-RDKit/1 - chemfp’s 881 CACTVS/PubChem-like keys imple-
mented with RDKit

232 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

•chemfp.rdkit_patterns.RDMACCSRDKitFingerprinter_v1 -
RDMACCS-RDKit/1 - chemfp’s own 166 MACCS keys implemented with OEChem
(does not include key 44)

•chemfp.rdkit_patterns.RDMACCSRDKitFingerprinter_v2 -
RDMACCS-RDKit/2 - chemfp’s own 166 MACCS keys implemented with OEChem

get_type()
Get the full type string (name and parameters) for this fingerprint type

Returns a canonical fingerprint type string, including its parameters

get_metadata(sources=None)
Return a Metadata appropriate for the given fingerprint type.

This is most commonly used to make a chemfp.Metadata that can be passed into a chemfp.
FingerprintWriter.

If sources is a string or a list of strings then it will passed to the newly created Metadata instance. It should
contain filenames or other description of the fingerprint sources.

Parameters sources (None, a string, or list of strings) – fingerprint
source filenames or other description

Returns a chemfp.Metadata

make_fingerprinter()
Make a ‘fingerprinter’; a callable which takes a molecule and returns a fingerprint

Returns a function object which takes a molecule and return a fingerprint

read_molecule_fingerprints(source, format=None, id_tag=None, reader_args=None, er-
rors=”strict”, location=None)

Read fingerprints from a structure source as a FingerprintIterator

Iterate through the format structure records in source. If format is None then auto-detect the format based
on the source. Use the fingerprint type to compute the fingerprint. For SD files, use id_tag to get the record
id from the given SD tag instead of the title line.

The reader_args dictionary parameters depend on the toolkit and format. For details see the docstring for
self.toolkit.read_molecules.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a message
to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a Location instance. If None then a default Location will be created.

Parameters

• source (a filename, file object, or None to read from stdin) –
the structure source

• format (a format name string, or Format object, or None to
auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag contain-
ing the record id

• reader_args (a dictionary) – reader parameters passed to the underlying toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a Location object, or None) – object used to track parser state
information

1.10. chemfp.types - fingerprint families and types 233

chemfp Documentation, Release 3.1

Returns a chemfp.FingerprintIterator which iterates over the (id, fingerprint) pair

read_molecule_fingerprints_from_string(content, format=None, id_tag=None,
reader_args=None, errors=”strict”, loca-
tion=None)

Read fingerprints from structure records in a string, as a FingerprintIterator

Iterate through the format structure records in content. Use the fingerprint type to compute the fingerprint.
For SD files, use id_tag to get the record id from the given SD tag instead of the title line.

The reader_args dictionary parameters depend on the toolkit and format. For details see the docstring for
self.toolkit.read_molecules.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a message
to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a Location instance. If None then a default Location will be created.

Parameters

• content – the string containing structure records

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag contain-
ing the record id

• reader_args (a dictionary) – reader parameters passed to the underlying toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a Location object, or None) – object used to track parser state
information

Returns a chemfp.FingerprintIterator which iterates over the (id, fingerprint) pair

parse_molecule_fingerprint(content, format, reader_args=None, errors=”strict”)
Parse the first molecule record of the content then compute and return the fingerprint

Read the first molecule from content, which contains records in the given format. Compute and return its
fingerprint.

The reader_args dictionary parameters depend on the toolkit and format. For details see the docstring for
self.toolkit.read_molecules.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a message
to stderr and return None for the fingerprint, and “ignore” returns None for the fingerprint without any
extra message.

Parameters

• content – the string containing at least one structure record

• format (a format name string, or Format object) – the input structure
format

• reader_args (a dictionary) – reader parameters passed to the underlying toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns the fingerprint as a byte string

234 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

parse_id_and_molecule_fingerprint(content, format, id_tag=None, reader_args=None, er-
rors=”strict”)

Parse the first molecule record of the content then compute and return the id and fingerprint

Read the first molecule from content, which contains records in the given format. Compute its fingerprint
and get the molecule id. For an SD record use id_tag to get the record id from the given SD tag instead of
from the title line.

Return the id and fingerprint as the (id, fingerprint) pair.

The reader_args dictionary parameters depend on the toolkit and format. For details see the docstring for
self.toolkit.read_molecules.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a message
to stderr and return None for values it cannot compute, and “ignore” is like “report” but without the error
message. For “report” and “ignore”, if the molecule cannot be parsed then the result will be (None, None).
If the fingerprint cannot be computed then the result will be (id, None).

Parameters

• content – the string containing at least one structure record

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag contain-
ing the record id

• reader_args (a dictionary) – reader parameters passed to the underlying toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns a pair of (id string, fingerprint byte string)

make_id_and_molecule_fingerprint_parser(format, id_tag=None, reader_args=None, er-
rors=”strict”)

Make a function which parses molecule from a record and returns the id and computed fingerprint

This is a very specialized function, designed for performance, but it doesn’t appear to give any advantage.
You likely don’t need it.

Return a function which parses a content string containing structure records in the given format to get a
molecule. Use the molecule to compute the fingerprint and get its id. For an SD record use id_tag to get
the record id from the given SD tag instead of from the title line.

The new function will return the (id, fingerprint) pair.

The reader_args dictionary parameters depend on the toolkit and format. For details see the docstring for
self.toolkit.read_molecules.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a message
to stderr and return None for values it cannot compute, and “ignore” is like “report” but without the error
message. For “report” and “ignore”, if the molecule cannot be parsed then the result will be (None, None).
If the fingerprint cannot be computed then the result will be (id, None).

Parameters

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag contain-
ing the record id

• reader_args (a dictionary) – reader parameters passed to the underlying toolkit

1.10. chemfp.types - fingerprint families and types 235

chemfp Documentation, Release 3.1

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns a function which takes a content string and returns an (id, fingerprint) pair

compute_fingerprint(mol)
Compute and return the fingerprint byte string for the toolkit molecule

Parameters mol – a toolkit molecule

Returns the fingerprint as a byte string

compute_fingerprints(mols)
Compute and return the fingerprint for each toolkit molecule in an iterator

This function is a slightly optimized version of:

for mol in mols:
yield self.compute_fingerprint(mol)

Parameters mols – an iterable of toolkit molecules

Returns a generator of fingerprints, one per molecule

get_fingerprint_family()
Return the fingerprint family for this fingerprint type

Returns a FingerprintFamily

Open Babel fingerprints

Open Babel implements four fingerprints families and chemfp implements two fingerprint families using the Open
Babel toolkit. These are:

• OpenBabel-FP2 - Indexes linear fragments up to 7 atoms.

• OpenBabel-FP3 - SMARTS patterns specified in the file patterns.txt

• OpenBabel-FP4 - SMARTS patterns specified in the file SMARTS_InteLigand.txt

• OpenBabel-MACCS - SMARTS patterns specified in the file MACCS.txt, which implements nearly all of the
166 MACCS keys

• RDMACCS-OpenBabel - a chemfp implementation of nearly all of the MACCS keys

• ChemFP-Substruct-OpenBabel - an experimental chemfp implementation of the PubChem keys

Most people use FP2 and MACCS.

Note: chemfp-2.0 implements both RDMACCS-OpenBabel/1 and RDMACCS-OpenBabel/2. Version 1 did not have
a definition for key 44.

OpenBabelFP2FingerprintType_v1

class chemfp.openbabel_types.OpenBabelFP2FingerprintType_v1
OpenBabel FP2 fingerprint based on path enumeration

See http://openbabel.org/wiki/FP2

This is a Daylight-like path enumeration fingerprint with 1021 bits.

The OpenBabel-FP2/1 FingerprintType has no parameters.

236 Chapter 1. List of chapters

http://openbabel.org/wiki/FP2

chemfp Documentation, Release 3.1

OpenBabelFP3FingerprintType_v1

class chemfp.openbabel_types.OpenBabelFP3FingerprintType_v1
OpenBabel FP3 fingerprint

See http://openbabel.org/wiki/FP3

55 bit fingerprints based on a set of SMARTS patterns defining functional groups.

The OpenBabel-FP3/1 FingerprintType has no parameters.

OpenBabelFP4FingerprintType_v1

class chemfp.openbabel_types.OpenBabelFP4FingerprintType_v1
OpenBabel FP4 fingerprint

http://openbabel.org/wiki/FP4

307 bit fingerprints based on a set of SMARTS patterns defining functional groups.

The OpenBabel-FP4/1 FingerprintType has no parameters.

OpenBabelMACCSFingerprintType_v1

class chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v1
Open Babel’s implementation of the 166 MACCS keys

WARNING: This implementation contains serious bugs! All of the ring sizes are wrong.

See http://openbabel.org/wiki/Tutorial:Fingerprints and https://github.com/openbabel/openbabel/blob/master/
data/MACCS.txt .

The OpenBabel-MACCS/1 FingerprintType has no parameters.

Note: this version is only available in older (pre-2012) versions of Open Babel.

OpenBabelMACCSFingerprintType_v2

class chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v2
Open Babel’s implementation of the 166 MACCS keys

See http://openbabel.org/wiki/Tutorial:Fingerprints and https://github.com/openbabel/openbabel/blob/master/
data/MACCS.txt .

Note: Open Babel added support for key 44 on 20 October 2014. This should have been version 3. However, I
didn’t notice until 1 May 2017 that there was no chemfp test for it. Since everyone has been using it as v2, and
very few people used the older version, I won’t change the version number.

The OpenBabel-MACCS/2 FingerprintType has no parameters.

SubstructOpenBabelFingerprinter_v1

class chemfp.openbabel_patterns.SubstructOpenBabelFingerprinter_v1
chemfp’s Substruct fingerprint implementation for OEChem, version 1

WARNING: these fingerprints have not been validated.

The Substruct fingerprints are CACTVS/PubChem-like fingerprints designed for use across multiple toolkits.

1.10. chemfp.types - fingerprint families and types 237

http://openbabel.org/wiki/FP3
http://openbabel.org/wiki/FP4
http://openbabel.org/wiki/Tutorial:Fingerprints
https://github.com/openbabel/openbabel/blob/master/data/MACCS.txt
https://github.com/openbabel/openbabel/blob/master/data/MACCS.txt
http://openbabel.org/wiki/Tutorial:Fingerprints
https://github.com/openbabel/openbabel/blob/master/data/MACCS.txt
https://github.com/openbabel/openbabel/blob/master/data/MACCS.txt

chemfp Documentation, Release 3.1

The ChemFP-Substruct-OpenBabel/1 FingerprintType has no parameters.

RDMACCSOpenBabelFingerprinter_v1

class chemfp.openbabel_patterns.RDMACCSOpenBabelFingerprinter_v1
chemfp’s RDMACCS fingerprint implementation for Open Babel, version 1

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but designed
to be (slightly) more portable across multiple chemistry toolkits.

This version does not define key 44.

The RDMACSS-OpenBabel/1 FingerprintType has no parameters.

RDMACCSOpenBabelFingerprinter_v2

class chemfp.openbabel_patterns.RDMACCSOpenBabelFingerprinter_v2
chemfp’s RDMACCS fingerprint implementation for Open Babel, version 2

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but designed
to be (slightly) more portable across multiple chemistry toolkits.

This version defines key 44.

The RDMACSS-OpenBabel/2 FingerprintType has no parameters.

OpenEye fingerprints

OpenEye’s OEGraphSim library implements four bitstring-based fingerprint families, and chemfp implements two
fingerprint families based on OEChem. These are:

• OpenEye-Path - exhaustive enumeration of all linear fragments up to a given size

• OpenEye-Circular - exhaustive enumeration of all circular fragments grown radially from each heavy atom up
to a given radius

• OpenEye-Tree - exhaustive enumeration of all trees up to a given size

• OpenEye-MACCS166 - an implementation of the 166 MACCS keys

• RDMACCS-OpenEye - a chemfp implementation of the 166 MACCS keys

• ChemFP-Substruct-OpenEye - an experimental chemfp implementation of the PubChem keys

Note: chemfp-2.0 implements both RDMACCS-OpenEye/1 and RDMACCS-OpenEye/2. Version 1 did not have a
definition for key 44.

OpenEyeCircularFingerprintType_v2

class chemfp.openeye_types.OpenEyeCircularFingerprintType_v2
OEGraphSim fingerprint based on circular fingerprints around heavy atoms, version 2

See https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-circular

The OpenEye-Circular/2 FingerprintType parameters are:

•numbits - the number of bits in the fingerprint (default: 4096)

•minradius - the minimum radius (default: 0)

238 Chapter 1. List of chapters

https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-circular

chemfp Documentation, Release 3.1

•maxradius - the maximum radius (default: 5)

•atype - the atom type (default: “Default”)

•btype - the bond type (default: “Default”)

The atype is either 0 or a ‘|’ separated string containing one or more of the following: Aromaticity, AtomicNum-
ber, Chiral, EqHBondAcceptor, EqHBondDonor, EqHalogen, FormalCharge, HCount, HvyDegree, Hybridiza-
tion, InRing, EqAromatic,

The btype is either 0 or a ‘|’ separated string containing one or more of the following: BondOrder, Chiral,
InRing.

OpenEyeMACCSFingerprintType_v2

class chemfp.openeye_types.OpenEyeMACCSFingerprintType_v2
OEGraphSim implementation of the 166 MACCS keys, version 2

See https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#maccs .

The OpenEye-MACCS166/2 FingerprintType has no parameters.

This corresponds to GraphSim version ‘2.0.0’.

OpenEyeMACCSFingerprintType_v3

class chemfp.openeye_types.OpenEyeMACCSFingerprintType_v3
OEGraphSim implementation of the 166 MACCS keys, version 3

See https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#maccs .

The OpenEye-MACCS166/3 FingerprintType has no parameters.

This corresponds to GraphSim version ‘2.2.0’, with fixes for bits 91 and 92.

OpenEyePathFingerprintType_v2

class chemfp.openeye_types.OpenEyePathFingerprintType_v2
OEGraphSim fingerprint based on path-based enumeration, version 2

See https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-path

The OpenEye-Path/2 FingerprintType parameters are:

•numbits - the number of bits in the fingerprint (default: 4096)

•minbonds - the minimum number of bonds (default: 0)

•maxbonds - the maximum number of bonds (default: 5)

•atype - the atom type (default: “Default”)

•btype - the bond type (default: “Default”)

The atype is either 0 or a ‘|’ separated string containing one or more of the following: Aromaticity, AtomicNum-
ber, Chiral, EqHBondAcceptor, EqHBondDonor, EqHalogen, FormalCharge, HCount, HvyDegree, Hybridiza-
tion, InRing, EqAromatic,

The btype is either 0 or a ‘|’ separated string containing one or more of the following: BondOrder, Chiral,
InRing.

1.10. chemfp.types - fingerprint families and types 239

https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#maccs
https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#maccs
https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-path

chemfp Documentation, Release 3.1

OpenEyeTreeFingerprintType_v2

class chemfp.openeye_types.OpenEyeTreeFingerprintType_v2
OEGraphSim fingerprint based on tree fingerprints, version 2

See https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-tree

The OpenEye-Tree/2 FingerprintType parameters are:

•numbits - the number of bits in the fingerprint (default: 4096)

•minbonds - minimum number of bonds in the tree

•maxbonds - maximum number of bonds in the tree

•atype - the atom type (default: “Default”)

•btype - the bond type (default: “Default”)

The atype is either 0 or a ‘|’ separated string containing one or more of the following: Aromaticity, AtomicNum-
ber, Chiral, EqHBondAcceptor, EqHBondDonor, EqHalogen, FormalCharge, HCount, HvyDegree, Hybridiza-
tion, InRing, EqAromatic,

The btype is either 0 or a ‘|’ separated string containing one or more of the following: BondOrder, Chiral,
InRing.

SubstructOpenEyeFingerprinter_v1

class chemfp.openeye_patterns.SubstructOpenEyeFingerprinter_v1
chemfp’s Substruct fingerprint implementation for OEChem, version 1

WARNING: these fingerprints have not been validated.

The Substruct fingerprints are CACTVS/PubChem-like fingerprints designed for use across multiple toolkits.

The ChemFP-Substruct-OpenEye/1 FingerprintType has no parameters.

RDMACCSOpenEyeFingerprinter_v1

class chemfp.openeye_patterns.RDMACCSOpenEyeFingerprinter_v1
chemfp’s RDMACCS fingerprint implementation for OEChem, version 1

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but designed
to be (slightly) more portable across multiple chemistry toolkits.

This version does not define key 44.

The RDMACSS-OpenEye/1 FingerprintType has no parameters.

RDMACCSOpenEyeFingerprinter_v2

class chemfp.openeye_patterns.RDMACCSOpenEyeFingerprinter_v2
chemfp’s RDMACCS fingerprint implementation for OEChem, version 2

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but designed
to be (slightly) more portable across multiple chemistry toolkits.

This version defines key 44.

The RDMACSS-OpenEye/2 FingerprintType has no parameters.

240 Chapter 1. List of chapters

https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-tree

chemfp Documentation, Release 3.1

RDKit fingerprints

RDKit implements six fingerprint families, and chemfp implements two fingerprint families based on RDKit. These
are:

• RDKit-Fingerprint - exhaustive enumeration of linear and branched trees

• RDKit-MACCS166 - The RDKit implementation of the MACCS keys

• RDKit-Morgan - EFCP-like circular fingerprints

• RDKit-AtomPair - atom pair fingerprints

• RDKit-Torsion - topological-torsion fingerprints

• RDKit-Pattern - substructure screen fingerprint

• RDMACCS-RDKit - a chemfp implementation of the 166 MACCS keys

• ChemFP-Substruct-RDKit - an experimental chemfp implementation of the PubChem keys

Note: chemfp-2.0 implements both RDMACCS-RDKit/1 and RDMACCS-RDKit/2. Version 1 did not have a defini-
tion for key 44.

RDKitFingerprintType_v1

class chemfp.rdkit_types.RDKitFingerprintType_v1
RDKit’s Daylight-like fingerprint based on linear path and branched tree enumeration, version 1

See http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#RDKFingerprint

The RDKit-Fingerprint/1 FingerprintType parameters are:

•fpSize - number of bits in the fingerprint (default: 2048)

•minPath - minimum number of bonds (default: 1)

•maxPath - maximum number of bonds (default: 7)

•nBitsPerHash - number of bits to set for each path hash (default: 2)

•useHs - include information about the number of hydrogens on each atom? (default: True)

Note: this version is only available in older (pre-2014) versions of RDKit

RDKitFingerprintType_v2

class chemfp.rdkit_types.RDKitFingerprintType_v2
RDKit’s Daylight-like fingerprint based on linear path and branched tree enumeration, version 2

See http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#RDKFingerprint

The RDKit-Fingerprint/2 FingerprintType parameters are:

•fpSize - number of bits in the fingerprint (default: 2048)

•minPath - minimum number of bonds (default: 1)

•maxPath - maximum number of bonds (default: 7)

•nBitsPerHash - number of bits to set for each path hash (default: 2)

•useHs - include information about the number of hydrogens on each atom? (default: True)

1.10. chemfp.types - fingerprint families and types 241

http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#RDKFingerprint
http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#RDKFingerprint

chemfp Documentation, Release 3.1

RDKitMACCSFingerprintType_v1

class chemfp.rdkit_types.RDKitMACCSFingerprintType_v1
RDKit’s implementation of the 166 MACCS keys, version 1

See http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMACCSKeysFingerprint

The RDKit-MACCS166/1 fingerprints have no parameters.

This version of RDKit does not support MACCS key 44 (“OTHER”).

RDKitMACCSFingerprintType_v2

class chemfp.rdkit_types.RDKitMACCSFingerprintType_v2
RDKit’s implementation of the 166 MACCS keys, version 2

See http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMACCSKeysFingerprint

The RDKit-MACCS166/1 fingerprints have no parameters. RDKit version added this version in late 2014.

RDKitMorganFingerprintType_v1

class chemfp.rdkit_types.RDKitMorganFingerprintType_v1
RDKit Morgan (ECFP-like) fingerprints, version 1

See http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMorganFingerprintAsBitVect

The RDKit-Morgan/1 FingerprintType parameters are:

•fpSize - number of bits in the fingerprint (default: 2048)

•radius - radius for the Morgan algorithm (default: 2)

•useFeatures - use chemical-feature invariants (default: 0)

•useChirality - use chirality information (default: 0)

•useBondTypes - include bond type information (default: 1)

RDKitAtomPairFingerprint_v1

class chemfp.rdkit_types.RDKitAtomPairFingerprint_v1
RDKit atom pair fingerprints, version 1”

See http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#
GetHashedAtomPairFingerprintAsBitVect

The RDKit-AtomPair/1 FingerprintType parameters are:

•fpSize - number of bits in the fingerprint (default: 2048)

•minLength - minimum bond count for a pair (default: 1)

•maxLength - maximum bond count for a pair (default: 30)

Note: this version is only available in older (pre-2012) versions of RDKit

242 Chapter 1. List of chapters

http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMACCSKeysFingerprint
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMACCSKeysFingerprint
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMorganFingerprintAsBitVect
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetHashedAtomPairFingerprintAsBitVect
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetHashedAtomPairFingerprintAsBitVect

chemfp Documentation, Release 3.1

RDKitAtomPairFingerprint_v2

class chemfp.rdkit_types.RDKitAtomPairFingerprint_v2
RDKit atom pair fingerprints, version 2”

See http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#
GetHashedAtomPairFingerprintAsBitVect

The RDKit-AtomPair/2 FingerprintType parameters are:

•fpSize - number of bits in the fingerprint (default: 2048)

•minLength - minimum bond count for a pair (default: 1)

•maxLength - maximum bond count for a pair (default: 30)

RDKitTorsionFingerprintType_v1

class chemfp.rdkit_types.RDKitTorsionFingerprintType_v1
RDKit torsion fingerprints, version 1

See http://www.rdkit.org/Python_Docs/rdkit.Chem.AtomPairs.Torsions-module.html

An implementation of Topological-torsion fingerprints, as described in: R. Nilakantan, N. Bauman, J. S. Dixon,
R. Venkataraghavan; “Topological Torsion: A New Molecular Descriptor for SAR Applications. Comparison
with Other Descriptors” JCICS 27, 82-85 (1987).

The RDKit-Torsion/1 FingerprintType parameters are:

•fpSize - number of bits in the fingerprint (default: 2048)

•targetSize - number of bonds per torsion (default: 4)

Note: this version is only available in older (pre-2014) versions of RDKit

RDKitTorsionFingerprintType_v2

class chemfp.rdkit_types.RDKitTorsionFingerprintType_v2
RDKit torsion fingerprints, version 2

See http://www.rdkit.org/Python_Docs/rdkit.Chem.AtomPairs.Torsions-module.html

An implementation of Topological-torsion fingerprints, as described in: R. Nilakantan, N. Bauman, J. S. Dixon,
R. Venkataraghavan; “Topological Torsion: A New Molecular Descriptor for SAR Applications. Comparison
with Other Descriptors” JCICS 27, 82-85 (1987).

The RDKit-Torsion/2 FingerprintType parameters are:

•fpSize - number of bits in the fingerprint (default: 2048)

•targetSize - number of bonds per torsion (default: 4)

RDKitPatternFingerprint_v1

class chemfp.rdkit_types.RDKitPatternFingerprint_v1
RDKit’s experimental substructure screen fingerprint, version 1

See http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint

The RDKit-Pattern/1 fingerprint has no parameters.

1.10. chemfp.types - fingerprint families and types 243

http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetHashedAtomPairFingerprintAsBitVect
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetHashedAtomPairFingerprintAsBitVect
http://www.rdkit.org/Python_Docs/rdkit.Chem.AtomPairs.Torsions-module.html
http://www.rdkit.org/Python_Docs/rdkit.Chem.AtomPairs.Torsions-module.html
http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint

chemfp Documentation, Release 3.1

RDKitPatternFingerprint_v2

class chemfp.rdkit_types.RDKitPatternFingerprint_v2
RDKit’s experimental substructure screen fingerprint, version 2

See http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint

The RDKit-Pattern/2 fingerprint has no parameters.

RDKitPatternFingerprint_v3

class chemfp.rdkit_types.RDKitPatternFingerprint_v3
RDKit’s experimental substructure screen fingerprint, version 3

See http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint

The RDKit-Pattern/3 fingerprint has no parameters. This version was released 2017.03.1.

RDKitAvalonFingerprintType_v1

class chemfp.rdkit_types.RDKitAvalonFingerprintType_v1
Avalon fingerprints

The Avalon Cheminformatics toolkit is available from https://sourceforge.net/projects/avalontoolkit/ . It is not
part of the core RDKit distribution. Instead, RDKit has a compile-time option to download and include it as part
of the build process.

The Avalon fingerprint are described in the supplemental information for “QSAR - How Good Is It in Practice?
Comparison of Descriptor Sets on an Unbiased Cross Section of Corporate Data Sets”, Peter Gedeck, Bernhard
Rohde, and Christian Bartels, J. Chem. Inf. Model., 2006, 46 (5), pp 1924-1936, DOI: 10.1021/ci050413p. The
supplemental information is available from http://pubs.acs.org/doi/suppl/10.1021/ci050413p

It uses a set of feature classes which “have been fine-tuned to provide good screen-out for the set of
substructure queries encounted at Novartis while limiting redundancy.” The classes are ATOM_COUNT,
ATOM_SYMBOL_PATH, AUGMENTED_ATOM, AUGMENTED_BOND, HCOUNT_PAIR,
HCOUNT_PATH, RING_PATH, BOND_PATH, HCOUNT_CLASS_PATH, ATOM_CLASS_PATH,
RING_PATTERN, RING_SIZE_COUNTS, DEGREE_PATHS, CLASS_SPIDERS, FEATURE_PAIRS
and ALL_PATTERNS.

SubstructRDKitFingerprintType_v1

class chemfp.rdkit_patterns.SubstructRDKitFingerprintType_v1
chemfp’s Substruct fingerprint implementation for RDKit, version 1

WARNING: these fingerprints have not been validated.

The Substruct fingerprints are CACTVS/PubChem-like fingerprints designed for use across multiple toolkits.

The ChemFP-Substruct-RDKit/1 FingerprintType has no parameters.

RDMACCSRDKitFingerprinter_v1

class chemfp.rdkit_patterns.RDMACCSRDKitFingerprinter_v1
chemfp’s RDMACCS fingerprint implementation for RDKit, version 1

244 Chapter 1. List of chapters

http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint
http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint
https://sourceforge.net/projects/avalontoolkit/
http://pubs.acs.org/doi/suppl/10.1021/ci050413p

chemfp Documentation, Release 3.1

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but designed
to be (slightly) more portable across multiple chemistry toolkits.

This version does not define key 44.

The RDMACSS-RDKit/1 FingerprintType has no parameters.

RDMACCSRDKitFingerprinter_v2

class chemfp.rdkit_patterns.RDMACCSRDKitFingerprinter_v2
chemfp’s RDMACCS fingerprint implementation for RDKit, version 2

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but designed
to be (slightly) more portable across multiple chemistry toolkits.

This version defines key 44.

The RDMACSS-RDKit/2 FingerprintType has no parameters.

chemfp.arena module

There should be no reason for you to import this module yourself. It contains the FingerprintArena implemen-
tation. FingerprintArena instances are returns part of the public API but should not be constructed directly.

FingerprintArena

class chemfp.arena.FingerprintArena

Store fingerprints in a contiguous block of memory for fast searches

A fingerprint arena implements the chemfp.FingerprintReader API.

A fingerprint arena stores all of the fingerprints in a continuous block of memory, so the per-molecule
overhead is very low.

The fingerprints can be sorted by popcount, so the fingerprints with no bits set come first, followed
by those with 1 bit, etc. If self.popcount_indices is a non-empty string then the string
contains information about the start and end offsets for all the fingerprints with a given popcount.
This information is used for the sublinear search methods.

The public attributes are:

metadata
chemfp.Metadata about the fingerprints

ids
list of identifiers, in index order

Other attributes, which might be subject to change, and which I won’t fully explain, are:

• arena - a contiguous block of memory, which contains the fingerprints

• start_padding - number of bytes to the first fingerprint in the block

• end_padding - number of bytes after the last fingerprint in the block

• storage_size - number of bytes used to store a fingerprint

• num_bytes - number of bytes in each fingerprint (must be <= storage_size)

1.11. chemfp.arena module 245

chemfp Documentation, Release 3.1

• num_bits - number of bits in each fingerprint

• alignment - the fingerprint alignment

• start - the index for the first fingerprint in the arena/subarena

• end - the index for the last fingerprint in the arena/subarena

• arena_ids - all of the identifiers for the parent arena

The FingerprintArena is its own context manager, but it does nothing on context exit. This is a bug
when the FingerprintArena uses a memory-mapped FPB file because there is currently no explicit
way to close the file. Only the garbage collector is able to do that.

__len__()
Number of fingerprint records in the FingerprintArena

__getitem__(i)
Return the (id, fingerprint) pair at index i

__iter__()
Iterate over the (id, fingerprint) contents of the arena

get_fingerprint_type()
Get the fingerprint type object based on the metadata’s type field

This uses self.metadata.type to get the fingerprint type string then calls chemfp.
get_fingerprint_type() to get and return a chemfp.types.FingerprintType instance.

This will raise a TypeError if there is no metadata, and a ValueError if the type field was invalid or the
fingerprint type isn’t available.

Returns a chemfp.types.FingerprintType

get_fingerprint(i)
Return the fingerprint at index i

Raises an IndexError if index i is out of range.

get_by_id(id)
Given the record identifier, return the (id, fingerprint) pair,

If the id is not present then return None.

get_index_by_id(id)
Given the record identifier, return the record index

If the id is not present then return None.

get_fingerprint_by_id(id)
Given the record identifier, return its fingerprint

If the id is not present then return None

save(destination, format=None)
Save the fingerprints to a given destination and format

The output format is based on the format. If the format is None then the format depends on the destination
file extension. If the extension isn’t recognized then the fingerprints will be saved in “fps” format.

If the output format is “fps” or “fps.gz” then destination may be a filename, a file object, or None; None
writes to stdout.

If the output format is “fpb” then destination must be a filename.

Parameters

246 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• destination (a filename, file object, or None) – the output destina-
tion

• format (None, "fps", "fps.gz", or "fpb") – the output format

Returns None

iter_arenas(arena_size = 1000)
Base class for all chemfp objects holding fingerprint records

All FingerprintReader instances have a metadata attribute containing a Metadata and can be iteratated
over to get the (id, fingerprint) for each record.

copy(indices=None, reorder=None)
Create a new arena using either all or some of the fingerprints in this arena

By default this create a new arena. The fingerprint data block and ids may be shared with the original
arena, which makes this a shallow copy. If the original arena is a slice, or “sub-arena” of an arena, then the
copy will allocate new space to store just the fingerprints in the slice and use its own list for the ids.

The indices parameter, if not None, is an iterable which contains the indicies of the fingerprint records to
copy. Duplicates are allowed, though discouraged.

If indices are specified then the default reorder value of None, or the value True, will reorder the finger-
prints for the new arena by popcount. This improves overall search performance. If reorder is False then
the new arena will preserve the order given by the indices.

If indices are not specified, then the default is to preserve the order type of the original arena. Use
reorder=True to always reorder the fingerprints in the new arena by popcount, and reorder=False
to always leave them in the current ordering.

>>> import chemfp
>>> arena = chemfp.load_fingerprints("pubchem_queries.fps")
>>> arena.ids[1], arena.ids[5], arena.ids[10], arena.ids[18]
(b'9425031', b'9425015', b'9425040', b'9425033')
>>> len(arena)
19
>>> new_arena = arena.copy(indices=[1, 5, 10, 18])
>>> len(new_arena)
4
>>> new_arena.ids
[b'9425031', b'9425015', b'9425040', b'9425033']
>>> new_arena = arena.copy(indices=[18, 10, 5, 1], reorder=False)
>>> new_arena.ids
[b'9425033', b'9425040', b'9425015', b'9425031']

Parameters

• indices (iterable containing integers, or None) – indicies of the
records to copy into the new arena

• reorder (True to reorder, False to leave in input order,
None for default action) – describes how to order the fingerprints

count_tanimoto_hits_fp(query_fp, threshold=0.7)
Count the fingerprints which are sufficiently similar to the query fingerprint

Return the number of fingerprints in the arena which are at least threshold similar to the query fingerprint
query_fp.

Parameters

1.11. chemfp.arena module 247

chemfp Documentation, Release 3.1

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns integer count

threshold_tanimoto_search_fp(query_fp, threshold=0.7)
Find the fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this arena which are at least threshold similar to the query fingerprint
query_fp. The hits are returned as a SearchResult, in arbitrary order.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

knearest_tanimoto_search_fp(query_fp, k=3, threshold=0.7)
Find the k-nearest fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this arena which are at least threshold similar to the query fingerprint, and
of those, select the top k hits. The hits are returned as a SearchResult, sorted from highest score to
lowest.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

count_tversky_hits_fp(query_fp, threshold=0.7, alpha=1.0, beta=1.0)
Count the fingerprints which are sufficiently similar to the query fingerprint

Return the number of fingerprints in the arena which are at least threshold similar to the query fingerprint
query_fp.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns integer count

threshold_tversky_search_fp(query_fp, threshold=0.7, alpha=1.0, beta=1.0)
Find the fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this arena which are at least threshold similar to the query fingerprint
query_fp. The hits are returned as a SearchResult, in arbitrary order.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

248 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

knearest_tversky_search_fp(query_fp, k=3, threshold=0.7, alpha=1.0, beta=1.0)
Find the k-nearest fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this arena which are at least threshold similar to the query fingerprint, and
of those, select the top k hits. The hits are returned as a SearchResult, sorted from highest score to
lowest.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

chemfp.search module

The following functions and classes are in the chemfp.search module.

There are three main classes of functions. The ones ending with *_fp use a query fingerprint to search a target arena.
The ones ending with *_arena use a query arena to search a target arena. The ones ending with *_symmetric use
arena to search itself, except that a fingerprint is not tested against itself.

These functions share the same name with very similar functions in the top-level chemfp module. My apologies
for any confusion. The top-level functions are designed to work with both arenas and iterators as the target. They
give a simple search API, and automatically process in blocks, to give a balanced trade-off between performance and
response time for the first results.

The functions in this module only work with arena as the target. By default it searches the entire arena before returning.
If you want to process portions of the arena then you need to specify the range yourself.

chemfp.search.count_tanimoto_hits_fp(query_fp, target_arena, threshold=0.7)
Count the number of hits in target_arena at least threshold similar to the query_fp

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(chemfp.search.count_tanimoto_hits_fp(query_fp, targets, threshold=0.1))

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena – the target arena

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns an integer count

chemfp.search.count_tanimoto_hits_arena(query_arena, target_arena, threshold=0.7)
For each fingerprint in query_arena, count the number of hits in target_arena at least threshold similar to it

Example:

1.12. chemfp.search module 249

chemfp Documentation, Release 3.1

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tanimoto_hits_arena(queries, targets, threshold=0.1)
print(counts[:10])

The result is implementation specific. You’ll always be able to get its length and do an index lookup to get an
integer count. Currently it’s a ctypes array of longs, but it could be an array.array or Python list in the future.

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns an array of counts

chemfp.search.count_tanimoto_hits_symmetric(arena, threshold=0.7, batch_size=100)
For each fingerprint in the arena, count the number of other fingerprints at least threshold similar to it

A fingerprint never matches itself.

The computation can take a long time. Python won’t check check for a ^C until the function finishes. This can
be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. I can’t detect any performance difference
between the current value and a larger value, so it seems rather pointless to have. Let me know if it’s useful to
keep as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tanimoto_hits_symmetric(arena, threshold=0.2)
print(counts[:10])

The result object is implementation specific. You’ll always be able to get its length and do an index lookup to
get an integer count. Currently it’s a ctype array of longs, but it could be an array.array or Python list in the
future.

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns an array of counts

chemfp.search.partial_count_tanimoto_hits_symmetric(counts, arena, thresh-
old=0.7, query_start=0,
query_end=None, tar-
get_start=0, target_end=None)

Compute a portion of the symmetric Tanimoto counts

For most cases, use chemfp.search.count_tanimoto_hits_symmetric() instead of this function!

This function is only useful for thread-pool implementations. In that case, set the number of OpenMP threads
to 1.

counts is a contiguous array of integers. It should be initialized to zeros, and reused for successive calls.

250 Chapter 1. List of chapters

https://docs.python.org/2/library/ctypes.html#arrays
https://docs.python.org/2/library/array.html

chemfp Documentation, Release 3.1

The function adds counts for counts[query_start:query_end] based on computing the upper-triangle portion
contained in the rectangle query_start:query_end and target_start:target_end* and using symmetry to fill in the
lower half.

You know, this is pretty complicated. Here’s the bare minimum example of how to use it correctly to process 10
rows at a time using up to 4 threads:

import chemfp
import chemfp.search
from chemfp import futures
import array

chemfp.set_num_threads(1) # Globally disable OpenMP

arena = chemfp.load_fingerprints("targets.fps") # Load the fingerprints
n = len(arena)
counts = array.array("i", [0]*n)

with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):

executor.submit(chemfp.search.partial_count_tanimoto_hits_symmetric,
counts, arena, threshold=0.2,
query_start=row, query_end=min(row+10, n))

print(counts)

Parameters

• counts (a contiguous block of integer) – the accumulated Tanimoto counts

• arena (a chemfp.arena.FingerprintArena) – the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• query_start (an integer) – the query start row

• query_end (an integer, or None to mean the last query row) – the
query end row

• target_start (an integer) – the target start row

• target_end (an integer, or None to mean the last target row) –
the target end row

Returns None

chemfp.search.count_tversky_hits_fp(query_fp, target_arena, threshold=0.7, alpha=1.0,
beta=1.0)

Count the number of hits in target_arena least threshold similar to the query_fp (Tversky)

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(chemfp.search.count_tversky_hits_fp(query_fp, targets, threshold=0.1))

Parameters

• query_fp (a byte string) – the query fingerprint

1.12. chemfp.search module 251

chemfp Documentation, Release 3.1

• target_arena – the target arena

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns an integer count

chemfp.search.count_tversky_hits_arena(query_arena, target_arena, threshold=0.7, al-
pha=1.0, beta=1.0)

For each fingerprint in query_arena, count the number of hits in target_arena at least threshold similar to it

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tversky_hits_arena(queries, targets, threshold=0.1,

alpha=0.5, beta=0.5)
print(counts[:10])

The result is implementation specific. You’ll always be able to get its length and do an index lookup to get an
integer count. Currently it’s a ctypes array of longs, but it could be an array.array or Python list in the future.

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns an array of counts

chemfp.search.count_tversky_hits_symmetric(arena, threshold=0.7, alpha=1.0, beta=1.0,
batch_size=100)

For each fingerprint in the arena, count the number of other fingerprints at least threshold similar to it

A fingerprint never matches itself.

The computation can take a long time. Python won’t check check for a ^C until the function finishes. This can
be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. I can’t detect any performance difference
between the current value and a larger value, so it seems rather pointless to have. Let me know if it’s useful to
keep as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tversky_hits_symmetric(

arena, threshold=0.2, alpha=0.5, beta=0.5)
print(counts[:10])

The result object is implementation specific. You’ll always be able to get its length and do an index lookup to
get an integer count. Currently it’s a ctype array of longs, but it could be an array.array or Python list in the
future.

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

252 Chapter 1. List of chapters

https://docs.python.org/2/library/ctypes.html#arrays
https://docs.python.org/2/library/array.html

chemfp Documentation, Release 3.1

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns an array of counts

chemfp.search.partial_count_tversky_hits_symmetric(counts, arena, thresh-
old=0.7, alpha=1.0,
beta=1.0, query_start=0,
query_end=None, target_start=0,
target_end=None)

Compute a portion of the symmetric Tversky counts

For most cases, use chemfp.search.count_tversky_hits_symmetric() instead of this function!

This function is only useful for thread-pool implementations. In that case, set the number of OpenMP threads
to 1.

counts is a contiguous array of integers. It should be initialized to zeros, and reused for successive calls.

The function adds counts for counts[query_start:query_end] based on computing the upper-triangle portion
contained in the rectangle query_start:query_end and target_start:target_end* and using symmetry to fill in the
lower half.

You know, this is pretty complicated. Here’s the bare minimum example of how to use it correctly to process 10
rows at a time using up to 4 threads:

import chemfp
import chemfp.search
from chemfp import futures
import array

chemfp.set_num_threads(1) # Globally disable OpenMP

arena = chemfp.load_fingerprints("targets.fps") # Load the fingerprints
n = len(arena)
counts = array.array("i", [0]*n)

with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):

executor.submit(chemfp.search.partial_count_tversky_hits_symmetric,
counts, arena, threshold=0.2, alpha=0.5, beta=0.5,
query_start=row, query_end=min(row+10, n))

print(counts)

Parameters

• counts (a contiguous block of integer) – the accumulated Tversky counts

• arena (a chemfp.arena.FingerprintArena) – the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• query_start (an integer) – the query start row

• query_end (an integer, or None to mean the last query row) – the
query end row

• target_start (an integer) – the target start row

• target_end (an integer, or None to mean the last target row) –
the target end row

1.12. chemfp.search module 253

chemfp Documentation, Release 3.1

Returns None

chemfp.search.threshold_tanimoto_search_fp(query_fp, target_arena, threshold=0.7)
Search for fingerprint hits in target_arena which are at least threshold similar to query_fp

The hits in the returned chemfp.search.SearchResult are in arbitrary order.

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(list(chemfp.search.threshold_tanimoto_search_fp(query_fp, targets,
→˓threshold=0.15)))

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena (a chemfp.arena.FingerprintArena) – the target arena

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResult

chemfp.search.threshold_tanimoto_search_arena(query_arena, target_arena, thresh-
old=0.7)

Search for the hits in the target_arena at least threshold similar to the fingerprints in query_arena

The hits in the returned chemfp.search.SearchResults are in arbitrary order.

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.threshold_tanimoto_search_arena(queries, targets,
→˓threshold=0.5)
for query_id, query_hits in zip(queries.ids, results):

if len(query_hits) > 0:
print(query_id, "->", ", ".join(query_hits.get_ids()))

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResults

chemfp.search.threshold_tanimoto_search_symmetric(arena, threshold=0.7, in-
clude_lower_triangle=True,
batch_size=100)

Search for the hits in the arena at least threshold similar to the fingerprints in the arena

When include_lower_triangle is True, compute the upper-triangle similarities, then copy the results to get the
full set of results. When include_lower_triangle is False, only compute the upper triangle.

The hits in the returned chemfp.search.SearchResults are in arbitrary order.

254 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

The computation can take a long time. Python won’t check check for a ^C until the function finishes. This can
be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. Let me know if it really is useful for you to
have as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("queries.fps")
full_result = chemfp.search.threshold_tanimoto_search_symmetric(arena,
→˓threshold=0.2)
upper_triangle = chemfp.search.threshold_tanimoto_search_symmetric(

arena, threshold=0.2, include_lower_triangle=False)
assert sum(map(len, full_result)) == sum(map(len, upper_triangle))*2

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• include_lower_triangle (boolean) – if False, compute only the upper triangle,
otherwise use symmetry to compute the full matrix

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns a chemfp.search.SearchResults

chemfp.search.partial_threshold_tanimoto_search_symmetric(results, arena,
threshold=0.7,
query_start=0,
query_end=None,
target_start=0, tar-
get_end=None, re-
sults_offset=0)

Compute a portion of the symmetric Tanimoto search results

For most cases, use chemfp.search.threshold_tanimoto_search_symmetric() instead of this
function!

This function is only useful for thread-pool implementations. In that case, set the number of OpenMP threads
to 1.

results is a chemfp.search.SearchResults instance which is at least as large as the arena. It should be
reused for successive updates.

The function adds hits to results[query_start:query_end], based on computing the upper-triangle portion con-
tained in the rectangle query_start:query_end and target_start:target_end.

It does not fill in the lower triangle. To get the full matrix, call fill_lower_triangle.

You know, this is pretty complicated. Here’s the bare minimum example of how to use it correctly to process 10
rows at a time using up to 4 threads:

import chemfp
import chemfp.search
from chemfp import futures
import array

chemfp.set_num_threads(1)

1.12. chemfp.search module 255

chemfp Documentation, Release 3.1

arena = chemfp.load_fingerprints("targets.fps")
n = len(arena)
results = chemfp.search.SearchResults(n, n, arena.ids)

with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):

executor.submit(chemfp.search.partial_threshold_tanimoto_search_symmetric,
results, arena, threshold=0.2,
query_start=row, query_end=min(row+10, n))

chemfp.search.fill_lower_triangle(results)

The hits in the chemfp.search.SearchResults are in arbitrary order.

Parameters

• results (a chemfp.search.SearchResults instance) – the intermediate search
results

• arena (a chemfp.arena.FingerprintArena) – the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• query_start (an integer) – the query start row

• query_end (an integer, or None to mean the last query row) – the
query end row

• target_start (an integer) – the target start row

• target_end (an integer, or None to mean the last target row) –
the target end row

• results_offset – use results[results_offset] as the base for the results

• results_offset – an integer

Returns None

chemfp.search.fill_lower_triangle(results)
Duplicate each entry of results to its transpose

This is used after the symmetric threshold search to turn the upper-triangle results into a full matrix.

Parameters results (a chemfp.search.SearchResults) – search results

chemfp.search.threshold_tversky_search_fp(query_fp, target_arena, threshold=0.7, al-
pha=1.0, beta=1.0)

Search for fingerprint hits in target_arena which are at least threshold similar to query_fp

The hits in the returned chemfp.search.SearchResult are in arbitrary order.

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(list(chemfp.search.threshold_tversky_search_fp(

query_fp, targets, threshold=0.15, alpha=0.5, beta=0.5)))

Parameters

• query_fp (a byte string) – the query fingerprint

256 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• target_arena (a chemfp.arena.FingerprintArena) – the target arena

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResult

chemfp.search.threshold_tversky_search_arena(query_arena, target_arena, threshold=0.7,
alpha=1.0, beta=1.0)

Search for the hits in the target_arena at least threshold similar to the fingerprints in query_arena

The hits in the returned chemfp.search.SearchResults are in arbitrary order.

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.threshold_tversky_search_arena(

queries, targets, threshold=0.5, alpha=0.5, beta=0.5)
for query_id, query_hits in zip(queries.ids, results):

if len(query_hits) > 0:
print(query_id, "->", ", ".join(query_hits.get_ids()))

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResults

chemfp.search.threshold_tversky_search_symmetric(arena, threshold=0.7, al-
pha=1.0, beta=1.0, in-
clude_lower_triangle=True,
batch_size=100)

Search for the hits in the arena at least threshold similar to the fingerprints in the arena

When include_lower_triangle is True, compute the upper-triangle similarities, then copy the results to get the
full set of results. When include_lower_triangle is False, only compute the upper triangle.

The hits in the returned chemfp.search.SearchResults are in arbitrary order.

The computation can take a long time. Python won’t check check for a ^C until the function finishes. This can
be irritating. Instead, process only batch_size rows at a time before checking for a ^C

Note: the batch_size may disappear in future versions of chemfp. Let me know if it really is useful for you to
have as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("queries.fps")
full_result = chemfp.search.threshold_tversky_search_symmetric(

arena, threshold=0.2, alpha=0.5, beta=0.5)
upper_triangle = chemfp.search.threshold_tversky_search_symmetric(

arena, threshold=0.2, alpha=0.5, beta=0.5, include_lower_triangle=False)
assert sum(map(len, full_result)) == sum(map(len, upper_triangle))*2

Parameters

1.12. chemfp.search module 257

chemfp Documentation, Release 3.1

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• include_lower_triangle (boolean) – if False, compute only the upper triangle,
otherwise use symmetry to compute the full matrix

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns a chemfp.search.SearchResults

chemfp.search.partial_threshold_tversky_search_symmetric(results, arena, thresh-
old=0.7, alpha=1.0,
beta=1.0, query_start=0,
query_end=None,
target_start=0, tar-
get_end=None, re-
sults_offset=0)

Compute a portion of the symmetric Tversky search results

For most cases, use chemfp.search.threshold_tversky_search_symmetric() instead of this
function!

This function is only useful for thread-pool implementations. In that case, set the number of OpenMP threads
to 1.

results is a chemfp.search.SearchResults instance which is at least as large as the arena. It should be
reused for successive updates.

The function adds hits to results[query_start:query_end], based on computing the upper-triangle portion con-
tained in the rectangle query_start:query_end and target_start:target_end.

It does not fill in the lower triangle. To get the full matrix, call fill_lower_triangle.

You know, this is pretty complicated. Here’s the bare minimum example of how to use it correctly to process 10
rows at a time using up to 4 threads:

import chemfp
import chemfp.search
from chemfp import futures
import array

chemfp.set_num_threads(1)

arena = chemfp.load_fingerprints("targets.fps")
n = len(arena)
results = chemfp.search.SearchResults(n, n, arena.ids)

with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):

executor.submit(chemfp.search.partial_threshold_tversky_search_symmetric,
results, arena, threshold=0.2, alpha=0.5, beta=0.5,
query_start=row, query_end=min(row+10, n))

chemfp.search.fill_lower_triangle(results)

The hits in the chemfp.search.SearchResults are in arbitrary order.

Parameters

• counts (a SearchResults instance) – the intermediate search results

258 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• arena (a chemfp.arena.FingerprintArena) – the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• query_start (an integer) – the query start row

• query_end (an integer, or None to mean the last query row) – the
query end row

• target_start (an integer) – the target start row

• target_end (an integer, or None to mean the last target row) –
the target end row

• results_offset – use results[results_offset] as the base for the results

• results_offset – an integer

Returns None

chemfp.search.knearest_tanimoto_search_fp(query_fp, target_arena, k=3, threshold=0.7)
Search for k-nearest hits in target_arena which are at least threshold similar to query_fp

The hits in the chemfp.search.SearchResults are ordered by decreasing similarity score.

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(list(chemfp.search.knearest_tanimoto_search_fp(query_fp, targets, k=3,
→˓threshold=0.0)))

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena (a chemfp.arena.FingerprintArena) – the target arena

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResult

chemfp.search.knearest_tanimoto_search_arena(query_arena, target_arena, k=3, thresh-
old=0.7)

Search for the k nearest hits in the target_arena at least threshold similar to the fingerprints in query_arena

The hits in the chemfp.search.SearchResults are ordered by decreasing similarity score.

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.knearest_tanimoto_search_arena(queries, targets, k=3,
→˓threshold=0.5)
for query_id, query_hits in zip(queries.ids, results):

if len(query_hits) >= 2:
print(query_id, "->", ", ".join(query_hits.get_ids()))

Parameters

1.12. chemfp.search module 259

chemfp Documentation, Release 3.1

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResults

chemfp.search.knearest_tanimoto_search_symmetric(arena, k=3, threshold=0.7,
batch_size=100)

Search for the k-nearest hits in the arena at least threshold similar to the fingerprints in the arena

The hits in the SearchResults are ordered by decreasing similarity score.

The computation can take a long time. Python won’t check check for a ^C until the function finishes. This can
be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. Let me know if it really is useful for you to
keep as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("queries.fps")
results = chemfp.search.knearest_tanimoto_search_symmetric(arena, k=3,
→˓threshold=0.8)
for (query_id, hits) in zip(arena.ids, results):

print(query_id, "->", ", ".join(("%s %.2f" % hit) for hit in hits.get_ids_
→˓and_scores()))

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• include_lower_triangle (boolean) – if False, compute only the upper triangle,
otherwise use symmetry to compute the full matrix

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns a chemfp.search.SearchResults

chemfp.search.knearest_tversky_search_fp(query_fp, target_arena, k=3, threshold=0.7, al-
pha=1.0, beta=1.0)

Search for k-nearest hits in target_arena which are at least threshold similar to query_fp

The hits in the chemfp.search.SearchResults are ordered by decreasing similarity score.

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(list(chemfp.search.knearest_tversky_search_fp(

query_fp, targets, k=3, threshold=0.0, alpha=0.5, beta=0.5)))

Parameters

260 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• query_fp (a byte string) – the query fingerprint

• target_arena – the target arena

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResults

chemfp.search.knearest_tversky_search_arena(query_arena, target_arena, k=3, thresh-
old=0.7, alpha=1.0, beta=1.0)

Search for the k nearest hits in the target_arena at least threshold similar to the fingerprints in query_arena

The hits in the chemfp.search.SearchResults are ordered by decreasing similarity score.

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.knearest_tversky_search_arena(

queries, targets, k=3, threshold=0.5, alpha=0.5, beta=0.5)
for query_id, query_hits in zip(queries.ids, results):

if len(query_hits) >= 2:
print(query_id, "->", ", ".join(query_hits.get_ids()))

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

Returns a chemfp.search.SearchResults

chemfp.search.knearest_tversky_search_symmetric(arena, k=3, threshold=0.7, alpha=1.0,
beta=1.0, batch_size=100)

Search for the k-nearest hits in the arena at least threshold similar to the fingerprints in the arena

The hits in the SearchResults are ordered by decreasing similarity score.

The computation can take a long time. Python won’t check check for a ^C until the function finishes. This can
be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. Let me know if it really is useful for you to
keep as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("queries.fps")
results = chemfp.search.knearest_tversky_search_symmetric(

arena, k=3, threshold=0.8, alpha=0.5, beta=0.5)
for (query_id, hits) in zip(arena.ids, results):

print(query_id, "->", ", ".join(("%s %.2f" % hit) for hit in hits.get_ids_
→˓and_scores()))

Parameters

1.12. chemfp.search module 261

chemfp Documentation, Release 3.1

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum
score threshold.

• include_lower_triangle (boolean) – if False, compute only the upper triangle,
otherwise use symmetry to compute the full matrix

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns a chemfp.search.SearchResults

chemfp.search.contains_fp(query_fp, target_arena)
Find the target fingerprints which contain the query fingerprint bits as a subset

A target fingerprint contains a query fingerprint if all of the on bits of the query fingerprint are also on bits of
the target fingerprint. This function returns a chemfp.search.SearchResult containing all of the target
fingerprints in target_arena that contain the query_fp.

The SearchResult scores are all 0.0.

There is currently no direct way to limit the arena search range. Instead create a subarena by using Python’s
slice notation on the arena then search the subarena.

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

Returns a SearchResult instance

chemfp.search.contains_arena(query_arena, target_arena)
Find the target fingerprints which contain the query fingerprints as a subset

A target fingerprint contains a query fingerprint if all of the on bits of the query fingerprint are also on bits of
the target fingerprint. This function returns a chemfp.search.SearchResults where SearchResults[i]
contains all of the target fingerprints in target_arena that contain the fingerprint for entry query_arena [i].

The SearchResult scores are all 0.0.

There is currently no direct way to limit the arena search range, though you can create and search a subarena by
using Python’s slice notation.

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – the query fingerprints

• target_arena (a chemfp.arena.FingerprintArena) – the target fingerprints

Returns a chemfp.search.SearchResults instance, of the same size as query_arena

SearchResults

class chemfp.search.SearchResults

Search results for a list of query fingerprints against a target arena

This acts like a list of SearchResult elements, with the ability to iterate over each search results, look
them up by index, and get the number of scores.

In addition, there are helper methods to iterate over each hit and to get the hit indicies, scores, and
identifiers directly as Python lists, sort the list contents, and more.

262 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

__len__()
The number of rows in the SearchResults

__iter__()
Iterate over each SearchResult hit

__getitem__(i)
Get the i-th SearchResult

shape
Read-only attribute.

the tuple (number of rows, number of columns)

The number of columns is the size of the target arena.

iter_indices()
For each hit, yield the list of target indices

iter_ids()
For each hit, yield the list of target identifiers

iter_scores()
For each hit, yield the list of target scores

iter_indices_and_scores()
For each hit, yield the list of (target index, score) tuples

iter_ids_and_scores()
For each hit, yield the list of (target id, score) tuples

clear_all()
Remove all hits from all of the search results

count_all(min_score=None, max_score=None, interval=”[]”)
Count the number of hits with a score between min_score and max_score

Using the default parameters this returns the number of hits in the result.

The default min_score of None is equivalent to -infinity. The default max_score of None is equivalent to
+infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed interval,
where min_score <= score <= max_score. The interval “()” uses the open interval where min_score <
score < max_score. The half-open/half-closed intervals “(]” and “[)” are also supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns an integer count

cumulative_score_all(min_score=None, max_score=None, interval=”[]”)
The sum of all scores in all rows which are between min_score and max_score

Using the default parameters this returns the sum of all of the scores in all of the results. With a specified
range this returns the sum of all of the scores in that range. The cumulative score is also known as the raw
score.

1.12. chemfp.search module 263

chemfp Documentation, Release 3.1

The default min_score of None is equivalent to -infinity. The default max_score of None is equivalent to
+infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed interval,
where min_score <= score <= max_score. The interval “()” uses the open interval where min_score <
score < max_score. The half-open/half-closed intervals “(]” and “[)” are also supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns a floating point count

reorder_all(order=”decreasing-score”)
Reorder the hits for all of the rows based on the requested order.

The available orderings are:

•increasing-score - sort by increasing score

•decreasing-score - sort by decreasing score

•increasing-index - sort by increasing target index

•decreasing-index - sort by decreasing target index

•move-closest-first - move the hit with the highest score to the first position

•reverse - reverse the current ordering

Parameters ordering (string) – the name of the ordering to use

to_csr(dtype=None)
Return the results as a SciPy compressed sparse row matrix.

The returned matrix has the same shape as the SearchResult instance and can be passed into, for example,
a scikit-learn clustering algorithm.

By default the scores are stored with the dtype is “float64”.

This method requires that SciPy (and NumPy) be installed.

Parameters dtype (string or NumPy type) – a NumPy numeric data type

SearchResult

class chemfp.search.SearchResult

Search results for a query fingerprint against a target arena.

The results contains a list of hits. Hits contain a target index, score, and optional target ids. The hits
can be reordered based on score or index.

__len__()
The number of hits

264 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

__iter__()
Iterate through the pairs of (target index, score) using the current ordering

clear()
Remove all hits from this result

get_indices()
The list of target indices, in the current ordering.

get_ids()
The list of target identifiers (if available), in the current ordering

iter_ids()
Iterate over target identifiers (if available), in the current ordering

get_scores()
The list of target scores, in the current ordering

get_ids_and_scores()
The list of (target identifier, target score) pairs, in the current ordering

Raises a TypeError if the target IDs are not available.

get_indices_and_scores()
The list of (target index, score) pairs, in the current ordering

reorder(ordering=”decreasing-score”)
Reorder the hits based on the requested ordering.

The available orderings are:

• increasing-score - sort by increasing score

• decreasing-score - sort by decreasing score

• increasing-index - sort by increasing target index

• decreasing-index - sort by decreasing target index

• move-closest-first - move the hit with the highest score to the first position

• reverse - reverse the current ordering

Parameters ordering (string) – the name of the ordering to use

count(min_score=None, max_score=None, interval=”[]”)
Count the number of hits with a score between min_score and max_score

Using the default parameters this returns the number of hits in the result.

The default min_score of None is equivalent to -infinity. The default max_score of None is equivalent to
+infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed interval,
where min_score <= score <= max_score. The interval “()” uses the open interval where min_score <
score < max_score. The half-open/half-closed intervals “(]” and “[)” are also supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

1.12. chemfp.search module 265

chemfp Documentation, Release 3.1

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns an integer count

cumulative_score(min_score=None, max_score=None, interval=”[]”)
The sum of the scores which are between min_score and max_score

Using the default parameters this returns the sum of all of the scores in the result. With a specified range
this returns the sum of all of the scores in that range. The cumulative score is also known as the raw score.

The default min_score of None is equivalent to -infinity. The default max_score of None is equivalent to
+infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed interval,
where min_score <= score <= max_score. The interval “()” uses the open interval where min_score <
score < max_score. The half-open/half-closed intervals “(]” and “[)” are also supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns a floating point value

chemfp.bitops module

The following functions from the chemfp.bitops module provide low-level bit operations on byte and hex fingerprints.

chemfp.bitops.byte_contains(sub_fp, super_fp)
Return 1 if the on bits of sub_fp are also 1 bits in super_fp, that is, if super_fp contains sub_fp.

chemfp.bitops.byte_contains_bit(fp, bit_index)
Return True if the the given bit position is on, otherwise False

chemfp.bitops.byte_difference(fp1, fp2)
Return the absolute difference (xor) between the two byte strings, fp1 ^ fp2

chemfp.bitops.byte_from_bitlist(fp[, num_bits=1024])
Convert a list of bit positions into a byte fingerprint, including modulo folding

chemfp.bitops.byte_hex_tanimoto(fp1, fp2)
Compute the Tanimoto similarity between the byte fingerprint fp1 and the hex fingerprint fp2. Return a float
between 0.0 and 1.0, or raise a ValueError if fp2 is not a hex fingerprint

chemfp.bitops.byte_hex_tversky(fp1, fp2, alpha=1.0, beta=1.0)
Compute the Tversky index between the byte fingerprint fp1 and the hex fingerprint fp2. Return a float between
0.0 and 1.0, or raise a ValueError if fp2 is not a hex fingerprint

chemfp.bitops.byte_intersect(fp1, fp2)
Return the intersection of the two byte strings, fp1 & fp2

chemfp.bitops.byte_intersect_popcount(fp1, fp2)
Return the number of bits set in the instersection of the two byte fingerprints fp1 and fp2

266 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

chemfp.bitops.byte_popcount(fp)
Return the number of bits set in the byte fingerprint fp

chemfp.bitops.byte_tanimoto(fp1, fp2)
Compute the Tanimoto similarity between the two byte fingerprints fp1 and fp2

chemfp.bitops.byte_to_bitlist(bitlist)
Return a sorted list of the on-bit positions in the byte fingerprint

chemfp.bitops.byte_tversky(fp1, fp2, alpha=1.0, beta=1.0)
Compute the Tversky index between the two byte fingerprints fp1 and fp2

chemfp.bitops.byte_union(fp1, fp2)
Return the union of the two byte strings, fp1 | fp2

chemfp.bitops.hex_contains(sub_fp, super_fp)
Return 1 if the on bits of sub_fp are also on bits in super_fp, otherwise 0. Return -1 if either string is not a hex
fingerprint

chemfp.bitops.hex_contains_bit(fp, bit_index)
Return True if the the given bit position is on, otherwise False.

This function does not validate that the hex fingerprint is actually in hex.

chemfp.bitops.hex_difference(fp1, fp2)
Return the absolute difference (xor) between the two hex strings, fp1 ^ fp2. Raises a ValueError for non-hex
fingerprints.

chemfp.bitops.hex_from_bitlist(fp[, num_bits=1024])
Convert a list of bit positions into a hex fingerprint, including modulo folding

chemfp.bitops.hex_intersect(fp1, fp2)
Return the intersection of the two hex strings, fp1 & fp2. Raises a ValueError for non-hex fingerprints.

chemfp.bitops.hex_intersect_popcount(fp1, fp2)
Return the number of bits set in the intersection of the two hex fingerprints fp1 and fp2, or raise a ValueError if
either string is a non-hex string

chemfp.bitops.hex_isvalid(s)
Return 1 if the string s is a valid hex fingerprint, otherwise 0

chemfp.bitops.hex_popcount(fp)
Return the number of bits set in a hex fingerprint fp, or -1 for non-hex strings

chemfp.bitops.hex_tanimoto(fp1, fp2)
Compute the Tanimoto similarity between two hex fingerprints. Return a float between 0.0 and 1.0, or raise a
ValueError if either string is not a hex fingerprint

chemfp.bitops.hex_tversky(fp1, fp2, alpha=1.0, beta=1.0)
Compute the Tversky index between two hex fingerprints. Return a float between 0.0 and 1.0, or raise a Val-
ueError if either string is not a hex fingerprint

chemfp.bitops.hex_to_bitlist(bitlist)
Return a sorted list of the on-bit positions in the hex fingerprint

chemfp.bitops.hex_union(fp1, fp2)
Return the union of the two hex strings, fp1 | fp2. Raises a ValueError for non-hex fingerprints.

chemfp.bitops.hex_encode(s)
Encode the byte string or ASCII string to hex. Returns a text string.

chemfp.bitops.hex_encode_as_bytes(s)
Encode the byte string or ASCII string to hex. Returns a byte string.

1.13. chemfp.bitops module 267

chemfp Documentation, Release 3.1

chemfp.bitops.hex_decode(s)
Decode the hex-encoded value to a byte string

chemfp.encodings

Decode different fingerprint representations into chemfp form. (Currently only decoders are available. Future released
may include encoders.)

The chemfp fingerprints are stored as byte strings, with the bytes in least-significant bit order (bit #0 is stored in the
first/left-most byte) and with the bits in most-significant bit order (bit #0 is stored in the first/right-most bit of the first
byte).

Other systems use different encodings. These include:

• the ‘0 and ‘1’ characters, as in ‘00111101’

• hex encoding, like ‘3d’

• base64 encoding, like ‘SGVsbG8h’

• CACTVS’s variation of base64 encoding

plus variations of different LSB and MSB orders.

This module decodes most of the fingerprint encodings I have come across. The fingerprint decoders return a 2-ple of
the bit length and the chemfp fingerprint. The bit length is None unless the bit length is known exactly, which currently
is only the case for the binary and CACTVS fingerprints. (The hex and other encoders must round the fingerprints up
to a multiple of 8 bits.)

chemfp.encodings.from_binary_lsb(text)
Convert a string like ‘00010101’ (bit 0 here is off) into ‘xa8’

The encoding characters ‘0’ and ‘1’ are in LSB order, so bit 0 is the left-most field. The result is a 2-ple of the
fingerprint length and the decoded chemfp fingerprint

>>> from_binary_lsb('00010101')
(8, b'\xa8')
>>> from_binary_lsb('11101')
(5, b'\x17')
>>> from_binary_lsb('00000000000000010000000000000')
(29, b'\x00\x80\x00\x00')
>>>

chemfp.encodings.from_binary_msb(text)
Convert a string like ‘10101000’ (bit 0 here is off) into ‘xa8’

The encoding characters ‘0’ and ‘1’ are in MSB order, so bit 0 is the right-most field.

>>> from_binary_msb(b'10101000')
(8, b'\xa8')
>>> from_binary_msb(b'00010101')
(8, b'\x15')
>>> from_binary_msb(b'00111')
(5, b'\x07')
>>> from_binary_msb(b'00000000000001000000000000000')
(29, b'\x00\x80\x00\x00')
>>>

268 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

chemfp.encodings.from_base64(text)
Decode a base64 encoded fingerprint string

The encoded fingerprint must be in chemfp form, with the bytes in LSB order and the bits in MSB order.

>>> from_base64("SGk=")
(None, b'Hi')
>>> from binascii import hexlify
>>> hexlify(from_base64("SGk=")[1])
b'4869'
>>>

chemfp.encodings.from_hex(text)
Decode a hex encoded fingerprint string

The encoded fingerprint must be in chemfp form, with the bytes in LSB order and the bits in MSB order.

>>> from_hex(b'10f2')
(None, b'\x10\xf2')
>>>

Raises a ValueError if the hex string is not a multiple of 2 bytes long or if it contains a non-hex character.

chemfp.encodings.from_hex_msb(text)
Decode a hex encoded fingerprint string where the bits and bytes are in MSB order

>>> from_hex_msb(b'10f2')
(None, b'\xf2\x10')
>>>

Raises a ValueError if the hex string is not a multiple of 2 bytes long or if it contains a non-hex character.

chemfp.encodings.from_hex_lsb(text)
Decode a hex encoded fingerprint string where the bits and bytes are in LSB order

>>> from_hex_lsb(b'102f')
(None, b'\x08\xf4')
>>>

Raises a ValueError if the hex string is not a multiple of 2 bytes long or if it contains a non-hex character.

chemfp.encodings.from_cactvs(text)
Decode a 881-bit CACTVS-encoded fingerprint used by PubChem

>>> from_cactvs(b"AAADceB7sQAEAAAAAAAAAAAAAAAAAWAAAAAwAAAAAAAAAAABwAAAHwIYAAAADA"
→˓+
... b"rBniwygJJqAACqAyVyVACSBAAhhwIa+CC4ZtgIYCLB0/CUpAhgmADIyYcAgAAO"
→˓+
... b"AAAAAAABAAAAAAAAAAIAAAAAAAAAAA==")
(881, b'\x07\xde\x8d\x00
→˓\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x06\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\xf8@\x18\x00\x00\x000P\x83y4L\x01IV\x00\x00U\xc0\xa4N*\x00I
→˓\x00\x84\xe1@X\x1f\x04\x1df\x1b\x10\x06D\x83\xcb\x0f)
→˓%\x10\x06\x19\x00\x13\x93\xe1\x00\x01\x00p\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00
→˓')
>>>

For format details, see ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

1.14. chemfp.encodings 269

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

chemfp Documentation, Release 3.1

chemfp.encodings.from_daylight(text)
Decode a Daylight ASCII fingerprint

>>> from_daylight(b"I5Z2MLZgOKRcR...1")
(None, b'PyDaylight')

See the implementation for format details.

chemfp.encodings.from_on_bit_positions(text, num_bits=1024, separator=” “)
Decode from a list of integers describing the location of the on bits

>>> from_on_bit_positions("1 4 9 63", num_bits=32)
(32, b'\x12\x02\x00\x80')
>>> from_on_bit_positions("1,4,9,63", num_bits=64, separator=",")
(64, b'\x12\x02\x00\x00\x00\x00\x00\x80')

The text contains a sequence of non-negative integer values separated by the separator text. Bit positions are
folded modulo num_bits.

This is often used to convert sparse fingerprints into a dense fingerprint.

Note: if you have a list of bit position as integer values then you probably want to use chemfp.bitops.
byte_from_bitlist().

chemfp.fps_io module

This module is part of the private API. Do not import it directly.

The function chemfp.open() returns an FPSReader if the source is an FPS file. The function chemfp.
open_fingerprint_writer() returns an FPSWriter if the destination is an FPS file.

FPSReader

class chemfp.fps_io.FPSReader

FPS file reader

This class implements the chemfp.FingerprintReader API. It is also its own a context man-
ager, which automatically closes the file when the manager exists.

The public attributes are:

metadata
a chemfp.Metadata instance with information about the fingerprint type

location
a chemfp.io.Location instance with parser location and state information

closed
True if the file is open, else False

The FPSReader.location only tracks the “lineno” variable.

__iter__()
Iterate through the (id, fp) pairs

iter_arenas(arena_size=1000)
iterate through arena_size fingerprints at a time, as subarenas

270 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Iterate through arena_size fingerprints at a time, returned as chemfp.arena.FingerprintArena
instances. The arenas are in input order and not reordered by popcount.

This method helps trade off between performance and memory use. Working with arenas is often faster
than processing one fingerprint at a time, but if the file is very large then you might run out of memory, or
get bored while waiting to process all of the fingerprint before getting the first answer.

If arena_size is None then this makes an iterator which returns a single arena containing all of the finger-
prints.

Parameters arena_size (positive integer, or None) – The number of finger-
prints to put into each arena.

Returns an iterator of chemfp.arena.FingerprintArena instances

save(destination, format=None)
Save the fingerprints to a given destination and format

The output format is based on the format. If the format is None then the format depends on the destination
file extension. If the extension isn’t recognized then the fingerprints will be saved in “fps” format.

If the output format is “fps” or “fps.gz” then destination may be a filename, a file object, or None; None
writes to stdout.

If the output format is “fpb” then destination must be a filename.

Parameters

• destination (a filename, file object, or None) – the output destina-
tion

• format (None, "fps", "fps.gz", or "fpb") – the output format

Returns None

get_fingerprint_type()
Get the fingerprint type object based on the metadata’s type field

This uses self.metadata.type to get the fingerprint type string then calls chemfp.
get_fingerprint_type() to get and return a chemfp.types.FingerprintType instance.

This will raise a TypeError if there is no metadata, and a ValueError if the type field was invalid or the
fingerprint type isn’t available.

Returns a chemfp.types.FingerprintType

close()
Close the file

count_tanimoto_hits_fp(query_fp, threshold=0.7)
Count the fingerprints which are sufficiently similar to the query fingerprint

Return the number of fingerprints in the reader which are at least threshold similar to the query fingerprint
query_fp.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns integer count

1.15. chemfp.fps_io module 271

chemfp Documentation, Release 3.1

count_tanimoto_hits_arena(queries, threshold=0.7)
Count the fingerprints which are sufficiently similar to each query fingerprint

Returns a list containing a count for each query fingerprint in the queries arena. The count is the number
of fingerprints in the reader which are at least threshold similar to the query fingerprint.

The order of results is the same as the order of the queries.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns list of integer counts, one for each query

count_tversky_hits_fp(query_fp, threshold=0.7, alpha=1.0, beta=1.0)
Count the fingerprints which are sufficiently similar to the query fingerprint

Return the number of fingerprints in the reader which are at least threshold similar to the query fingerprint
query_fp.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns integer count

threshold_tanimoto_search_fp(query_fp, threshold=0.7)
Find the fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this reader which are at least threshold similar to the query fingerprint
query_fp. The hits are returned as a SearchResult, in arbitrary order.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

threshold_tanimoto_search_arena(queries, threshold=0.7)
Find the fingerprints which are sufficiently similar to each of the query fingerprints

For each fingerprint in the queries arena, find all of the fingerprints in this arena which are at least threshold
similar. The hits are returned as a SearchResults, where the hits in each SearchResult is in
arbitrary order.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResults

threshold_tversky_search_fp(query_fp, threshold=0.7)
Find the fingerprints which are sufficiently similar to the query fingerprint

272 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Find all of the fingerprints in this reader which are at least threshold similar to the query fingerprint
query_fp. The hits are returned as a SearchResult, in arbitrary order.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

knearest_tanimoto_search_fp(query_fp, k=3, threshold=0.7)
Find the k-nearest fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this reader which are at least threshold similar to the query fingerprint, and
of those, select the top k hits. The hits are returned as a SearchResult, sorted from highest score to
lowest.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

knearest_tanimoto_search_arena(queries, k=3, threshold=0.7)
Find the k-nearest fingerprints which are sufficiently similar to each of the query fingerprints

For each fingerprint in the queries arena, find the fingerprints in this reader which are at least threshold sim-
ilar to the query fingerprint, and of those, select the top k hits. The hits are returned as a SearchResults,
where the hits in each SearchResult are sorted by similarity score.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResults

knearest_tversky_search_fp(query_fp, k=3, threshold=0.7, alpha=1.0, beta=1.0)
Find the k-nearest fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this reader which are at least threshold similar to the query fingerprint, and
of those, select the top k hits. The hits are returned as a SearchResult, sorted from highest score to
lowest.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum simi-
larity threshold (default: 0.7)

Returns a SearchResult

FPSWriter

class chemfp.fps_io.FPSWriter

1.15. chemfp.fps_io module 273

chemfp Documentation, Release 3.1

Write fingerprints in FPS format.

This is a subclass of chemfp.FingerprintWriter.

Instances have the following attributes:

•metadata - a chemfp.Metadata instance

•closed - False when the file is open, else True

•location - a chemfp.io.Location instance

An FPSWriter is its own context manager, and will close the output file on context exit.

The Location instance supports the “recno”, “output_recno”, and “lineno” properties.

write_fingerprint(id, fp)
Write a single fingerprint record with the given id and fp

Parameters

• id (string) – the record identifier

• fp (bytes) – the fingerprint

write_fingerprints(id_fp_pairs)
Write a sequence of fingerprint records

Parameters id_fp_pairs – An iterable of (id, fingerprint) pairs.

close()
Close the writer

This will set self.closed to False.

chemfp.fpb_io module

This module is part of the private API. Do not import directly.

The function chemfp.open_fingerprint_writer() returns an OrderedFPBWriter if the destination is an
FPB file and reorder is True, or an InputOrderFPBWriter if reorder is False.

OrderedFPBWriter

class chemfp.fpb_io.OrderedFPBWriter
Fingerprint writer for FPB files where the input fingerprint order is preserved

This is a subclass of chemfp.FingerprintWriter.

Instances have the following public attributes:

metadata
a chemfp.Metadata instance

closed
False when the file is open, else True

Other attributes (like “alignment”, “include_hash”, “include_popc”, “max_spool_size”, and “tmpdir”) are un-
documented and subject to change in the future. Let me know if they are useful.

An OrderedFPBWriter is also is own context manager, and will close the writer on context exit.

274 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

write_fingerprint

class chemfp.fpb_io.write_fingerprint
Write a single fingerprint record with the given id and fp to the destination

Parameters

• id (string) – the record identifier

• fp (bytes) – the fingerprint

write_fingerprints

class chemfp.fpb_io.write_fingerprints
Write a sequence of (id, fingerprint) pairs to the destination

Parameters id_fp_pairs – An iterable of (id, fingerprint) pairs.

close

class chemfp.fpb_io.close
Close the output writer

InputOrderFPBWriter

class chemfp.fpb_io.InputOrderFPBWriter
Fingerprint writer for FPB files which preserves the input fingerprint order

This is a subclass of chemfp.FingerprintWriter.

Instances have the following public attributes:

metadata
a chemfp.Metadata instance

closed
False when the file is open, else True

Other attributes (like “alignment”, “include_hash”, “include_popc”, “max_spool_size”, and “tmpdir”) are un-
documented and subject to change in the future. Let me know if they are useful.

An InputOrderFPBWriter is also is own context manager, and will close the writer on context exit.

write_fingerprint

class chemfp.fpb_io.write_fingerprint
Write a single fingerprint record with the given id and fp to the destination

Parameters

• id (string) – the record identifier

• fp (bytes) – the fingerprint

1.16. chemfp.fpb_io module 275

chemfp Documentation, Release 3.1

write_fingerprints

class chemfp.fpb_io.write_fingerprints
Write a sequence of (id, fingerprint) pairs to the destination

Parameters id_fp_pairs – An iterable of (id, fingerprint) pairs.

close

class chemfp.fpb_io.close
Close the output writer

This will set self.closed to False

chemfp toolkit API

Open Babel, OEChem and RDKit have different ways to read and write molecules. The chemfp toolkit API is a
common wrapper API for structure I/O. The chemfp functions work with native toolkit molecules; chemfp does not
have a common molecule API. (For that, use Cinfony.)

While the API is the same across openbabel_toolkit, openbabel_toolkit, rdkit_toolkit, and the
text_toolkit, there are some differences in how they work. For example, each of the toolkits has it own set of
reader and writer arguments. The details are available in the documentation, and this chapter acts as a pointer to the
specific toolkit documentation.

name

chemfp.toolkit.name

The string “openbabel”, “openeye”, “rdkit”, or “text”.

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

software

chemfp.toolkit.software

A string like “OpenBabel/2.4.1”, “OEChem/20170208”, “RDKit/2016.09.3” or “chemfp/3.1”.

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

is_licensed

chemfp.toolkit.is_licensed()

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Check if the toolkit is licensed.

276 Chapter 1. List of chapters

http://code.google.com/p/cinfony/

chemfp Documentation, Release 3.1

get_formats

chemfp.toolkit.get_formats(include_unavailable=False)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Return a list of structure formats.

get_input_formats

chemfp.toolkit.get_input_formats()

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Return a list of input structure formats.

get_output_formats

chemfp.toolkit.get_output_formats()

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Return a list of output structure formats.

get_format

chemfp.toolkit.get_format(format)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get a named format.

get_input_format

chemfp.toolkit.get_input_format(format)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get a named input format.

get_output_format

chemfp.toolkit.get_output_format(format)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get a named output format.

get_input_format_from_source

chemfp.toolkit.get_input_format_from_source(source=None, format=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get an format given an input source.

1.17. chemfp toolkit API 277

chemfp Documentation, Release 3.1

get_output_format_from_destination

chemfp.toolkit.get_output_format_from_destination(destination=None, format=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get an format given an output destination.

read_molecules

chemfp.toolkit.read_molecules(source=None, format=None, id_tag=None, reader_args=None,
errors=”strict”, location=None”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Read molecules from a structure file.

read_molecules_from_string

chemfp.toolkit.read_molecules_from_string(content, format, id_tag=None,
reader_args=None, errors=”strict”, loca-
tion=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Read molecules from structure data stored in a string.

read_ids_and_molecules

chemfp.toolkit.read_ids_and_molecules(source=None, format=None, id_tag=None,
reader_args=None, errors=”strict”, location=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Read ids and molecules from a structure file.

read_ids_and_molecules_from_string

chemfp.toolkit.read_ids_and_molecules_from_string(content, format, id_tag=None,
reader_args=None, er-
rors=”strict”, location=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Read ids and molecules from structure data stored in a string.

make_id_and_molecule_parser

chemfp.toolkit.make_id_and_molecule_parser(format, id_tag=None, reader_args=None, er-
rors=”strict”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Make a specialized function which returns the id and molecule given a structure record.

278 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

parse_molecule

chemfp.toolkit.parse_molecule(content, format, id_tag=None, reader_args=None, er-
rors=”strict”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Parse a structure record into a molecule.

parse_id_and_molecule

chemfp.toolkit.parse_id_and_molecule(content, format, id_tag=None, reader_args=None, er-
rors=”strict”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Parse a structure record into an id and molecule.

create_string

chemfp.toolkit.create_string(mol, format, id=None, writer_args=None, errors=”strict”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Convert a molecule into a Unicode string containg a structure record.

create_bytes

chemfp.toolkit.create_bytes(mol, format, id=None, writer_args=None, errors=”strict”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Convert a molecule into a byte string containing a structure record.

open_molecule_writer

chemfp.toolkit.open_molecule_writer(destination=None, format=None, writer_args=None, er-
rors=”strict”, location=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Create an output molecule writer, for writing to a file.

open_molecule_writer_to_string

chemfp.toolkit.open_molecule_writer_to_string(format, writer_args=None, er-
rors=”strict”, location=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Create an output molecule writer, for writing to a Unicode string.

1.17. chemfp toolkit API 279

chemfp Documentation, Release 3.1

open_molecule_writer_to_bytes

chemfp.toolkit.open_molecule_writer_to_bytes(format, writer_args=None, er-
rors=”strict”, location=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Create an output molecule writer, for writing to a byte string.

copy_molecule

chemfp.toolkit.copy_molecule(mol)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Make a copy of a toolkit molecule.

add_tag

chemfp.toolkit.add_tag(mol, tag, value)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Add an SD tag to the molecule.

get_tag

chemfp.toolkit.get_tag(mol, tag)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get an SD tag for a molecule.

get_tag_pairs

chemfp.toolkit.get_tag_pairs()

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get the list of tag name and tag value pairs.

get_id

chemfp.toolkit.get_id(mol)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get the molecule id.

set_id

chemfp.toolkit.set_id(mol, id)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Set the molecule id.

280 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

chemfp.base_toolkit

The chemfp.base_toolkit module contains a few objects which are shared by the differn toolkit. There should be no
reason for you to import the module yourself.

FormatMetadata

The metadata attribute of the toolkit readers and writers is a FormatMetadata instance. It contains information about
the structure file.

Note that this is not the same as the fingerprint chemfp.Metadata instance, which contains information about the
fingerprint file.

FormatMetadata

class chemfp.base_toolkit.FormatMetadata

Information about the reader or writer

The public attributes are:

filename
the source or destination filename, the string “<string>” for string-based I/O, or None if not
known

record_format
the normalized record format name. All SMILES formats are “smi”, and this does not contain
compression information

args
the final reader_args or writer_args, after all processing, and as used by the reader and writer

__repr__()
Return a string like ‘FormatMeta(filename=”cmpds.sdf.gz”, record_format=”sdf”, args={})’

Toolkit readers

The toolkit readers read from structure files. There are several different variations, depending on the function used to
read the file. All of the readers are subclasses of chemfp.base_toolkit.BaseMoleculeReader.

1.18. chemfp.base_toolkit 281

chemfp Documentation, Release 3.1

Function Returned reader
chemfp.toolkit.read_molecules() chemfp.base_toolkit.

MoleculeReader
chemfp.toolkit.read_molecules_from_string() chemfp.base_toolkit.

MoleculeReader
chemfp.toolkit.read_ids_and_molecules() chemfp.base_toolkit.

IdAndMoleculeReader
chemfp.toolkit.
read_ids_and_molecules_from_string()

chemfp.base_toolkit.
IdAndMoleculeReader

chemfp.text_toolkit.read_sdf_records() chemfp.base_toolkit.
RecordReader

chemfp.text_toolkit.
read_sdf_records_from_string()

chemfp.base_toolkit.
RecordReader

chemfp.text_toolkit.
read_sdf_ids_and_records()

chemfp.base_toolkit.
IdAndRecordReader

chemfp.text_toolkit.
read_sdf_ids_and_records_from_string()

chemfp.base_toolkit.
IdAndRecordReader

chemfp.text_toolkit.
read_sdf_ids_and_values()

chemfp.base_toolkit.
IdAndRecordReader

chemfp.text_toolkit.
read_sdf_ids_and_values_from_string()

chemfp.base_toolkit.
IdAndRecordReader

All of the readers have the same API. The major difference is that some readers return a single object during iteration
while the others (those with an “And” in the name) return a pair of objects.

BaseMoleculeReader

class chemfp.base_toolkit.BaseMoleculeReader
Base class for the toolkit readers

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

Readers are iterators, so iter(reader) returns itself. next(reader) returns either a single object or a pair of objects
depending on reader.

Readers are also a context manager, and call self.close() during exit.

chemfp.base_toolkit.close()
Close the reader

If the reader wasn’t previously closed then close it. This will set the location properties to their final values,
close any files that the reader may have opened, and set self.closed to False.

class chemfp.base_toolkit.MoleculeReader
Read structures from a file and iterate over the toolkit molecules

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

282 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

Note: the toolkit implementation is free to reuse a molecule instead of returning a new one each time.

class chemfp.base_toolkit.IdAndMoleculeReader
Read structures from a file and iterate over the (id, toolkit molecule) pairs

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

Note: the toolkit implementation is free to reuse a molecule instead of returning a new one each time.

class chemfp.base_toolkit.RecordReader
Read and iterate over records as strings

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

class chemfp.base_toolkit.IdAndRecordReader
Read records from file and iterate over the (id, record string) pairs

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

Toolkit writers

The chemfp.open_molecule_writer() function returns a chemfp.base_toolkit.
MoleculeWriter, and chemfp.open_molecule_writer_to_string() returns a chemfp.
base_toolkit.MoleculeStringWriter. The two classes implement the chemfp.base_toolkit.
BaseMoleculeWriter API, and MoleculeWriterToString also implements getvalue().

1.18. chemfp.base_toolkit 283

chemfp Documentation, Release 3.1

BaseMoleculeWriter

class chemfp.base_toolkit.BaseMoleculeWriter

The base molecule writer API, implemented by MoleculeWriter and
MoleculeStringWriter

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

The writer is a context manager, which calls self.close() when the manager exits.

write_molecule(mol)
Write a toolkit molecule

Parameters mol (a toolkit molecule) – the molecule to write

write_molecules(mols)
Write a sequence of molecules

Parameters mols (a toolkit molecule iterator) – the molecules to write

write_id_and_molecule(id, mol)
Write an identifier and toolkit molecule

If id is None then the output uses the molecule’s own id/title. Specifying the id may modify the molecule’s
id/title, depending on the format and toolkit.

Parameters

• id (string, or None) – the identifier to use for the molecule

• mol (a toolkit molecule) – the molecule to write

write_ids_and_molecules(ids_and_mols)
Write a sequence of (id, molecule) pairs

This function works well with chemfp.toolkit.read_ids_and_molecules(), for example, to
convert an SD file to SMILES file, and use an alternate id_tag to specify an alternative identifier.

Parameters mols (a (id string, toolkit molecule) iterator) – the
molecules to write

close()
Close the writer

If the reader wasn’t previously closed then close it. This will set the location properties to their final values,
close any files that the writer may have opened, and set self.closed to False.

class chemfp.base_toolkit.MoleculeWriter
A BaseMoleculeWriter which writes molecules to a file.

The public attributetes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

284 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

The writer is a context manager, which calls self.close() when the manager exits.

class chemfp.base_toolkit.MoleculeStringWriter

A BaseMoleculeWriter which writes molecules to a string.

This class implements the chemfp.base_toolkit.BaseMoleculeWriter API.

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

The writer is a context manager, which calls self.close() when the manager exits.

getvalue()
Get the string containing all of the written record.

This function can also be called after the writer is closed.

Returns a string

Format

Format

class chemfp.base_toolkit.Format

Information about a toolkit format.

Use chemfp.toolkit.get_format() and related functions to return a Format instance.

The public properties are:

__repr__()
Return a string like ‘Format(“openeye/sdf.gz”)’

prefix
Read-only attribute.

Return the prefix to turn an unqualified parameter into a fully qualified parameter

Returns a string like “rdkit.smi” or “openbabel.sdf”

is_input_format
Read-only attribute.

Return True if this toolkit can read molecules in this format

is_output_format
Read-only attribute.

Return True if this toolkit can write molecules in this format

1.18. chemfp.base_toolkit 285

chemfp Documentation, Release 3.1

is_available
Read-only attribute.

Return True if this version of the toolkit understands this format

For example, if your version of RDKit does not support InChI then this would return False for the “inchi”
and “inchikey” formats.

supports_io
Read-only attribute.

Return True if this format support reading or writing records

This will return False for formats like “smistring” and “inchikeystring” because those are are not record-
based formats.

Note: I don’t like this name. I may change it to is_record_format. Let me know if you have ideas,
or if changing the name will be a problem.

get_reader_args_from_text_settings(reader_settings)
Process the reader_settings and return the reader_args for this format.

This function exists to help convert string settings, eg, from the command-line or a configuration, into
usable reader_args.

Setting names may be fully-qualified names like “rdkit.sdf.sanitize”, partially qualified names like “rd-
kit.*.sanitize” or “openeye.smi.delimiter”, or unqualified names like “delimiter”. The qualifiers act as a
namespace so the settings can be specified without needing to know the actual toolkit or format.

The function turns the format-appropriate qualified names into unqualified ones and converts the string
values into usable Python objects. For example:

>>> from chemfp import rdkit_toolkit as T
>>> fmt = T.get_format("smi")
>>> fmt.get_reader_args_from_text_settings({"rdkit.*.sanitize": "true",
→˓"delimiter": "to-eol"})
{'delimiter': 'to-eol', 'sanitize': True}

Parameters reader_settings (a dictionary with string keys and
values) – the reader settings

Returns a dictionary of unqualified argument names as keys and processed Python values as
values

get_writer_args_from_text_settings(writer_settings)
Process writer_settings and return the writer_args for this format.

This function exists to help convert string settings, eg, from the command-line or a configuration, into
usable writer_args.

Setting names may be fully-qualified names like “rdkit.sdf.kekulize”, partially qualified names like “rd-
kit.*.delimiter” or “openeye.smi.delimiter”, or unqualified names like “delimiter”. The qualifiers act as a
namespace so the settings can be specified without needing to know the actual toolkit or format.

The function turns the format-appropriate qualified names into unqualified ones and converts the string
values into usable Python objects. For example:

>>> from chemfp import rdkit_toolkit as T
>>> fmt = T.get_format("smi")

286 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

>>> fmt.get_writer_args_from_text_settings({"rdkit.*.kekuleSmiles": "true",
→˓"canonical": "false"})
{'kekuleSmiles': True, 'canonical': False}

Parameters writer_settings (a dictionary with string keys and
values) – the writer settings

Returns a dictionary of unqualified argument names as keys and processed Python values as
values

get_default_reader_args()
Return a dictionary of the default reader arguments

The keys are unqualified (ie, without dots).

>>> from chemfp import openbabel_toolkit as T
>>> fmt = T.get_format("smi")
>>> fmt.get_default_reader_args()
{'has_header': False, 'delimiter': None, 'options': None}

Returns a dictionary of string keys and Python objects for values

get_default_writer_args()
Return a dictionary of the default writer arguments

The keys are unqualified (ie, without dots).

>>> from chemfp import openbabel_toolkit as T
>>> fmt = T.get_format("smi")
>>> fmt.get_default_writer_args()
{'explicit_hydrogens': False, 'isomeric': True, 'delimiter': None,
'options': None, 'canonicalization': 'default'}

Returns a dictionary of string keys and Python objects for values

get_unqualified_reader_args(reader_args)
Convert possibly qualified reader args into unqualified reader args for this format

The reader_args dictionary can be confusing because of the priority rules in how to resolve qualifiers, and
because it can include irrelevant parameters, which are ignored.

The get_unqualified_reader_args function applies the qualifier resolution algorithm and removes irrele-
vant parameters to return a dictionary containing the equivalent unqualified reader args dictionary for this
format.

>>> from chemfp import rdkit_toolkit as T
>> fmt = T.get_format("smi")
>>> fmt.get_unqualified_reader_args({"rdkit.*.delimiter": "tab", "smi.sanitize
→˓": False, "X": "Y"})
{'delimiter': 'tab', 'has_header': False, 'sanitize': False}
>>> fmt = T.get_format("can")
>>> fmt.get_unqualified_reader_args({"rdkit.*.delimiter": "tab", "smi.sanitize
→˓": False, "X": "Y"})
{'delimiter': 'tab', 'has_header': False, 'sanitize': True}

1.18. chemfp.base_toolkit 287

chemfp Documentation, Release 3.1

Parameters reader_args reader arguments, which can contain qualified and unqualified argu-
ments

Returns a dictionary of reader arguments, containing only unqualified arguments appropriate
for this format.

get_unqualified_writer_args(writer_args)
Convert possibly qualified writer args into unqualified writer args for this format

The writer_args dictionary can be confusing because of the priority rules in how to resolve qualifiers, and
because it can include irrelevant parameters, which are ignored.

The get_unqualified_writer_args function applies the qualifier resolution algorithm and removes irrele-
vant parameters to return a dictionary containing the equivalent unqualified writer args dictionary for this
format.

>>> from chemfp import rdkit_toolkit as T
>>> fmt = T.get_format("smi")
>>> fmt.get_unqualified_writer_args({"rdkit.*.delimiter": "tab", "smi.
→˓kekuleSmiles": True, "X": "Y"})
{'isomericSmiles': True, 'delimiter': 'tab', 'kekuleSmiles': True,
→˓'allBondsExplicit': False, 'canonical': True}
>>> fmt = T.get_format("can")
>>> fmt.get_unqualified_writer_args({"rdkit.*.delimiter": "tab", "smi.
→˓kekuleSmiles": True, "X": "Y"})
{'isomericSmiles': False, 'delimiter': 'tab', 'kekuleSmiles': False,
→˓'allBondsExplicit': False, 'canonical': True}

Parameters writer_args writer arguments, which can contain qualified and unqualified argu-
ments

Returns a dictionary of writer arguments, containing only unqualified arguments appropriate for
this format.

chemfp.openbabel_toolkit module

The chemfp toolkit layer for Open Babel.

name

chemfp.openbabel_toolkit.name

The string “openbabel”.

software

chemfp.openbabel_toolkit.software

A string like “OpenBabel/2.4.1”, where the second part of the string comes from OBReleaseVersion.

288 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

is_licensed (openbabel_toolkit)

chemfp.openbabel_toolkit.is_licensed()
Return True - Open Babel is always licensed

Returns True

get_formats (openbabel_toolkit)

chemfp.openbabel_toolkit.get_formats(include_unavailable=False)
Get the list of structure formats that Open Babel supports

If include_unavailable is True then also include Open Babel formats which aren’t available to this
specific version of Open Babel.

Parameters include_unavailable (True or False) – include unavailable for-
mats?

Returns a list of chemfp.base_toolkit.Format objects

get_input_formats (openbabel_toolkit)

chemfp.openbabel_toolkit.get_input_formats()
Get the list of supported Open Babel input formats

Returns a list of chemfp.base_toolkit.Format objects

get_output_formats (openbabel_toolkit)

chemfp.openbabel_toolkit.get_output_formats()
Get the list of supported Open Babel output formats

Returns a list of chemfp.base_toolkit.Format objects

get_format (openbabel_toolkit)

chemfp.openbabel_toolkit.get_format(format_name)
Get the named format, or raise a ValueError

This will raise a ValueError if Open Babel does not implement the format format_name or that
format is not available.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

get_input_format (openbabel_toolkit)

chemfp.openbabel_toolkit.get_input_format(format_name)
Get the named input format, or raise a ValueError

This will raise a ValueError if Open Babel does not implement the format format_name or that
format is not an input format.

Parameters format_name (a string) – the format name

1.19. chemfp.openbabel_toolkit module 289

chemfp Documentation, Release 3.1

Returns a chemfp.base_toolkit.Format object

get_output_format (openbabel_toolkit)

chemfp.openbabel_toolkit.get_output_format(format_name)
Get the named format, or raise a ValueError

This will raise a ValueError if Open Babel does not implement the format format_name or that
format is not an output format.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

get_input_format_from_source (openbabel_toolkit)

chemfp.openbabel_toolkit.get_input_format_from_source(source=None, for-
mat=None)

Get the most appropriate format given the available source and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same attributes. If
it’s a string then use it to create a Format object.

If format is None, use the source to auto-detect the format. If auto-detection is not possible, assume
it’s an uncompressed SMILES file.

Parameters

• source (a filename (as a string), a file object, or None
to read from stdin) – the structure data source.

• format (a Format(-like) object, string, or None) – format in-
formation, if known.

Returns a chemfp.base_toolkit.Format object

get_output_format_from_destination (openbabel_toolkit)

chemfp.openbabel_toolkit.get_output_format_from_destination(destination=None,
for-
mat=None)

Get the most appropriate format given the available destination and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same attributes. If
it’s a string then use it to create a Format object.

If format is None, use the destination to auto-detect the format. If auto-detection is not possible,
assume it’s an uncompressed SMILES file.

Parameters

• destination (a filename (as a string), a file object, or
None to read from stdin) – the structure data source.

• format (a Format(-like) object, string, or None) – format in-
formation, if known.

290 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Returns a chemfp.base_toolkit.Format object

read_molecules (openbabel_toolkit)

chemfp.openbabel_toolkit.read_molecules(source=None, format=None,
id_tag=None, reader_args=None,
errors=”strict”, location=None,
encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads OBMol molecules from a structure file

Iterate through the format structure records in source. If format is None then auto-detect the format
based on the source. For SD files, use id_tag to get the record id from the given SD tag instead of
the title line. (read_molecules() will ignore the id_tag. It exists to make it easier to switch between
reader functions.)

Note: the reader will clear and reuse the OBMol instance. Make a copy if you want to keep the
molecule around.

The reader_args dictionary parameters depend on the format. Every Open Babel format supports an
“options” entry, which is passed to SetOptions(). See that documentation for details. Some formats
support additional parameters:

•SMILES and InChI

–delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

–has_header - True or False

•SDF

–implementation - if “openbabel” or None, use the Open Babel record parser; if “chemfp”,
use chemfp’s own record parser, which has better location tracking

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a
message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default Location
will be created.

See chemfp.openbabel_toolkit.read_ids_and_molecules() if you want (id, OB-
Mol) pairs instead of just the molecules.

Parameters

• source (a filename, file object, or None to read from
stdin) – the structure source

• format (a format name string, or Format object, or None
to auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

1.19. chemfp.openbabel_toolkit module 291

chemfp Documentation, Release 3.1

Returns a chemfp.base_toolkit.MoleculeReader iterating OBMol molecules

read_molecules_from_string (openbabel_toolkit)

chemfp.openbabel_toolkit.read_molecules_from_string(content, format,
id_tag=None,
reader_args=None,
errors=”strict”,
location=None)

Return an iterator that reads OBMol molecules from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
openbabel_toolkit.read_molecules() for details about the other parameters. See
chemfp.openbabel_toolkit.read_ids_and_molecules_from_string() if you
want to read (id, OBMol) pairs instead of just molecules.

Note: the reader will clear and reuse the OBMol instance. Make a copy if you want to keep the
molecule around.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating OBMol molecules

read_ids_and_molecules (openbabel_toolkit)

chemfp.openbabel_toolkit.read_ids_and_molecules(source=None, for-
mat=None, id_tag=None,
reader_args=None,
errors=”strict”, lo-
cation=None, encod-
ing=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads (id, OBMol molecule) pairs from a structure file

See chemfp.openbabel_toolkit.read_molecules() for full parameter details. The
major difference is that this returns an iterator of (id, OBMol) pairs instead of just the molecules.

Note: the reader will clear and reuse the OBMol instance. Make a copy if you want to keep the
molecule around.

Parameters

292 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• source (a filename, file object, or None to read from
stdin) – the structure source

• format (a format name string, or Format object, or None
to auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, OB-
Mol) pairs

read_ids_and_molecules_from_string (openbabel_toolkit)

chemfp.openbabel_toolkit.read_ids_and_molecules_from_string(content,
format,
id_tag=None,
reader_args=None,
er-
rors=”strict”,
loca-
tion=None)

Return an iterator that reads (id, OBMol) pairs from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
openbabel_toolkit.read_molecules() for details about the other parameters. See
chemfp.openbabel_toolkit.read_molecules_from_string() if you just want to
read the OBMol molecules instead of (id, OBMol) pairs.

Note: the reader will clear and reuse the OBMol instance. Make a copy if you want to keep the
molecule around.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

1.19. chemfp.openbabel_toolkit module 293

chemfp Documentation, Release 3.1

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, OB-
Mol) pairs

make_id_and_molecule_parser (openbabel_toolkit)

chemfp.openbabel_toolkit.make_id_and_molecule_parser(format,
id_tag=None,
reader_args=None,
errors=”strict”)

Create a specialized function which takes a record and returns an (id, OBMol) pair

The returned function is optimized for reading many records from individual strings because it only
does parameter validation once. The function will reuse the OBMol for successive calls, so make a
copy if you want to keep it around. However, I haven’t really noticed much of a performance differ-
ence between this and chemfp.openbabel_toolkit.parse_id_and_molecule() so I
suggest you use that function directly instead of making a specialized function. (Let me know if
making a specialized function is useful.)

See chemfp.openbabel_toolkit.read_molecules() for details about the other param-
eters.

Parameters

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a function of the form parser(record string) -> (id, OBMol)

parse_molecule (openbabel_toolkit)

chemfp.openbabel_toolkit.parse_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from the content string and return an OBMol molecule.

content is a string containing a single structure record in format format. (Additional records are
ignored). See chemfp.openbabel_toolkit.read_molecules() for details about the
other parameters. See chemfp.openbabel_toolkit.parse_id_and_molecule() if
you want the (id, OBMol) pair instead of just the molecule.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

294 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns an OBMol molecule

parse_id_and_molecule (openbabel_toolkit)

chemfp.openbabel_toolkit.parse_id_and_molecule(content, format,
id_tag=None,
reader_args=None, er-
rors=”strict”)

Parse the first structure record from content and return the (id, OBMol) pair.

content is a string containing a single structure record in format format. (Additional records are ig-
nored). See chemfp.openbabel_toolkit.read_molecules() for details about the other
parameters.

See chemfp.openbabel_toolkit.read_molecules() for details about the other param-
eters. See chemfp.openbabel_toolkit.parse_molecule() if just want the OBMol
molecule and not the the (id, OBMol) pair.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns an (id, OBMol molecule) pair

create_string (openbabel_toolkit)

chemfp.openbabel_toolkit.create_string(mol, format, id=None,
writer_args=None, errors=”strict”)

Convert an OBMol into a structure record in the given format as a Unicode string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly modify
the molecule, so may not be thread-safe.

Parameters

• mol (an Open Babel molecule) – the molecule to use for the output

• format (a format name string, or Format object) – the output
structure format

• id (a string, or None to use the molecule's own id) – an al-
ternate record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

1.19. chemfp.openbabel_toolkit module 295

chemfp Documentation, Release 3.1

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a Unicode string

create_bytes (openbabel_toolkit)

chemfp.openbabel_toolkit.create_bytes(mol, format, id=None, writer_args=None,
errors=”strict”)

Convert an OBMol into a structure record in the given format as a byte string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly modify
the molecule, so may not be thread-safe.

Parameters

• mol (an Open Babel molecule) – the molecule to use for the output

• format (a format name string, or Format object) – the output
structure format

• id (a string, or None to use the molecule's own id) – an al-
ternate record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a byte string

open_molecule_writer (openbabel_toolkit)

chemfp.openbabel_toolkit.open_molecule_writer(destination=None,
format=None,
writer_args=None, er-
rors=”strict”, loca-
tion=None, encoding=”utf8”,
encoding_errors=”strict”)

Return a MoleculeWriter which can write Open Babel molecules to a destination.

A chemfp.base_toolkit.MoleculeWriter has the methods write_molecule,
write_molecules, and write_ids_and_molecules, which are ways to write an OBMol
molecule, an OBMol molecule iterator, or an (id, OBMol molecule) pair iterator to a file.

Molecules are written to destination. The output format can be a string like “sdf.gz” or “smi”, a
chemfp.base_toolkit.Format, or Format-like object with “name” and “compression” at-
tributes, or None to auto-detect based on the destination. If auto-detection is not possible, the output
will be written as uncompressed SMILES.

The writer_args dictionary parameters depend on the format. Every format supports an options
entry, which is passed to Open Babel’s SetOptions(). See the Open Babel documentation for
details. Some formats supports additional parameters:

•SMILES

–delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

–isomeric - True to write isomeric SMILES, False or default is non-isomeric

296 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

–canonicalization - True, “default”, or None uses Open Babel’s own canonicalization al-
gorithm; False or “none” to use no canonicalization; “universal” generates a universal
SMILES; “anticanonical” generates a SMILES with randomly assigned atom classes;
“inchified” uses InChI-fied SMILES

•InChI and InChIKey

–delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

–include_id - True or default to include the id as the second column; False has no id column

•SDF

–always_v3000 - True to always write V3000 files; False or default to write V3000 files only
if needed.

–include_atom_class - True to include atom class; False or default does not

–include_hcount - True to include hcount; False or default does not

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a
message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default Location
will be created.

Parameters

• destination (a filename, file object, or None to write
to stdout) – the structure destination

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeWriter expecting Open Babel
molecules

open_molecule_writer_to_string (openbabel_toolkit)

chemfp.openbabel_toolkit.open_molecule_writer_to_string(format,
writer_args=None,
er-
rors=”strict”,
loca-
tion=None)

Return a MoleculeStringWriter which can write Open Babel molecule records to a string.

See chemfp.openbabel_toolkit.open_molecule_writer() for full parameter de-
tails.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get
the output as a Unicode string.

Parameters

1.19. chemfp.openbabel_toolkit module 297

chemfp Documentation, Release 3.1

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting Open
Babel molecules

open_molecule_writer_to_bytes (openbabel_toolkit)

chemfp.openbabel_toolkit.open_molecule_writer_to_bytes(format,
writer_args=None,
errors=”strict”,
location=None)

Return a MoleculeStringWriter which can write Open Babel molecule records to a byte string

See chemfp.openbabel_toolkit.open_molecule_writer() for full parameter de-
tails.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get
the output as a byte string.

Parameters

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting Open
Babel molecules

copy_molecule (openbabel_toolkit)

chemfp.openbabel_toolkit.copy_molecule(mol)
Return a new OBMol molecule which is a copy of the given Open Babel molecule

Parameters mol (an Open Babel molecule) – the molecule to copy

Returns a new OBMol instance

add_tag (openbabel_toolkit)

chemfp.openbabel_toolkit.add_tag(mol, tag, value)
Add an SD tag value to the Open Babel molecule

298 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Raises a KeyError if the tag is a special internal Open Babel name.

Parameters

• mol (an Open Babel molecule) – the molecule

• tag (string) – the SD tag name

• value (string) – the text for the tag

Returns None

get_tag (openbabel_toolkit)

chemfp.openbabel_toolkit.get_tag(mol, tag)
Get the named SD tag value, or None if it doesn’t exist

Parameters

• mol (an Open Babel molecule) – the molecule

• tag (string) – the SD tag name

Returns a string, or None

get_tag_pairs (openbabel_toolkit)

chemfp.openbabel_toolkit.get_tag_pairs(mol)
Get a list of all SD tag (name, value) pairs for the molecule

Parameters mol (an Open Babel molecule) – the molecule

Returns a list of (string name, string value) pairs

get_id (openbabel_toolkit)

chemfp.openbabel_toolkit.get_id(mol)
Get the molecule’s id using Open Babel’s GetTitle()

Parameters mol (an Open Babel molecule) – the molecule

Returns a string

set_id (openbabel_toolkit)

chemfp.openbabel_toolkit.set_id(mol, id)
Set the molecule’s id using Open Babel’s SetTitle()

Parameters

• mol (an Open Babel molecule) – the molecule

• id (string) – the new id

Returns None

1.19. chemfp.openbabel_toolkit module 299

chemfp Documentation, Release 3.1

chemfp.openeye_toolkit module

The chemfp toolkit layer for OpenEye.

name

chemfp.openeye_toolkit.name

The string “openeye”.

software

chemfp.openeye_toolkit.software

A string like “OEChem/20170208”, where the second part of the string comes from OEChemGetVersion().

is_licensed (openeye_toolkit)

chemfp.openeye_toolkit.is_licensed()
Return True if the OEChem toolkit license is valid, otherwise False.

This does not check if the OEGraphSim license is valid. I haven’t yet figured out how I want to
handle that distinction. In the meanwhile you’ll need to use the OEChem API yourself.

Returns True or False

get_formats (openeye_toolkit)

chemfp.openeye_toolkit.get_formats(include_unavailable=False)
Get the list of structure formats that OEChem supports

If include_unavailable is True then also include OEChem formats which aren’t available to this
specific version of OEChem.

Parameters include_unavailable (True or False) – include unavailable for-
mats?

Returns a list of chemfp.base_toolkit.Format objects

get_input_formats (openeye_toolkit)

chemfp.openeye_toolkit.get_input_formats()
Get the list of supported OEChem input formats

Returns a list of chemfp.base_toolkit.Format objects

get_output_formats (openeye_toolkit)

chemfp.openeye_toolkit.get_output_formats()
Get the list of supported OEChem output formats

Returns a list of chemfp.base_toolkit.Format objects

300 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

get_format (openeye_toolkit)

chemfp.openeye_toolkit.get_format(format)
Get the named format, or raise a ValueError

This will raise a ValueError if OEChem does not implement the format format_name or that format
is not available.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

get_input_format (openeye_toolkit)

chemfp.openeye_toolkit.get_input_format(format)
Get the named input format, or raise a ValueError

This will raise a ValueError if OEChem does not implement the format format_name or that format
is not an input format.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

get_output_format (openeye_toolkit)

chemfp.openeye_toolkit.get_output_format(format)
Get the named format, or raise a ValueError

This will raise a ValueError if OEChem does not implement the format format_name or that format
is not an output format.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

get_input_format_from_source (openeye_toolkit)

chemfp.openeye_toolkit.get_input_format_from_source(source=None, for-
mat=None)

Get the most appropriate format given the available source and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same attributes. If
it’s a string then use it to create a Format object.

If format is None, use the source to auto-detect the format. If auto-detection is not possible, assume
it’s an uncompressed SMILES file.

Parameters

• source (a filename (as a string), a file object, or None
to read from stdin) – the structure data source.

• format (a Format(-like) object, string, or None) – format in-
formation, if known.

Returns a chemfp.base_toolkit.Format object

1.20. chemfp.openeye_toolkit module 301

chemfp Documentation, Release 3.1

get_output_format_from_destination (openeye_toolkit)

chemfp.openeye_toolkit.get_output_format_from_destination(destination=None,
for-
mat=None)

Get the most appropriate format given the available destination and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same attributes. If
it’s a string then use it to create a Format object.

If format is None, use the destination to auto-detect the format. If auto-detection is not possible,
assume it’s an uncompressed SMILES file.

Parameters

• destination (a filename (as a string), a file object, or
None to read from stdin) – the structure data source.

• format (a Format(-like) object, string, or None) – format in-
formation, if known.

Returns a chemfp.base_toolkit.Format object

read_molecules (openeye_toolkit)

chemfp.openeye_toolkit.read_molecules(source=None, format=None,
id_tag=None, reader_args=None, er-
rors=”strict”, location=None, encod-
ing=”utf8”, encoding_errors=”strict”)

Return an iterator that reads OEGraphMol molecules from a structure file

Iterate through the format structure records in source. If format is None then auto-detect the format
based on the source. For SD files, use id_tag to get the record id from the given SD tag instead of
the title line. (read_molecules() will ignore the id_tag. It exists to make it easier to switch between
reader functions.)

Note: the reader will clear and reuse the OEGraphMol instance. Make a copy if you want to keep
the molecule around.

The reader_args dictionary parameters depend on the format. Every OEChem format supports:

•aromaticity - one of “default”, “openeye”, “daylight”, “tripos”, “mdl”, “mmff”, or None

•flavor - a number, string-encoded number, or flavor string

A “flavor string” is a “|” or ”,” separated list of format-specific flavor terms. It can be a simple
as “Default”, or a more complex string like “Default|-ENDM|DELPHI” which for the PDB reader
starts with the default settings, removes the ENDM flavor, and adds the CHARGE and RADIUS
flavors.

The supported input flavor terms for each format are:

•SMILES - Canon, Strict, Default

•sdf - Default

•skc - Default

•mol2, mol2h - M2H, Default

•mmod - FormalCrg, Default

302 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

•pdb - ALL, ALTLOC, BondOrder, CHARGE, Connect, DATA, DELPHI, END, ENDM, FOR-
MALCHARGE, FormalCrg, ImplicitH, RADIUS, Rings, SecStruct, TER, TerMask, Default

•xyz - BondOrder, Connect, FormalCrg, ImplicitH, Rings, Default

•cdx - SuperAtoms, Default

•oeb - Default

You can also pass in a numeric value like 123 or a numeric string like “0”.

In addition, the SMILES record readers have limited support for the “delimiter” reader_arg:

•delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

Note: the first whitespace after the SMILES string will always be treated as a delimiter.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a
message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default Location
will be created.

See chemfp.openeye_toolkit.read_ids_and_molecules() if you want (id, OE-
GraphMol) pairs instead of just the molecules.

Parameters

• source (a filename, file object, or None to read from
stdin) – the structure source

• format (a format name string, or Format object, or None
to auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader parameters passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating OEGraphMol
molecules

read_molecules_from_string (openeye_toolkit)

chemfp.openeye_toolkit.read_molecules_from_string(content, format,
id_tag=None,
reader_args=None,
errors=”strict”, loca-
tion=None)

Return an iterator that reads molecules from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
openeye_toolkit.read_molecules() for details about the other parameters. See
chemfp.openeye_toolkit.read_ids_and_molecules_from_string() if you
want to read (id, OEGraphMol) pairs instead of just molecules.

1.20. chemfp.openeye_toolkit module 303

chemfp Documentation, Release 3.1

Note: the reader will clear and reuse the OEGraphMol instance. Make a copy if you want to keep
the molecule around.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating OEGraphMol
molecules

read_ids_and_molecules (openeye_toolkit)

chemfp.openeye_toolkit.read_ids_and_molecules(source=None, for-
mat=None, id_tag=None,
reader_args=None, er-
rors=”strict”, loca-
tion=None, encoding=”utf8”,
encoding_errors=”strict”)

Return an iterator that reads (id, OEGraphMol molecule) pairs from a structure file

See chemfp.openeye_toolkit.read_molecules() for full parameter details. The major
difference is that this returns an iterator of (id, OEGraphMol) pairs instead of just the molecules.

Note: the reader will clear and reuse the OEGraphMol instance. Make a copy if you want to keep
the molecule around.

Parameters

• source (a filename, file object, or None to read from
stdin) – the structure source

• format (a format name string, or Format object, or None
to auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

304 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, OE-
GraphMol) pairs

read_ids_and_molecules_from_string (openeye_toolkit)

chemfp.openeye_toolkit.read_ids_and_molecules_from_string(content,
format,
id_tag=None,
reader_args=None,
er-
rors=”strict”,
loca-
tion=None)

Return an iterator that reads (id, OEGraphMol) pairs from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
openeye_toolkit.read_molecules() for details about the other parameters. See
chemfp.openeye_toolkit.read_molecules_from_string() if you just want to read
the OEGraphMol molecules instead of (id, OEGraphMol) pairs.

Note: the reader will clear and reuse the OEGraphMol instance. Make a copy if you want to keep
the molecule around.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, OE-
GraphMol) pairs

make_id_and_molecule_parser (openeye_toolkit)

chemfp.openeye_toolkit.make_id_and_molecule_parser(format, id_tag=None,
reader_args=None,
errors=”strict”)

Create a specialized function which takes a record and returns an (id, OEGraphMol) pair

The returned function is optimized for reading many records from individual strings because it only
does parameter validation once. The function will reuse the OEGraphMol for successive calls, so
make a copy if you want to keep it around. However, I haven’t really noticed much of a performance
difference between this and chemfp.openeye_toolkit.parse_id_and_molecule() so
I suggest you use that function directly instead of making a specialized function. (Let me know if
making a specialized function is useful.)

1.20. chemfp.openeye_toolkit module 305

chemfp Documentation, Release 3.1

See chemfp.openeye_toolkit.read_molecules() for details about the other parame-
ters.

Parameters

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a function of the form parser(record string) -> (id,
OEGraphMol)

parse_molecule (openeye_toolkit)

chemfp.openeye_toolkit.parse_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from the content string and return an OEGraphMol molecule.

content is a string containing a single structure record in format format. (Additional records are
ignored). See chemfp.openeye_toolkit.read_molecules() for details about the other
parameters. See chemfp.openeye_toolkit.parse_id_and_molecule() if you want
the (id, OEGraphMol) pair instead of just the molecule.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns an OEGraphMol molecule

parse_id_and_molecule (openeye_toolkit)

chemfp.openeye_toolkit.parse_id_and_molecule(content, format, id_tag=None,
reader_args=None, er-
rors=”strict”)

Parse the first structure record from content and return the (id, OEGraphMol) pair.

content is a string containing a single structure record in format format. (Additional records are
ignored). See chemfp.openeye_toolkit.read_molecules() for details about the other
parameters.

306 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

See chemfp.openeye_toolkit.read_molecules() for details about the other parame-
ters. See chemfp.openeye_toolkit.parse_molecule() if just want the OEGraphMol
molecule and not the the (id, OEGraphMol) pair.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns an (id, OEGraphMol molecule) pair

create_string (openeye_toolkit)

chemfp.openeye_toolkit.create_string(mol, format, id=None, writer_args=None,
errors=”strict”)

Convert an OEChem molecule into a structure record in the given format as a Unicode string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly modify
the molecule, so may not be thread-safe.

Parameters

• mol (an OEChem molecule) – the molecule to use for the output

• format (a format name string, or Format object) – the output
structure format

• id (a string, or None to use the molecule's own id) – an al-
ternate record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a string

create_bytes (openeye_toolkit)

chemfp.openeye_toolkit.create_bytes(mol, format, id=None, writer_args=None, er-
rors=”strict”)

Convert an OEChem molecule into a structure record in the given format as a byte string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly modify
the molecule, so may not be thread-safe.

Parameters

• mol (an OEChem molecule) – the molecule to use for the output

1.20. chemfp.openeye_toolkit module 307

chemfp Documentation, Release 3.1

• format (a format name string, or Format object) – the output
structure format

• id (a string, or None to use the molecule's own id) – an al-
ternate record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a string

open_molecule_writer (openeye_toolkit)

chemfp.openeye_toolkit.open_molecule_writer(destination=None, for-
mat=None, writer_args=None,
errors=”strict”, location=None,
encoding=”utf8”, encod-
ing_errors=”strict”)

Return a MoleculeWriter which can write OEChem molecules to a destination.

A chemfp.base_toolkit.MoleculeWriter has the methods write_molecule,
write_molecules, and write_ids_and_molecules, which are ways to write an OEChem
molecule, an OEChem molecule iterator, or an (id, OEChem molecule) pair iterator to a file.

Molecules are written to destination. The output format can be a string like “sdf.gz” or “smi”, a
chemfp.base_toolkit.Format, or Format-like object with “name” and “compression” at-
tributes, or None to auto-detect based on the destination. If auto-detection is not possible, the output
will be written as uncompressed SMILES.

The writer_args dictionary parameters depend on the format. Every OEChem format supports:

•aromaticity - one of “default”, “openeye”, “daylight”, “tripos”, “mdl”, “mmff”, or None

•flavor - a number, string-encoded number, or flavor string

A “flavor string” is a “|” or ”,” separated list of format-specific flavor terms. It can be as simple as
“Default”, or a more complex string like DEFAULT|-AtomStereo|-BondStero|Canonical to generate
a canonical SMILES string without stereo information.

The supported output flavor terms for each format are:

•SMILES - AtomMaps, AtomStereo, BondStereo, Canonical, ExtBonds, Hydrogens, ImpH-
Count, Isotopes, Kekule, RGroups, SuperAtoms

•sdf - CurrentParity, MCHG, MDLParity, MISO, MRGP, MV30, NoParity, Default

•mol2, mol2h - AtomNames, AtomTypeNames, BondTypeNames, Hydrogens, OrderAtoms,
Substructure, Default

•sln - Default

•pdb - BONDS, BOTH, CHARGE, CurrentResidues, DELPHI, ELEMENT, FOR-
MALCHARGE, FormalCrg, HETBONDS, NoResidues, OEResidues, ORDERS, OrderAtoms,
RADIUS, TER, Default

•xyz - Charges, Symbols, Default

•cdx - Default

•mopac - CHARGES, XYZ, Default

308 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

•mf - Title, Default

•oeb - Default

•inchi, inchikey - Chiral, FixedHLayer, Hydrogens, ReconnectedMetals, Stereo, RelativeStereo,
RacemicStereo, Default

You can also pass in a numeric value like 123 or a numeric string like “0”.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a
message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default Location
will be created.

Parameters

• destination (a filename, file object, or None to write
to stdout) – the structure destination

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer parameters passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeWriter expecting OEChem
molecules

open_molecule_writer_to_string (openeye_toolkit)

chemfp.openeye_toolkit.open_molecule_writer_to_string(format,
writer_args=None,
errors=”strict”,
location=None)

Return a MoleculeStringWriter which can write OEChem molecule records to a Unicode string.

See chemfp.openeye_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get
the output string as a Unicode string.

Parameters

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

1.20. chemfp.openeye_toolkit module 309

chemfp Documentation, Release 3.1

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting
OEChem molecules

open_molecule_writer_to_bytes (openeye_toolkit)

chemfp.openeye_toolkit.open_molecule_writer_to_bytes(format,
writer_args=None,
errors=”strict”,
location=None)

Return a MoleculeStringWriter which can write OEChem molecule records to a byte string.

See chemfp.openeye_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get
the output string as a byte string.

Parameters

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting
OEChem molecules

copy_molecule (openeye_toolkit)

chemfp.openeye_toolkit.copy_molecule(mol)
Return a new OEGraphMol which is a copy of the given OEChem molecule

Parameters mol (an Open Babel molecule) – the molecule to copy

Returns a new OBMol instance

add_tag (openeye_toolkit)

chemfp.openeye_toolkit.add_tag(mol, tag, value)
Add an SD tag value to the OEChem molecule

Parameters

• mol (an OEChem molecule) – the molecule

• tag (string) – the SD tag name

• value (string) – the text for the tag

Returns None

310 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

get_tag (openeye_toolkit)

chemfp.openeye_toolkit.get_tag(mol, tag)
Get the named SD tag value, or None if it doesn’t exist

Parameters

• mol (an OEChem molecule) – the molecule

• tag (string) – the SD tag name

Returns a string, or None

get_tag_pairs (openeye_toolkit)

chemfp.openeye_toolkit.get_tag_pairs(mol)
Get a list of all SD tag (name, value) pairs for the molecule

Parameters mol (an OEChem molecule) – the molecule

Returns a list of (string name, string value) pairs

get_id (openeye_toolkit)

chemfp.openeye_toolkit.get_id(mol)
Get the molecule’s id using OEChem’s GetTitle()

Parameters mol (an OEChem molecule) – the molecule

Returns a string

set_id (openeye_toolkit)

chemfp.openeye_toolkit.set_id(mol, id)
Set the molecule’s id using OEChem’s SetTitle()

Parameters

• mol (an OEChem molecule) – the molecule

• id (string) – the new id

Returns None

chemfp.rdkit_toolkit module

The chemfp toolkit layer for RDKit.

name

chemfp.rdkit_toolkit.name

The string “rdkit”.

1.21. chemfp.rdkit_toolkit module 311

chemfp Documentation, Release 3.1

software

chemfp.rdkit_toolkit.software

A string like “RDKit/2016.09.3”, where the second part of the string comes from rdkit.rdBase.rdkitVersion.

is_licensed (rdkit_toolkit)

chemfp.rdkit_toolkit.is_licensed()
Return True - RDKit is always licensed

Returns True

get_formats (rdkit_toolkit)

chemfp.rdkit_toolkit.get_formats(include_unavailable=False)
Get the list of structure formats that RDKit supports

If include_unavailable is True then also include RDKit formats which aren’t available to this specific
version of RDKit, such as the InChI formats if your RDKit installation wasn’t compiled with InChI
support.

Parameters include_unavailable (True or False) – include unavailable for-
mats?

Returns a list of Format objects

get_input_formats (rdkit_toolkit)

chemfp.rdkit_toolkit.get_input_formats()
Get the list of supported RDKit input formats

Returns a list of chemfp.base_toolkit.Format objects

get_output_formats (rdkit_toolkit)

chemfp.rdkit_toolkit.get_output_formats()
Get the list of supported RDKit output formats

Returns a list of chemfp.base_toolkit.Format objects

get_format (rdkit_toolkit)

chemfp.rdkit_toolkit.get_format(format)
Get the named format, or raise a ValueError

This will raise a ValueError if RDKit does not implement the format format_name or that format is
not available.

Parameters format_name (a string) – the format name

Returns a list of chemfp.base_toolkit.Format objects

312 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

get_input_format (rdkit_toolkit)

chemfp.rdkit_toolkit.get_input_format(format)
Get the named input format, or raise a ValueError

This will raise a ValueError if RDKit does not implement the format format_name or that format is
not an input format.

Parameters format_name (a string) – the format name

Returns a list of chemfp.base_toolkit.Format objects

get_output_format (rdkit_toolkit)

chemfp.rdkit_toolkit.get_output_format(format)
Get the named format, or raise a ValueError

This will raise a ValueError if RDKit does not implement the format format_name or that format is
not an output format.

Parameters format_name (a string) – the format name

Returns a list of chemfp.base_toolkit.Format objects

get_input_format_from_source (rdkit_toolkit)

chemfp.rdkit_toolkit.get_input_format_from_source(source=None, for-
mat=None)

Get the most appropriate format given the available source and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same attributes. If
it’s a string then use it to create a Format object.

If format is None, use the source to auto-detect the format. If auto-detection is not possible, assume
it’s an uncompressed SMILES file.

Parameters

• source (a filename (as a string), a file object, or None
to read from stdin) – the structure data source.

• format (a Format(-like) object, string, or None) – format in-
formation, if known.

Returns a chemfp.base_toolkit.Format object

get_output_format_from_destination (rdkit_toolkit)

chemfp.rdkit_toolkit.get_output_format_from_destination(destination=None,
format=None)

Get the most appropriate format given the available destination and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same attributes. If
it’s a string then use it to create a Format object.

If format is None, use the destination to auto-detect the format. If auto-detection is not possible,
assume it’s an uncompressed SMILES file.

1.21. chemfp.rdkit_toolkit module 313

chemfp Documentation, Release 3.1

Parameters

• destination (a filename (as a string), a file object, or
None to read from stdin) – The structure data source.

• format (a Format(-like) object, string, or None) – format in-
formation, if known.

Returns a chemfp.base_toolkit.Format object

read_molecules (rdkit_toolkit)

chemfp.rdkit_toolkit.read_molecules(source=None, format=None, id_tag=None,
reader_args=None, errors=”strict”, lo-
cation=None, encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads RDKit molecules from a structure file

Iterate through the format structure records in source. If format is None then auto-detect the format
based on the source. For SD files, use id_tag to get the record id from the given SD tag instead of
the title line. (read_molecules() will ignore the id_tag. It exists to make it easier to switch between
reader functions.)

Note: the reader returns a new RDKit molecule each time.

The reader_args dictionary parameters depend on the format. These include:

•SMILES

–delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

–has_header - True or False

–sanitize - True or default sanitizes; False for unsanitized processing

•InChI

–delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

–sanitize - True or default sanitizes; False for unsanitized processing

–removeHs - True or default removes explicit hydrogens; False leaves them in the structure

–logLevel - an integer log level

–treatWarningAsError - True raises an exception on error; False or default keeps processing

•SDF

–sanitize - True or default sanitizes; False for unsanitized processing

–removeHs - True or default removes explicit hydrogens; False leaves them in the structure

–strictParsing - True or default for strict parsing; False for lenient parsing

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a
message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default Location
will be created.

See chemfp.rdkit_toolkit.read_ids_and_molecules() if you want (id, molecule)
pairs instead of just the molecules.

Parameters

314 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• source (a filename, file object, or None to read from
stdin) – the structure source

• format (a format name string, or Format object, or None
to auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader parameters passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating RDKit molecules

read_molecules_from_string (rdkit_toolkit)

chemfp.rdkit_toolkit.read_molecules_from_string(content, format,
id_tag=None,
reader_args=None,
errors=”strict”, loca-
tion=None)

Return an iterator that reads RDKit molecules from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
rdkit_toolkit.read_molecules() for details about the other parameters. See chemfp.
rdkit_toolkit.read_ids_and_molecules_from_string() if you want to read (id,
RDKit) pairs instead of just molecules.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating RDKit molecules

1.21. chemfp.rdkit_toolkit module 315

chemfp Documentation, Release 3.1

read_ids_and_molecules (rdkit_toolkit)

chemfp.rdkit_toolkit.read_ids_and_molecules(source=None, for-
mat=None, id_tag=None,
reader_args=None, er-
rors=”strict”, location=None,
encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads (id, RDKit molecule) pairs from a structure file

See chemfp.rdkit_toolkit.read_molecules() for full parameter details. The major
difference is that this returns an iterator of (id, RDKit molecule) pairs instead of just the molecules.

Parameters

• source (a filename, file object, or None to read from
stdin) – the structure source

• format (a format name string, or Format object, or None
to auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, RDKit
molecule) pairs

read_ids_and_molecules_from_string (rdkit_toolkit)

chemfp.rdkit_toolkit.read_ids_and_molecules_from_string(content,
format,
id_tag=None,
reader_args=None,
er-
rors=”strict”,
loca-
tion=None)

Return an iterator that reads (id, RDKit molecule) pairs from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
rdkit_toolkit.read_molecules() for details about the other parameters. See chemfp.
rdkit_toolkit.read_molecules_from_string() if you just want to read the RDKit
molecules instead of (id, molecule) pairs.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input
structure format

316 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, RDKit
molecule) pairs

make_id_and_molecule_parser (rdkit_toolkit)

chemfp.rdkit_toolkit.make_id_and_molecule_parser(format, id_tag=None,
reader_args=None,
errors=”strict”)

Create a specialized function which takes a record and returns an (id, RDKit molecule) pair

The returned function is optimized for reading many records from individual strings because it only
does parameter validation once. However, I haven’t really noticed much of a performance differ-
ence between this and chemfp.rdkit_toolkit.parse_id_and_molecule() so you can
probably so I suggest you use that function directly instead of making a specialized function. (Let
me know if making a specialized function is useful.)

See chemfp.rdkit_toolkit.read_molecules() for details about the other parameters.

Parameters

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a function of the form parser(record string) -> (id, RDKit
molecule)

parse_molecule (rdkit_toolkit)

chemfp.rdkit_toolkit.parse_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from the content string and return an RDKit molecule.

content is a string containing a single structure record in format format. (Additional records are
ignored). See chemfp.rdkit_toolkit.read_molecules() for details about the other pa-
rameters. See chemfp.rdkit_toolkit.parse_id_and_molecule() if you want the (id,
RDKit molecule) pair instead of just the molecule.

Parameters

1.21. chemfp.rdkit_toolkit module 317

chemfp Documentation, Release 3.1

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns an RDKit molecule

parse_id_and_molecule (rdkit_toolkit)

chemfp.rdkit_toolkit.parse_id_and_molecule(content, format, id_tag=None,
reader_args=None, er-
rors=”strict”)

Parse the first structure record from content and return the (id, RDKit molecule) pair.

content is a string containing a single structure record in format format. (Additional records are
ignored). See chemfp.rdkit_toolkit.read_molecules() for details about the other pa-
rameters.

See chemfp.rdkit_toolkit.read_molecules() for details about the other parameters.
See chemfp.rdkit_toolkit.parse_molecule() if just want the RDKit molecule and not
the the (id, RDKit molecule) pair.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns an (id, RDKit molecule) pair

create_string (rdkit_toolkit)

chemfp.rdkit_toolkit.create_string(mol, format, id=None, writer_args=None, er-
rors=”strict”)

Convert an RDKit molecule into a structure record in the given format as a Unicode string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly modify
the molecule, so may not be thread-safe.

Parameters

• mol (an RDKit molecule) – the molecule to use for the output

318 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• format (a format name string, or Format object) – the output
structure format

• id (a string, or None to use the molecule's own id) – an al-
ternate record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a Unicode string

create_bytes (rdkit_toolkit)

chemfp.rdkit_toolkit.create_bytes(mol, format, id=None, writer_args=None, er-
rors=”strict”)

Convert an RDKit molecule into a structure record in the given format as a byte string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly modify
the molecule, so may not be thread-safe.

Parameters

• mol (an RDKit molecule) – the molecule to use for the output

• format (a format name string, or Format object) – the output
structure format

• id (a string, or None to use the molecule's own id) – an al-
ternate record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a byte string

open_molecule_writer (rdkit_toolkit)

chemfp.rdkit_toolkit.open_molecule_writer(destination=None, format=None,
writer_args=None, errors=”strict”,
location=None, encoding=”utf8”,
encoding_errors=”strict”)

Return a MoleculeWriter which can write RDKit molecules to a destination.

A chemfp.base_toolkit.MoleculeWriter has the methods write_molecule,
write_molecules, and write_ids_and_molecules, which are ways to write an RDKit
molecule, an RDKit molecule iterator, or an (id, RDKit molecule) pair iterator to a file.

Molecules are written to destination. The output format can be a string like “sdf.gz” or “smi”, a
chemfp.base_toolkit.Format, or Format-like object with “name” and “compression” at-
tributes, or None to auto-detect based on the destination. If auto-detection is not possible, the output
will be written as uncompressed SMILES.

The writer_args dictionary parameters depend on the format. These include:

•SMILES

1.21. chemfp.rdkit_toolkit module 319

chemfp Documentation, Release 3.1

–delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

–isomericSmiles - True to generate isomeric SMILES

–kekuleSmiles - True to generate SMILES in Kekule form

–canonical - True to generate a canonical SMILES

–allBondsExplicit - True to write explict ‘-‘ and ‘:’ bonds, even if they can be inferred;
default is False

InChI and InChIKey

•delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

•include_id - True or default to include the id as the second column; False has no id column

•options - an options string passed to the underlying InChI library

•logLevel - an integer log level

•treatWarningAsError - True raises an exception on error; False or default keeps processing

SDF

•includeStereo - True include stereo information; False or default does not

•kekulize - True or default creates the connection table with bonds in Kekeule form

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a
message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default Location
will be created.

Parameters

• destination (a filename, file object, or None to write
to stdout) – the structure destination

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer parameters passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeWriter expecting RDKit
molecules

open_molecule_writer_to_string (rdkit_toolkit)

chemfp.rdkit_toolkit.open_molecule_writer_to_string(format,
writer_args=None,
errors=”strict”,
location=None)

Return a MoleculeStringWriter which can write molecule records in the given format to a string.

See chemfp.rdkit_toolkit.open_molecule_writer() for full parameter details.

320 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get
the output as a Unicode string.

Parameters

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting RDKit
molecules

open_molecule_writer_to_bytes (rdkit_toolkit)

chemfp.rdkit_toolkit.open_molecule_writer_to_bytes(format,
writer_args=None,
errors=”strict”,
location=None)

Return a MoleculeStringWriter which can write molecule records in the given format to a text string.

See chemfp.rdkit_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get
the output as a byte string.

Parameters

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting RDKit
molecules

copy_molecule (rdkit_toolkit)

chemfp.rdkit_toolkit.copy_molecule(mol)
Return a new RDKit molecule which is a copy of the given molecule

Parameters mol (an RDKit molecule) – the molecule to copy

Returns a new RDKit Mol instance

1.21. chemfp.rdkit_toolkit module 321

chemfp Documentation, Release 3.1

add_tag (rdkit_toolkit)

chemfp.rdkit_toolkit.add_tag(mol, tag, value)
Add an SD tag value to the RDKit molecule

Parameters

• mol (an RDKit molecule) – the molecule

• tag (string) – the SD tag name

• value (string) – the text for the tag

Returns None

get_tag (rdkit_toolkit)

chemfp.rdkit_toolkit.get_tag(mol, tag)
Get the named SD tag value, or None if it doesn’t exist

Parameters

• mol (an RDKit molecule) – the molecule

• tag (string) – the SD tag name

Returns a string, or None

get_tag_pairs (rdkit_toolkit)

chemfp.rdkit_toolkit.get_tag_pairs(mol)
Get a list of all SD tag (name, value) pairs for the molecule

Parameters mol (an RDKit molecule) – the molecule

Returns a list of (string name, string value) pairs

get_id (rdkit_toolkit)

chemfp.rdkit_toolkit.get_id(mol)
Get the molecule’s id from RDKit’s _Name property

Parameters mol (an RDKit molecule) – the molecule

Returns a string

set_id (rdkit_toolkit)

chemfp.rdkit_toolkit.set_id(mol, id)
Set the molecule’s id as RDKit’s _Name property

Parameters

• mol (an RDKit molecule) – the molecule

• id (string) – the new id

Returns None

322 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

chemfp.text_toolkit module

The text_toolkit implements the chemfp toolkit API but where the “molecules” are simple TextRecord instances which
store the records as text strings. It does not use a back-end chemistry toolkit, and it cannot convert between different
chemistry representations.

The TextRecord is a base class. The actual records depend on the format, and will be one of:

• SDFRecord

• SmiRecord

• CanRecord

• UsmRecord

• SmiStringRecord

• CanStringRecord

• UsmStringRecord

The text toolkit will let you “convert” between the different SMILES formats, but it doesn’t actually change the
SMILES string. The SMILES records have the attributes id, record and smiles.

The toolkit also knows a bit about the SD format. The SDF records have the attributes id, id_bytes and record,
and there are methods to get SD tag values and add a tag to the end of the tag data block.

The text_toolkit also supports a few SDF-specific I/O functions to read SDF records directly as a string instead of
wrapped in a TextRecord.

The record types also have the attributes encoding and encoding_errors which affect how the record bytes are
parsed.

name

chemfp.text_toolkit.name

The string “text”

software

chemfp.text_toolkit.software

A string like “chemfp/3.0”.

is_licensed (text_toolkit)

chemfp.text_toolkit.is_licensed()
Return True - chemfp’s text toolkit is always licensed

Returns True

1.22. chemfp.text_toolkit module 323

chemfp Documentation, Release 3.1

get_formats (text_toolkit)

chemfp.text_toolkit.get_formats(include_unavailable=False)
Get the list of structure formats that chemfp’s text toolkit supports

This version of chemfp will always support the structure formats available to chemfp so ‘in-
clude_unavailable’ does not affect anything. (It may affect other toolkits.)

Parameters include_unavailable – include unavailable formats?

Value include_unavailable True or False

Returns a list of chemfp.base_toolkit.Format objects

get_input_formats (text_toolkit)

chemfp.text_toolkit.get_input_formats()
Get the list of supported chemfp text toolkit input formats

Returns a list of chemfp.base_toolkit.Format objects

get_output_formats (text_toolkit)

chemfp.text_toolkit.get_output_formats()
Get the list of supported chemfp text toolkit output formats

Returns a list of chemfp.base_toolkit.Format objects

get_format (text_toolkit)

chemfp.text_toolkit.get_format(format_name)
Get the named format, or raise a ValueError

This will raise a ValueError for unknown format names.

Parameters format_name – the format name

Value format_name a string

Returns a chemfp.base_toolkit.Format object

get_input_format (text_toolkit)

chemfp.text_toolkit.get_input_format(format_name)
Get the named input format, or raise a ValueError

This will raise a ValueError for unknown format names or if that format is not an input format.

Parameters format_name – the format name

Value format_name a string

Returns a chemfp.base_toolkit.Format object

324 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

get_output_format (text_toolkit)

chemfp.text_toolkit.get_output_format(format_name)
Get the named format, or raise a ValueError

This will raise a ValueError for unknown format names or if that format is not an output format.

Parameters format_name – the format name

Value format_name a string

Returns a chemfp.base_toolkit.Format object

get_input_format_from_source (text_toolkit)

chemfp.text_toolkit.get_input_format_from_source(source=None, for-
mat=None)

Get the most appropriate format given the available source and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same attributes. If
it’s a string then use it to create a Format object.

If format is None, use the source to auto-detect the format. If auto-detection is not possible, assume
it’s an uncompressed SMILES file.

Parameters

• source (A filename (as a string), a file object, or None
to read from stdin) – The structure data source.

• format (A Format(-like) object, string, or None) – Format in-
formation, if known.

Returns a chemfp.base_toolkit.Format object

get_output_format_from_destination (text_toolkit)

chemfp.text_toolkit.get_output_format_from_destination(destination=None,
format=None)

Get the most appropriate format given the available destination and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same attributes. If
it’s a string then use it to create a Format object.

If format is None, use the destination to auto-detect the format. If auto-detection is not possible,
assume it’s an uncompressed SMILES file.

Parameters

• destination (A filename (as a string), a file object, or
None to read from stdin) – The structure data source.

• format (A Format(-like) object, string, or None) – format in-
formation, if known.

Returns A chemfp.base_toolkit.Format object

1.22. chemfp.text_toolkit module 325

chemfp Documentation, Release 3.1

read_molecules (text_toolkit)

chemfp.text_toolkit.read_molecules(source=None, format=None, id_tag=None,
reader_args=None, errors=”strict”, lo-
cation=None, encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads TextRecord instances from a structure file

Iterate through the format structure records in source. If format is None then auto-detect the format
based on the source. For SD files, use id_tag to get the record id from the given SD tag instead of
the title line. (read_molecules() will ignore the id_tag. It exists to make it easier to switch between
reader functions.)

Only the SMILES formats use the reader_args dictionary. The supported parameters are:

•delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

•has_header - True or False

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a
message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default Location
will be created.

See read_ids_and_molecules() if you want (id, TextRecord) pairs instead of just the
molecules.

Parameters

• source (a filename, file object, or None to read from
stdin) – the structure source

• format (a format name string, or Format object, or None
to auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader parameters passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

• encoding (string (typically 'utf8' or 'latin1')) – the byte
encoding

• encoding_errors (string (typically 'strict', 'ignore',
or 'replace')) – how to handle decoding failure

Returns a chemfp.base_toolkit.MoleculeReader iterating TextRecord
molecules

326 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

read_molecules_from_string (text_toolkit)

chemfp.text_toolkit.read_molecules_from_string(content, format,
id_tag=None,
reader_args=None,
errors=”strict”, loca-
tion=None)

Return an iterator that reads TextRecord instances from a string containing structure records

content is a string containing 0 or more records in the format format. See read_molecules()
for details about the other parameters. See read_ids_and_molecules_from_string() if
you want to read (id, TextRecord) pairs instead of just molecules.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

• encoding (string (typically 'utf8' or 'latin1')) – the byte
encoding

• encoding_errors (string (typically 'strict', 'ignore',
or 'replace')) – how to handle decoding failure

Returns a chemfp.base_toolkit.MoleculeReader iterating TextRecord
molecules

read_ids_and_molecules (text_toolkit)

chemfp.text_toolkit.read_ids_and_molecules(source=None, format=None,
id_tag=None, reader_args=None,
errors=”strict”, location=None,
encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads (id, TextRecord) pairs from a structure file

See chemfp.text_toolkit.read_molecules() for full parameter details. The major dif-
ference is that this returns an iterator of (id, TextRecord) pairs instead of just the molecules.

Parameters

• source (a filename, file object, or None to read from
stdin) – the structure source

• format (a format name string, or Format object, or None
to auto-detect) – the input structure format

1.22. chemfp.text_toolkit module 327

chemfp Documentation, Release 3.1

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

• encoding (string (typically 'utf8' or 'latin1')) – the byte
encoding

• encoding_errors (string (typically 'strict', 'ignore',
or 'replace')) – how to handle decoding failure

Returns a chemfp.text_toolkit.IdAndMoleculeReader iterating (id,
TextRecord) pairs

read_ids_and_molecules_from_string (text_toolkit)

chemfp.text_toolkit.read_ids_and_molecules_from_string(content, format,
id_tag=None,
reader_args=None,
errors=”strict”,
location=None)

Return an iterator that reads (id, TextRecord) pairs from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
rdkit_toolkit.read_molecules() for details about the other parameters. See
chemfp.rdkit_toolkit.read_molecules_from_string() if you just want to read
the TextRecord molecules instead of (id, TextRecord) pairs.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

• encoding (string (typically 'utf8' or 'latin1')) – the byte
encoding

• encoding_errors (string (typically 'strict', 'ignore',
or 'replace')) – how to handle decoding failure

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id,
TextRecord) pairs

328 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

make_id_and_molecule_parser (text_toolkit)

chemfp.text_toolkit.make_id_and_molecule_parser(format, id_tag=None,
reader_args=None, er-
rors=”strict”)

Create a specialized function which takes a record and returns an (id, TextRecord) pair

The returned function is optimized for reading many records from individual strings because it only
does parameter validation once. However, I haven’t really noticed much of a performance difference
between this and chemfp.text_toolkit.parse_id_and_molecule() so I suggest you
use that function directly instead of making a specialized function. (Let me know if making a
specialized function is useful.)

See chemfp.text_toolkit.read_molecules() for details about the other parameters.
The specific TextRecord subclass returned depends on the format.

Parameters

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a function of the form parser(record string) -> (id,
text_record)

parse_molecule (text_toolkit)

chemfp.text_toolkit.parse_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from the content string and return a TextRecord.

content is a string containing a single structure record in format format. (Additional records are
ignored). See chemfp.text_toolkit.read_molecules() for details about the other pa-
rameters. See chemfp.text_toolkit.parse_id_and_molecule() if you want the (id,
TextRecord) pair instead of just the text record.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

1.22. chemfp.text_toolkit module 329

chemfp Documentation, Release 3.1

• encoding (string (typically 'utf8' or 'latin1')) – the byte
encoding

• encoding_errors (string (typically 'strict', 'ignore',
or 'replace')) – how to handle decoding failure

Returns a TextRecord

parse_id_and_molecule (text_toolkit)

chemfp.text_toolkit.parse_id_and_molecule(content, format, id_tag=None,
reader_args=None, er-
rors=”strict”)

Parse the first structure record from content and return the (id, TextRecord) pair.

content is a string containing a single structure record in format format. (Additional records are
ignored). See chemfp.rdkit_toolkit.read_molecules() for details about the other pa-
rameters.

See chemfp.rdkit_toolkit.read_molecules() for details about the other parameters.
See chemfp.rdkit_toolkit.parse_molecule() if just want the TextRecord and not
the the (id, TextRecord) pair.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input
structure format

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• encoding (string (typically 'utf8' or 'latin1')) – the byte
encoding

• encoding_errors (string (typically 'strict', 'ignore',
or 'replace')) – how to handle decoding failure

Returns an (id, TextRecord molecule) pair

create_string (text_toolkit)

chemfp.text_toolkit.create_string(mol, format, id=None, writer_args=None, er-
rors=”strict”)

Convert a TextRecord into a structure record in the given format as a Unicode string

If id is not None then use it instead of the molecule’s own id.

Parameters

• mol (a TextRecord) – the molecule to use for the output

• format (a format name string, or Format object) – the output
structure format

330 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• id (a string, or None to use the molecule's own id) – an al-
ternate record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a Unicode string

create_bytes (text_toolkit)

chemfp.text_toolkit.create_bytes(mol, format, id=None, writer_args=None, er-
rors=”strict”)

Convert a TextRecord into a structure record in the given format as a byte string

If id is not None then use it instead of the molecule’s own id.

Parameters

• mol (a TextRecord) – the molecule to use for the output

• format (a format name string, or Format object) – the output
structure format

• id (a string, or None to use the molecule's own id) – an al-
ternate record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

Returns a byte string

open_molecule_writer (text_toolkit)

chemfp.text_toolkit.open_molecule_writer(destination=None, format=None,
writer_args=None, errors=”strict”,
location=None, encoding=”utf8”,
encoding_errors=”strict”)

Return a MoleculeWriter which can write TextRecord instances to a destination.

A chemfp.base_toolkit.MoleculeWriter has the methods write_molecule,
write_molecules, and write_ids_and_molecules, which are ways to write an
TextRecord, an TextRecord iterator, or an (id, TextRecord) pair iterator to a file.

TextRecords are written to destination. The output format can be a string like “sdf.gz” or “smi”,
a chemfp.base_toolkit.Format, or Format-like object with “name” and “compression” at-
tributes, or None to auto-detect based on the destination. If auto-detection is not possible, the output
will be written as uncompressed SMILES.

That said, the text toolkit doesn’t know how to convert between SMILES and SDF formats, and will
raise an exception if you try.

The writer_args is only used for the “smi”, “can”, and “usm” output formats. The only supported
parameter is:

1.22. chemfp.text_toolkit module 331

chemfp Documentation, Release 3.1

* delimiter - one of "tab", "space", "to-eol", the space or tab
→˓characters, or None

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a
message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default Location
will be created.

Parameters

• destination (a filename, file object, or None to write
to stdout) – the structure destination

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

• encoding (string (typically 'utf8' or 'latin1')) – the byte
encoding

• encoding_errors (string (typically 'strict', 'ignore',
or 'replace')) – how to handle decoding failure

Returns a chemfp.base_toolkit.MoleculeWriter expecting TextRecord
instances

open_molecule_writer_to_string (text_toolkit)

chemfp.text_toolkit.open_molecule_writer_to_string(format,
writer_args=None,
errors=”strict”,
location=None)

Return a MoleculeStringWriter which can write TextRecord instances to a string.

See chemfp.text_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get
the output as a Unicode string.

Parameters

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

332 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting
TextRecord instances

open_molecule_writer_to_bytes (text_toolkit)

chemfp.text_toolkit.open_molecule_writer_to_bytes(format,
writer_args=None,
errors=”strict”, loca-
tion=None)

Return a MoleculeStringWriter which can write TextRecord instances to a string.

See chemfp.text_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get
the output as a byte string.

Parameters

• format (a format name string, or Format(-like) object,
or None to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting
TextRecord instances

copy_molecule (text_toolkit)

chemfp.text_toolkit.copy_molecule(mol)
Return a new TextRecord which is a copy of the given TextRecord

Parameters mol (a TextRecord) – the text record

Returns a new TextRecord

add_tag (text_toolkit)

chemfp.text_toolkit.add_tag(mol, tag, value)
Add an SD tag value to the TextRecord

If the mol is in “sdf” format then this will modify mol.record to append the new tag and value to
the end of the tag block. The other tags will not be modified, including tags with the same tag name.

Parameters

• mol (a TextRecord) – the text record

• tag (string) – the SD tag name

• value (string) – the text for the tag

Returns None

1.22. chemfp.text_toolkit module 333

chemfp Documentation, Release 3.1

get_tag (text_toolkit)

chemfp.text_toolkit.get_tag(mol, tag)
Get the named SD tag value, or None if it doesn’t exist

If the mol is in “sdf” format then this will return the corresponding tag value from mol.record,
or None if the tag does not exist.

If the record is in any other format then it will return None.

Parameters

• mol (a TextRecord) – the molecule

• tag (string) – the SD tag name

Returns a string, or None

get_tag_pairs (text_toolkit)

chemfp.text_toolkit.get_tag_pairs(mol)
Get a list of all SD tag (name, value) pairs for the TextRecord

If the mol is in “sdf” format then this will return the list of (tag, value) pairs in mol.record, where
the tag and value are strings.

If the record is in any other format then it will return an empty list.

Parameters mol (a TextRecord) – the molecule

Returns a list of (tag name, tag value) pairs

get_id (text_toolkit)

chemfp.text_toolkit.get_id(mol)
Get the molecule’s id from the TextRecord’s id field

This is toolkit-portable way to get mol.id.

Parameters mol (a TextRecord) – the molecule

Returns a string

set_id (text_toolkit)

chemfp.text_toolkit.set_id(mol, id)
Set the TextRecord’s id to the new id

This is the toolkit-portable way to write mol.id = id.

Note: this does not modify mol.record. Use chemfp.text_toolkit.
create_string() or similar text_toolkit functions to get the record text with a new
identifier.

Parameters

• mol (a TextRecord) – the molecule

• id (string) – the new id

Returns None

334 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

read_sdf_records (text_toolkit)

chemfp.text_toolkit.read_sdf_records(source=None, reader_args=None, com-
pression=None, errors=”strict”, loca-
tion=None, block_size=327680)

Return an iterator that reads each record from an SD file as a string.

Iterate through the records in source, which must be in SD format. If compression is None or “auto”
then auto-detect the compression type based on source, and default to uncompressed when it can’t
be determined. Use “gz” when the input is gzip compressed, and “none” or “” if uncompressed.

The reader_args parameter is currently unused. It exists for future compatability.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a
message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default Location
will be created.

The block_size parameter is the number of bytes to read from the SD file. The current implemen-
tation reads a block, iterates through the records in the block, then prepends any remaining text to
the start of the next block. You shouldn’t need to change this parameter, but if you do, please let me
know.

Note: to prevent accidental memory consumption if the input is in the wrong format, a complete
record must be found within the first 327680 bytes or 5*block_size bytes, whichever is larger.

The parser has only a basic understanding of the SD format. It knows how to handle the counts line,
the SKP property, and even tag data with the value ‘$$$$’. It is not a full validator and it does not
know chemistry.

WARNING: the parser does not yet handle the MS Windows newline convention.

See read_sdf_ids_and_records() if you want (id, record) pairs, and
read_sdf_ids_and_values() if you want (id, tag data) pairs. See
read_sdf_ids_and_records_from_string() to read from a string instead of a
file or file-like object.

Parameters

• source (a filename, file object, or None to read from
stdin) – the SDF source

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data
content compression method

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.RecordReader() iterating over the records as
a string

1.22. chemfp.text_toolkit module 335

chemfp Documentation, Release 3.1

read_sdf_ids_and_records (text_toolkit)

chemfp.text_toolkit.read_sdf_ids_and_records(source=None, id_tag=None,
reader_args=None, com-
pression=None, er-
rors=”strict”, location=None,
encoding=”utf8”, en-
coding_errors=”strict”,
block_size=327680)

Return an iterator that reads the (id, record string) pairs from an SD file

See read_sdf_records() for most parameter details. That function iterates over the records,
while this one iterates over the (id, record) pairs. By default the id comes from the title line. Use
id_tag to get the record id from the given SD tag instead.

See read_sdf_ids_and_values() if you want to read an identifier and tag value, or two tag
values, instead of returning the full record.

Parameters

• source (a filename, file object, or None to read from
stdin) – the SDF source

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data
content compression method

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndRecordReader iterating (id, record
string) pairs

read_sdf_ids_and_values (text_toolkit)

chemfp.text_toolkit.read_sdf_ids_and_values(source=None, id_tag=None,
value_tag=None,
reader_args=None, compres-
sion=None, errors=”strict”, lo-
cation=None, encoding=”utf8”,
encoding_errors=”strict”,
block_size=327680)

Return an iterator that reads the (id, tag value string) pairs from an SD file

See read_sdf_records() for most parameter details. That function iterates over the records,
while this one iterates over the (id, tag value) pairs.

By default this uses the title line for both the id and tag value strings. Use id_tag and value_tag,
respectively, to use a given tag value instead. If a tag doesn’t exist then None will be used.

Parameters

• source (a filename, file object, or None to read from
stdin) – the SDF source

336 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• value_tag (string, or None to use the record title) – SD tag
containing the value

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data
content compression method

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndRecordReader iterating (id, value
string) pairs

read_sdf_records_from_string (text_toolkit)

chemfp.text_toolkit.read_sdf_records_from_string(content,
reader_args=None,
compression=None,
errors=”strict”,
location=None,
block_size=327680)

Return an iterator that reads each record from a string containing SD records

See read_sdf_records_from_string() for the parameter details. The main difference is
that this function reads from content, which is a string containing 0 or more SDF records.

If content is a (Unicode) string then it must only contain ASCII characters, the records will be
returned as strings, and the compression option is not supported. If content is a byte string then the
records will be returned as byte strings, and compression is supported.

See read_sdf_ids_and_records_from_string() to read (id, record) pairs and
read_sdf_ids_and_values_from_string() to read (id, tag value) pairs.

Parameters

• content (string or bytes) – a string containing zero or more SD records

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data
content compression method

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.RecordReader iterating over each record as a
string

1.22. chemfp.text_toolkit module 337

chemfp Documentation, Release 3.1

read_sdf_ids_and_records_from_string (text_toolkit)

chemfp.text_toolkit.read_sdf_ids_and_records_from_string(content=None,
id_tag=None,
reader_args=None,
compres-
sion=None,
er-
rors=”strict”,
loca-
tion=None,
encod-
ing=”utf8”,
encod-
ing_errors=”strict”,
block_size=327680)

Return an iterator that reads the (id, record) pairs from a string containing SD records

This function reads the records from content, which is a string containing 0 or more SDF records. It
iterates over the (id, record) pairs. By default the id comes from the first line of the SD record. Use
id_tag to use a given tag value instead. See read_sdf_records() for details about the other
parameters.

If content is a (Unicode) string then it must only contain ASCII characters, the records will be
returned as strings, the compression option is not supported, and the encoding and encoding_errors
parameters are ignored.

If content is a byte string then the records will be returned as byte strings, compression is supported,
and the encoding and encoding_errors parameters are used to parse the id.

Parameters

• content (string or bytes) – a string containing zero or more SD records

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data
content compression method

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndRecordReader iterating over the (id,
record string) pairs

338 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

read_sdf_ids_and_values_from_string (text_toolkit)

chemfp.text_toolkit.read_sdf_ids_and_values_from_string(content=None,
id_tag=None,
value_tag=None,
compres-
sion=None,
reader_args=None,
er-
rors=”strict”,
loca-
tion=None,
encod-
ing=”utf8”,
encod-
ing_errors=”strict”,
block_size=327680)

Return an iterator that reads the (id, value) pairs from a string containing SD records

This function reads the records from content, which is a string containing 0 or more SDF records.
It iterates over the (id, value) pairs, which by default both contain the title line. Use id_tag and
value_tag, respectively, to use a given tag value instead. If a tag doesn’t exist then None will be
used.

If content is a (Unicode) string then it must only contain ASCII characters, the compression option
is not supported, and the encoding and encoding_errors parameters are ignored.

If content is a byte string then the records will be returned as byte strings, compression is supported,
and the encoding and encoding_errors parameters are used to parse the id and value.

See read_sdf_records() for details about the other parameters.

Parameters

• content (string or bytes) – a string containing zero or more SD records

• id_tag (string, or None to use the record title) – SD tag
containing the record id

• value_tag (string, or None to use the record title) – SD tag
containing the value

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data
content compression method

• errors (one of "strict", "report", or "ignore") – specify how
to handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndRecordReader iterating over the (id,
value) pairs

get_sdf_tag (text_toolkit)

chemfp.text_toolkit.get_sdf_tag(sdf_record, tag)
Return the value for a named tag in an SDF record string

1.22. chemfp.text_toolkit module 339

chemfp Documentation, Release 3.1

Get the value for the tag named tag from the string sdf_record containing an SD record.

Parameters

• sdf_record (string) – an SD record

• tag (string) – a tag name

Returns the corresponding tag value as a string, or None

add_sdf_tag (text_toolkit)

chemfp.text_toolkit.add_sdf_tag(sdf_record, tag, value)
Add an SD tag value to an SD record string

This will append the new tag and value to the end of the tag data block in the sdf_record string.

Parameters

• sdf_record (string) – an SD record

• tag (string) – a tag name

• value (string) – the new tag value

Returns a new SD record string with the new tag and value

get_sdf_tag_pairs (text_toolkit)

chemfp.text_toolkit.get_sdf_tag_pairs(sdf_record)
Return the (tag, value) entries in the SDF record string

Parse the sdf_record and return the tag data as a list of (tag, value) pairs. The type of the returned
strings will be the same as the type of the input sdf_record string.

Parameters sdf_record (string) – an SDF record

Returns a list of (tag, value) pairs

get_sdf_id (text_toolkit)

chemfp.text_toolkit.get_sdf_id(sdf_record)
Return the id for the SDF record string

The id is the first line of the sdf_record. A future version of this function may support an id_tag
parameter. Let me know if that would be useful.

The returned id string will have the same type as the input sdf_record.

Parameters sdf_record (string) – an SD record

Returns the first line of the SD record

set_sdf_id (text_toolkit)

chemfp.text_toolkit.set_sdf_id(sdf_record, id)
Set the id of the SDF record string to a new value

Set the first line of sdf_record to the new id, which must not contain a newline.

340 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

The sdf_record and the id must have the same string type.

Parameters

• sdf_record (string) – an SDF record

• id (string) – the new id

chemfp._text_toolkit module (private)

As you might have infered from the leading “_” in “_text_toolkit”, this is not a public module. There is no reason for
you to import it directly, the module name is subject to change, and even the location of the classes is also subject to
change. The reason why I even bring it up is because the chemfp.text_toolkit returns class instances from this
module, so you might well wonder about them.

TextRecord

class chemfp._text_toolkit.TextRecord

Base class for the text_toolkit ‘molecules’, which work with the records as text.

The chemfp.text_toolkit implements the toolkit API, but it doesn’t know chemistry. Instead
of returning real molecule objects, with atoms and bonds, it returns TextRecord subclass instances
that hold the record as a text string.

As an implementation detail (which means its subject to change) there is a subclass for each of the
support formats.

•SDFRecord - holds “sdf” records

•SmiRecord - holds “smi” records (the full line from a “smi” SMILES file)

•CanRecord - holds “can” records (the full line from a “can” SMILES file)

•UsmRecord - holds “usm” records (the full line from a “usm” SMILES file)

•SmiStringRecord - holds “smistring” records (only the “smistring” SMILES string; no id)

•CanStringRecord - holds “canstring” records (only the “canstring” SMILES string; no id)

•UsmStringRecord - holds “usmstring” records (only the “usmstring” SMILES string; no id)

All of the classes have the following attributes: .. py:attribute:: id

The record identifier as a Unicode string, or None if there is no identifier

id_bytes
The record identifier as a byte string, or None if there is no identifier

record
The record, as a string. For the smistring, canstring, and usmstring formats, this is only the
SMILES string.

record_format
One of “sdf”, “smi”, “can”, “usm”, “smistring”, “canstring”, or “usmstring”.

The SMILES classes have an attribute:

smiles
The SMILES string component of the record.

1.23. chemfp._text_toolkit module (private) 341

chemfp Documentation, Release 3.1

add_tag(tag, value)
Add an SD tag value to the TextRecord

This methods does nothing if the record is not an “sdf” record.

Parameters

• tag (string) – the SD tag name

• value (string) – the text for the tag

Returns None

get_tag(tag)
Get the named SD tag value, or None if it doesn’t exist or is not an “sdf” record.

Parameters tag (byte or Unicode string) – the SD tag name

Returns a Unicode string, or None

get_tag_as_bytes(tag)
Get the named SD tag value, or None if it doesn’t exist or is not an “sdf” record.

Parameters tag (byte string) – the SD tag name

Returns a byte string, or None

get_tag_pairs()
Get a list of all SD tag (name, value) pairs for the TextRecord using Unicode strings

This function returns an empty list if the record is not an “sdf” record.

Returns a list of (Unicode string name, Unicode string value) pairs

get_tag_pairs_as_bytes()
Get a list of all SD tag (name, value) pairs for the TextRecord using byte strings

This function returns an empty list if the record is not an “sdf” record.

Returns a list of (byte string name, byte string value) pairs

copy()
Return a new record which is a copy of the given record

SDFRecord

class chemfp._text_toolkit.SDFRecord
Holds an SDF record. See chemfp._text_toolkit.TextRecord for API details

SmiRecord

class chemfp._text_toolkit.SmiRecord
Holds an “smi” record. See chemfp._text_toolkit.TextRecord for API details

CanRecord

class chemfp._text_toolkit.CanRecord
Holds an “can” record. See chemfp._text_toolkit.TextRecord for API details

342 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

UsmRecord

class chemfp._text_toolkit.UsmRecord
Holds an “usm” record. See chemfp._text_toolkit.TextRecord for API details

SmiStringRecord

class chemfp._text_toolkit.SmiStringRecord
Holds an “smistring” record. See chemfp._text_toolkit.TextRecord for API details

CanStringRecord

class chemfp._text_toolkit.CanStringRecord
Holds an “canstring” record. See chemfp._text_toolkit.TextRecord for API details

UsmStringRecord

class chemfp._text_toolkit.UsmStringRecord
Holds an “usmstring” record. See chemfp._text_toolkit.TextRecord for API details

chemfp.io module

This module implements a single public class, Location, which tracks parser state information, including the loca-
tion of the current record in the file. The other functions and classes are undocumented, should not be used, and may
change in future releases.

Location

class chemfp.io.Location

Get location and other internal reader and writer state information

A Location instance gives a way to access information like the current record number, line number,
and molecule object.:

>>> import chemfp
>>> with chemfp.read_molecule_fingerprints("RDKit-MACCS166",
... "ChEBI_lite.sdf.gz", id_tag="ChEBI ID") as
→˓reader:
... for id, fp in reader:
... if id == "CHEBI:3499":
... print("Record starts at line", reader.location.lineno)
... print("Record byte range:", reader.location.offsets)
... print("Number of atoms:", reader.location.mol.GetNumAtoms())
... break
...
[08:18:12] S group MUL ignored on line 103
Record starts at line 3599
Record byte range: (138171, 141791)
Number of atoms: 36

1.24. chemfp.io module 343

chemfp Documentation, Release 3.1

The supported properties are:

•filename - a string describing the source or destination

•lineno - the line number for the start of the file

•mol - the toolkit molecule for the current record

•offsets - the (start, end) byte positions for the current record

•output_recno - the number of records written successfully

•recno - the current record number

•record - the record as a text string

•record_format - the record format, like “sdf” or “can”

Most of the readers and writers do not support all of the properties. Unsupported properties return a
None. The filename is a read/write attribute and the other attributes are read-only.

If you don’t pass a location to the readers and writers then they will create a new one
based on the source or destination, respectively. You can also pass in your own Loca-
tion, created as Location(filename) if you have an actual filename, or Location.
from_source(source) or Location.from_destination(destination) if you have
a more generic source or destination.

__init__(filename=None)
Use filename as the location’s filename

from_source(cls, source)
Create a Location instance based on the source

If source is a string then it’s used as the filename. If source is None then the location filename is “<stdin>”.
If source is a file object then its name attribute is used as the filename, or None if there is no attribute.

from_destination(cls, destination)
Create a Location instance based on the destination

If destination is a string then it’s used as the filename. If destination is None then the location filename is
“<stdout>”. If destination is a file object then its name attribute is used as the filename, or None if there
is no attribute.

__repr__()
Return a string like ‘Location(“<stdout>”)’

first_line
Read-only attribute.

The first line of the current record

filename
Read/write attribute.

A string which describes the source or destination. This is usually the source or destination filename but
can be a string like “<stdin>” or “<stdout>”.

mol
Read-only attribute.

The molecule object for the current record

offsets
Read-only attribute.

The (start, end) byte offsets, starting from 0

344 Chapter 1. List of chapters

chemfp Documentation, Release 3.1

start is the record start byte position and end is one byte past the last byte of the record.

output_recno
Read-only attribute.

The number of records actually written to the file or string.

The value recno - output_recno is the number of records sent to the writer but which had an error
and could not be written to the output.

recno
Read-only attribute.

The current record number

For writers this is the number of records sent to the writer, and output_recno is the number of records
sucessfully written to the file or string.

record
Read-only attribute.

The current record as an uncompressed text string

record_format
Read-only attribute.

The record format name

where()
Return a human readable description about the current reader or writer state.

The description will contain the filename, line number, record number, and up to the first 40 characters of
the first line of the record, if those properties are available.

1.24. chemfp.io module 345

chemfp Documentation, Release 3.1

346 Chapter 1. List of chapters

CHAPTER 2

License and advertisement

This program was developed by Andrew Dalke <dalke@dalkescientific.com>, Andrew Dalke Scientific, AB. It is
distributed under the “MIT” license, shown below.

Further chemfp development depends on funding from people like you. Asking for voluntary contributions almost
never works. Instead, starting with chemfp 1.1, the source code is distributed under an incentive program. You can
pay for the commerical distribution, or use the no-cost version.

If you pay for the commercial distribution then you will get the most recent version of chemfp, free upgrades for one
year, support, and a discount on renewing participation in the incentive program.

I also maintain the chemfp-1.x series. Version chemfp-1.3 is available at no cost from chemfp.com, or if you know
someone with chemfp 2.x or 3.x you might be able to get it from them at no cost. It’s free/open source software, after
all.

If you have questions about or with to purchase the commercial distribution, send an email to
sales@dalkescientific.com .

Copyright (c) 2010-2017 Andrew Dalke Scientific, AB (Sweden)

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

347

mailto:dalke@dalkescientific.com
mailto:sales@dalkescientific.com

chemfp Documentation, Release 3.1

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright to portions of the code are held by other people or organizations, and may be under a different license. See
the specific code for details. These are:

• OpenMP, cpuid, POPCNT, and Lauradoux implementations by Kim Walisch, <kim.walisch@gmail.com>, un-
der the MIT license

• SSSE3.2 popcount implementation by Stanford Univeristy (written by Imran S. Haque
<ihaque@cs.stanford.edu>) under the BSD license

• The AVX2 popcount implementation by Daniel Lemire, Nathan Kurz, Owen Kaser, et al. under the Apache 2
license

• heapq and ascii_buffer_converter by the Python Software Foundation under the Python license

• TimSort code by Christopher Swenson under the MIT License

• tests/unittest2 by Steve Purcell, the Python Software Foundation, and others, under the Python license

• chemfp/rdmaccs.patterns and chemfp/rdmaccs2.patterns by Rational Discovery LLC, Greg Landrum, and Julie
Penzotti, under the 3-Clause BSD License

348 Chapter 2. License and advertisement

mailto:kim.walisch@gmail.com
mailto:ihaque@cs.stanford.edu

CHAPTER 3

What’s new in version 3.1

Released 17 September 2017

The new specialized POPCNT implementation for PubChem/CACTVS keys increases search performance for that
case by about 15%.

The SearchResults object gained the to_csr() method and the shape attribute. The new method returns a SciPy
compressed sparse row matrix containing the similarity scores, which can be passed into scikit-learn for clustering.

The fall 2017 release of OEChem will accept InChI strings as structure input. The chemfp wrapper now knows about
this, as well as the two new InChI output flavors “RelativeStereo” and “RacemicStereo”.

The fall 2017 release of RDKit will fix a bug in the pattern fingerprint definitions. The new chemfp fingerprint type is
RDKit-Pattern/4.

Changed how oe2fps, rdkit2fps, and ob2fps report missing or empty identifiers. Previously the default --errors
setting of “ignore” simply skipped those records, without any warning messages. This caused problems processing
the ChEBI SD file. Most of the records have an empty title line, so only a few fingerprint records were generated. It
wasn’t obvious that the resulting data set was useless. The new code always reports a warning for empty or missing
identifiers, even with “ignore”. If the --errors is “strict” then the warning becomes an error and processing stops.

Updated the #software line to include “chemfp/1.3” in addition to the toolkit information. This helps distinguish
between, say, two different programs which generate RDKit Morgan fingerprints. It’s also possible that a chemfp bug
can affect the fingerprint output, so the extra term makes it easier to identify a bad dataset.

There are several small fixes related to memory leaks, the bytes/Unicode distinction in Python 3, error messages, and
error handling.

Removed chemfp.progressbar and chemfp.futures. These were included in chemfp 1.1 because I used them in a
project for one customer and thought they might be useful in future chemfp projects. They were not. Also removed
chemfp.argparse because chemfp 3.0 dropped support for Python 2.6.

349

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
http://scikit-learn.org/

chemfp Documentation, Release 3.1

350 Chapter 3. What’s new in version 3.1

CHAPTER 4

What’s new in version 3.0.1

Released 28 August 2017

This is a bug-fix release. This fixes a critical bug in the general-purpose POPCNT popcount implementation and a bug
in the code to detect the RDKit Pattern fingerprint change in 2017.3.

See the CHANGELOG for details.

351

chemfp Documentation, Release 3.1

352 Chapter 4. What’s new in version 3.0.1

CHAPTER 5

What’s new in version 3.0

Released 2 May 2017

Chemfp now supports both Python 2.7 and Python 3.5 or later. It no longer supports version before Python 2.7.
Chemfp will support Python 2.7 at least until 2020, which is the end-of-life for Python 2.7.

This required extensive changes to distinguish between text/Unicode strings and byte strings. The biggest user-facing
change is that identifiers are now treated as Unicode strings. Fingerprints are still treated as byte strings.

This change is not backwards compatible. The APIs function parameters are polymorphic, so in most cases you can
pass in either a Unicode string or a UTF-8 encoded byte string. However, the return type for an identifier is Unicode,
which will likely cause problems with existing code which expects bytes.

All of the chemistry toolkits have decided to treat files as UTF-8 encoded. Chemfp’s “text toolkit” offers limited
support for reading Latin-1 encoded files. This is a tricky topic so contact me if you have questions or problems.

I have removed the “make_string_creator()” function because it was hard to explain, hard to maintain, and had little
performance improvement over passing in the arguments to chemfp.create_string(). This will break com-
patibility, but then again, I don’t think anyone used it. If it is a problem, I suggest creating a function, as in the
following:

>>> from chemfp import rdkit_toolkit as T
>>> mol = T.parse_molecule("c1ccccc1O", "smistring")
>>> T.create_string(mol, "smistring", writer_args = {"allBondsExplicit": True})
u'O-c1:c:c:c:c:c:1'
>>> def make_string(mol):
... return T.create_string(mol, "smistring", writer_args = {"allBondsExplicit":
→˓True})
...
>>> make_string(mol)
u'O-c1:c:c:c:c:c:1'

If you look carefully at the previous example, you’ll see the other major backwards incompatibility. The function
chemfp.create_string() now return a Unicode string instead of a byte string. This also means its format
parameter no longer accepts the ”.zlib” or ”.gzip” extensions.

Instead, to get the old behavior use the new API function chemfp.create_bytes()”:

353

chemfp Documentation, Release 3.1

>>> T.create_bytes(mol, "smistring", writer_args = {"allBondsExplicit": True})
'O-c1:c:c:c:c:c:1'
>>> T.create_bytes(mol, "smistring.zlib", writer_args = {"allBondsExplicit": True})
'x\x9c\xf3\xd7M6\xb4J\x86CC\x00&\xc8\x04\x8d'

There’s a similar change between chemfp.open_molecule_writer_to_string() and the new function
chemfp.open_molecule_writer_to_bytes().

There are also some new features in version 3.0 which don’t break compatibility.

Similarity search is faster because there are now specialized popcount implementations based on the fingerprint length.
On one benchmark, 166-bit searches are 35% faster, 1024-bit searches are 25% faster, and 2048-bit searches are 5%
faster.

There is a new popcount implementation for processors with the AVX2 instruction set. It is about 15% faster than
the POPCNT version for 2048 bit fingerprints. To test it out you will have to compile chemfp with --with-avx2
enabled.

Added support for the Avalon fingerprints in RDKit, if RDKit has been compiled with Avalon support.

354 Chapter 5. What’s new in version 3.0

CHAPTER 6

What’s new in version 2.1

Released 2 July 2015

Version 2.1 adds Tversky support for every place there was Tanimoto search (except the handful of deprecated APIs).
There are new search routines for FPS and arena searches, including OpenMP support, and new bitops functions to
compute a Tversky index between two fingerprints.

The k-nearest arena searches now support OpenMP. Previously they were single threaded even though the other search
functions supported multiple threads.

The built-in SDF parser saw a couple improvements, including support for both “\n” and “\r\n” newlines, instead of
only “\n” newlines.

There were a number of bug fixes that concern edge cases. For example, some 64-bit double calculations could be
off-by-one in the last digit, and fingerprints with 0 bits set could cause a few problems.

355

chemfp Documentation, Release 3.1

356 Chapter 6. What’s new in version 2.1

CHAPTER 7

What’s new in version 2.0

Released 8 April 2015

Version 2.0 includes many new features designed for web service development. The new “FPB” binary fingerprint file
format is very fast to load, which is great for web server reloading during development and on the command-line. The
speed comes from using a memory-mapped file, which also means that multiple chemfp instances can use the same
file on the same machine without extra memory overhead.

The most extensive improvement is the new portable API for working with structure files and fingerprint types. The
moment you start working with multiple chemistry toolkits, you realize that they all have different ways to read and
write molecules, and to generate fingerprints from a molecule. Chemfp tries hard to have a consistent API for these
common tasks, without sacrificing performance, so you can get get your work done. For example, with the new API
it’s easy to take an SD record as an input string, compute the MACCS fingerprints for each available toolkit, add the
results as new SD tags, and return the updated record.

This sounds so easy, doesn’t it? It took about a year to develop. The API is quite extensive, and includes the ability to
pass toolkit-specific options to the underlying parsers, a low-level SDF parser that can be used to index a file, a way to
get a list of available formats and fingerprint types, and methods to parse fingerprint arguments from strings.

New with version 2.0 is the ability to handle PubChem-sized data. Previous versions used 32 bit indexing and had a
limit of 4GB, which is enough for 33M 1024-bit fingerprints, but PubChem has about twice that many structures.

There are also a lot of improvements, bug fixes, and performance tweaks. For example, the FPS reader is now almost
twice as fast! For details, see the CHANGELOG file of the release.

357

chemfp Documentation, Release 3.1

358 Chapter 7. What’s new in version 2.0

CHAPTER 8

Future

The chemfp code base is solid and in use at many companies, some of whom have paid for the commercial version. It
has great support for fingerprint generation, fast similarity search, and toolkit portability, but there’s plenty left to do
in future. Here’s a mixture of things that are likely and things which are possibilties. Of course funding and feedback
would help prioritize things. Let me know if you need something like one of these.

Right now you’re limited to the built-in toolkit fingerprint types, plus chemfp’s own SMARTS-based fingerprints.
There should be a registration system so you can tell chemfp about user-defined fingerprint types.

I would like some way to select fingeprint subsets. My original thought was something like an awk for the FPS format,
with the ability to select N fingerprints at random, or those matching a given set of identifiers, etc. My current thought
is to implement it as a sqlite virtual table.

Chemfp supports Tanimoto and Tversky similarity. I could also add support for other measures; cosine and Hamming
seem like the most useful other alternatives.

Chemfp does not currently support Microsoft Windows computer because the code assumes the LP64 model, where
“int” is 32 bits and “long” is 64 bits. It will require a lot of low-level work to tweak everything correctly for the
Windows LLP64 model, where “int” and “long” are 32 bits and “long long” is 64 bits. Once that’s done, I’ll have to
figure out how to make an installer. I’ve decided to put it off until a someone (or someones) fund it.

The threshold and k-nearest arena search results store hits using compressed sparse rows. These work well for sparse
results, but when you want the entire similarity matrix (ie, with a minimum threshold of 0.0) of a large arena, then
time and space to maintain the sparse data structure becomes noticable. It’s likely in that case that you want to store
the scores in a 2D NumPy matrix.

I’m really interested in using chemfp to handle different sorts of clustering. Let me know if there are things I can add
to the API which would help you do that.

If you are not a Python programmer then you might prefer that the core search routines be made accessible through a
C API. That’s possible, in that the software was designed with that in mind, but it needs more development and testing.

Chemfp ever since version 1.1 supports OpenMP. That’s great for shared-memory machines. Are you interested in
supporting a distributed computing version?

There are any number of higher-level tools which can be built on the chemfp components. For example, what about a
wsgi component which implements a web-based search API for your local network? Wouldn’t it be nice to say:

359

mailto:dalke@dalkescientific.com

chemfp Documentation, Release 3.1

fpserver filename1.fpb

and have a simple search service?

What about an IPython visualization tool?

There’s a paper (doi:10.1093/bioinformatics/byq067) on using locality-sensitive hashing to find highly similar finger-
prints. Are there cases where it’s more useful than chemfp’s direct search?

Several people have asked about GPU implementations. My feeling is that the CPU is fast enough, and much easier
to deploy. That’s not saying I wouldn’t be interested in a GPU implementation, only describing why it’s not at the top
of the list.

360 Chapter 8. Future

CHAPTER 9

Thanks

In no particular order, the following contributed to chemfp in some way: Noel O’Boyle, Geoff Hutchison, the Open
Babel developers, Greg Landrum, OpenEye, Roger Sayle, Phil Evans, Evan Bolton, Wolf-Dietrich Ihlenfeldt, Rajarshi
Guha, Dmitry Pavlov, Roche, Kim Walisch, Daniel Lemire, Nathan Kurz, Chris Morely, Jörg Kurt Wegner, Phil Evans,
Björn Grüning, Andrew Henry, Brian McClain, Pat Walters, Brian Kelley, and Lionel Uran Landaburu.

Thanks also to my wife, Sara Marie, for her many years of support.

361

chemfp Documentation, Release 3.1

362 Chapter 9. Thanks

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

363

chemfp Documentation, Release 3.1

364 Chapter 10. Indices and tables

Python Module Index

c
chemfp, 208
chemfp._text_toolkit, 341
chemfp.arena, 245
chemfp.base_toolkit, 280
chemfp.bitops, 266
chemfp.encodings, 268
chemfp.fpb_io, 274
chemfp.fps_io, 270
chemfp.io, 343
chemfp.openbabel_patterns, 237
chemfp.openbabel_toolkit, 288
chemfp.openbabel_types, 236
chemfp.openeye_patterns, 240
chemfp.openeye_toolkit, 299
chemfp.openeye_types, 238
chemfp.rdkit_patterns, 244
chemfp.rdkit_toolkit, 311
chemfp.rdkit_types, 241
chemfp.search, 249
chemfp.text_toolkit, 322
chemfp.toolkit, 276
chemfp.types, 228

365

chemfp Documentation, Release 3.1

366 Python Module Index

Index

Symbols
–with-avx2, –without-avx2

command line option, 4
–with-openmp, –without-openmp

command line option, 4
–with-ssse3, –without-ssse3

command line option, 4
__call__() (chemfp.types.FingerprintFamily method),

229
__getitem__() (chemfp.arena.FingerprintArena method),

246
__getitem__() (chemfp.search.SearchResults method),

263
__init__() (chemfp.FingerprintIterator method), 214
__init__() (chemfp.Fingerprints method), 215
__init__() (chemfp.io.Location method), 344
__iter__() (chemfp.FingerprintIterator method), 215
__iter__() (chemfp.FingerprintReader method), 213
__iter__() (chemfp.arena.FingerprintArena method), 246
__iter__() (chemfp.fps_io.FPSReader method), 270
__iter__() (chemfp.search.SearchResult method), 264
__iter__() (chemfp.search.SearchResults method), 263
__len__() (chemfp.arena.FingerprintArena method), 246
__len__() (chemfp.search.SearchResult method), 264
__len__() (chemfp.search.SearchResults method), 263
__repr__() (chemfp.Metadata method), 213
__repr__() (chemfp.base_toolkit.Format method), 285
__repr__() (chemfp.base_toolkit.FormatMetadata

method), 281
__repr__() (chemfp.io.Location method), 344
__repr__() (chemfp.types.FingerprintFamily method),

229
__str__() (chemfp.Metadata method), 213

A
add_sdf_tag() (in module chemfp.text_toolkit), 340
add_tag() (chemfp._text_toolkit.TextRecord method),

341
add_tag() (in module chemfp.openbabel_toolkit), 298

add_tag() (in module chemfp.openeye_toolkit), 310
add_tag() (in module chemfp.rdkit_toolkit), 322
add_tag() (in module chemfp.text_toolkit), 333
add_tag() (in module chemfp.toolkit), 280
args (chemfp.base_toolkit.FormatMetadata attribute), 281
aromaticity (chemfp.Metadata attribute), 213

B
base_name (chemfp.types.FingerprintFamily attribute),

229
base_name (chemfp.types.FingerprintType attribute), 231
BaseMoleculeReader (class in chemfp.base_toolkit), 282
BaseMoleculeWriter (class in chemfp.base_toolkit), 284
byte_contains() (in module chemfp.bitops), 266
byte_contains_bit() (in module chemfp.bitops), 266
byte_difference() (in module chemfp.bitops), 266
byte_from_bitlist() (in module chemfp.bitops), 266
byte_hex_tanimoto() (in module chemfp.bitops), 266
byte_hex_tversky() (in module chemfp.bitops), 266
byte_intersect() (in module chemfp.bitops), 266
byte_intersect_popcount() (in module chemfp.bitops),

266
byte_popcount() (in module chemfp.bitops), 266
byte_tanimoto() (in module chemfp.bitops), 267
byte_to_bitlist() (in module chemfp.bitops), 267
byte_tversky() (in module chemfp.bitops), 267
byte_union() (in module chemfp.bitops), 267

C
CanRecord (class in chemfp._text_toolkit), 342
CanStringRecord (class in chemfp._text_toolkit), 343
category (chemfp.ChemFPProblem attribute), 216
check_fingerprint_problems() (in module chemfp), 216
check_metadata_problems() (in module chemfp), 217
chemfp (module), 208
chemfp._text_toolkit (module), 341
chemfp.arena (module), 245
chemfp.base_toolkit (module), 280
chemfp.bitops (module), 266

367

chemfp Documentation, Release 3.1

chemfp.encodings (module), 268
chemfp.fpb_io (module), 274
chemfp.fps_io (module), 270
chemfp.io (module), 343
chemfp.openbabel_patterns (module), 237
chemfp.openbabel_toolkit (module), 288
chemfp.openbabel_types (module), 236
chemfp.openeye_patterns (module), 240
chemfp.openeye_toolkit (module), 299
chemfp.openeye_types (module), 238
chemfp.rdkit_patterns (module), 244
chemfp.rdkit_toolkit (module), 311
chemfp.rdkit_types (module), 241
chemfp.search (module), 249
chemfp.text_toolkit (module), 322
chemfp.toolkit (module), 276
chemfp.types (module), 228
ChemFPError (class in chemfp), 212
ChemFPProblem (class in chemfp), 216
clear() (chemfp.search.SearchResult method), 265
clear_all() (chemfp.search.SearchResults method), 263
close (class in chemfp.fpb_io), 275, 276
close() (chemfp.base_toolkit.BaseMoleculeWriter

method), 284
close() (chemfp.FingerprintIterator method), 215
close() (chemfp.FingerprintWriter method), 216
close() (chemfp.fps_io.FPSReader method), 271
close() (chemfp.fps_io.FPSWriter method), 274
close() (in module chemfp.base_toolkit), 282
closed (chemfp.base_toolkit.BaseMoleculeReader

attribute), 282
closed (chemfp.base_toolkit.BaseMoleculeWriter at-

tribute), 284
closed (chemfp.base_toolkit.IdAndMoleculeReader at-

tribute), 283
closed (chemfp.base_toolkit.IdAndRecordReader at-

tribute), 283
closed (chemfp.base_toolkit.MoleculeReader attribute),

283
closed (chemfp.base_toolkit.MoleculeStringWriter

attribute), 285
closed (chemfp.base_toolkit.MoleculeWriter attribute),

285
closed (chemfp.base_toolkit.RecordReader attribute), 283
closed (chemfp.fpb_io.InputOrderFPBWriter attribute),

275
closed (chemfp.fpb_io.OrderedFPBWriter attribute), 274
closed (chemfp.fps_io.FPSReader attribute), 270
command line option

–with-avx2, –without-avx2, 4
–with-openmp, –without-openmp, 4
–with-ssse3, –without-ssse3, 4

compute_fingerprint() (chemfp.types.FingerprintType
method), 236

compute_fingerprints() (chemfp.types.FingerprintType
method), 236

contains_arena() (in module chemfp.search), 262
contains_fp() (in module chemfp.search), 262
copy() (chemfp._text_toolkit.TextRecord method), 342
copy() (chemfp.arena.FingerprintArena method), 247
copy() (chemfp.Metadata method), 213
copy_molecule() (in module chemfp.openbabel_toolkit),

298
copy_molecule() (in module chemfp.openeye_toolkit),

310
copy_molecule() (in module chemfp.rdkit_toolkit), 321
copy_molecule() (in module chemfp.text_toolkit), 333
copy_molecule() (in module chemfp.toolkit), 280
count() (chemfp.search.SearchResult method), 265
count_all() (chemfp.search.SearchResults method), 263
count_tanimoto_hits() (in module chemfp), 218
count_tanimoto_hits_arena() (chemfp.fps_io.FPSReader

method), 271
count_tanimoto_hits_arena() (in module chemfp.search),

249
count_tanimoto_hits_fp()

(chemfp.arena.FingerprintArena method),
247

count_tanimoto_hits_fp() (chemfp.fps_io.FPSReader
method), 271

count_tanimoto_hits_fp() (in module chemfp.search),
249

count_tanimoto_hits_symmetric() (in module chemfp),
218

count_tanimoto_hits_symmetric() (in module
chemfp.search), 250

count_tversky_hits() (in module chemfp), 221
count_tversky_hits_arena() (in module chemfp.search),

252
count_tversky_hits_fp() (chemfp.arena.FingerprintArena

method), 248
count_tversky_hits_fp() (chemfp.fps_io.FPSReader

method), 272
count_tversky_hits_fp() (in module chemfp.search), 251
count_tversky_hits_symmetric() (in module chemfp), 222
count_tversky_hits_symmetric() (in module

chemfp.search), 252
create_bytes() (in module chemfp.openbabel_toolkit),

296
create_bytes() (in module chemfp.openeye_toolkit), 307
create_bytes() (in module chemfp.rdkit_toolkit), 319
create_bytes() (in module chemfp.text_toolkit), 331
create_bytes() (in module chemfp.toolkit), 279
create_string() (in module chemfp.openbabel_toolkit),

295
create_string() (in module chemfp.openeye_toolkit), 307
create_string() (in module chemfp.rdkit_toolkit), 318
create_string() (in module chemfp.text_toolkit), 330

368 Index

chemfp Documentation, Release 3.1

create_string() (in module chemfp.toolkit), 279
cumulative_score() (chemfp.search.SearchResult

method), 266
cumulative_score_all() (chemfp.search.SearchResults

method), 263

D
date (chemfp.Metadata attribute), 213
description (chemfp.ChemFPProblem attribute), 216

E
error_level (chemfp.ChemFPProblem attribute), 216

F
filename (chemfp.base_toolkit.FormatMetadata at-

tribute), 281
filename (chemfp.io.Location attribute), 344
fill_lower_triangle() (in module chemfp.search), 256
fingerprint_kwargs (chemfp.types.FingerprintType

attribute), 231
FingerprintArena (class in chemfp.arena), 245
FingerprintFamily (class in chemfp.types), 228
FingerprintIterator (class in chemfp), 214
FingerprintReader (class in chemfp), 213
Fingerprints (class in chemfp), 215
FingerprintType (class in chemfp.types), 231
FingerprintWriter (class in chemfp), 215
first_line (chemfp.io.Location attribute), 344
Format (class in chemfp.base_toolkit), 285
FormatMetadata (class in chemfp.base_toolkit), 281
FPSReader (class in chemfp.fps_io), 270
FPSWriter (class in chemfp.fps_io), 273
from_base64() (in module chemfp.encodings), 268
from_binary_lsb() (in module chemfp.encodings), 268
from_binary_msb() (in module chemfp.encodings), 268
from_cactvs() (in module chemfp.encodings), 269
from_daylight() (in module chemfp.encodings), 269
from_destination() (chemfp.io.Location method), 344
from_hex() (in module chemfp.encodings), 269
from_hex_lsb() (in module chemfp.encodings), 269
from_hex_msb() (in module chemfp.encodings), 269
from_kwargs() (chemfp.types.FingerprintFamily

method), 229
from_on_bit_positions() (in module chemfp.encodings),

270
from_source() (chemfp.io.Location method), 344
from_text_settings() (chemfp.types.FingerprintFamily

method), 230

G
get_by_id() (chemfp.arena.FingerprintArena method),

246
get_default_reader_args() (chemfp.base_toolkit.Format

method), 287

get_default_writer_args() (chemfp.base_toolkit.Format
method), 287

get_defaults() (chemfp.types.FingerprintFamily method),
230

get_fingerprint() (chemfp.arena.FingerprintArena
method), 246

get_fingerprint_by_id() (chemfp.arena.FingerprintArena
method), 246

get_fingerprint_families() (in module chemfp), 225
get_fingerprint_family() (chemfp.types.FingerprintType

method), 236
get_fingerprint_family() (in module chemfp), 225
get_fingerprint_family_names() (in module chemfp), 225
get_fingerprint_type() (chemfp.arena.FingerprintArena

method), 246
get_fingerprint_type() (chemfp.FingerprintReader

method), 214
get_fingerprint_type() (chemfp.fps_io.FPSReader

method), 271
get_fingerprint_type() (in module chemfp), 226
get_fingerprint_type_from_text_settings() (in module

chemfp), 226
get_format() (in module chemfp.openbabel_toolkit), 289
get_format() (in module chemfp.openeye_toolkit), 301
get_format() (in module chemfp.rdkit_toolkit), 312
get_format() (in module chemfp.text_toolkit), 324
get_format() (in module chemfp.toolkit), 277
get_formats() (in module chemfp.openbabel_toolkit), 289
get_formats() (in module chemfp.openeye_toolkit), 300
get_formats() (in module chemfp.rdkit_toolkit), 312
get_formats() (in module chemfp.text_toolkit), 324
get_formats() (in module chemfp.toolkit), 277
get_id() (in module chemfp.openbabel_toolkit), 299
get_id() (in module chemfp.openeye_toolkit), 311
get_id() (in module chemfp.rdkit_toolkit), 322
get_id() (in module chemfp.text_toolkit), 334
get_id() (in module chemfp.toolkit), 280
get_ids() (chemfp.search.SearchResult method), 265
get_ids_and_scores() (chemfp.search.SearchResult

method), 265
get_index_by_id() (chemfp.arena.FingerprintArena

method), 246
get_indices() (chemfp.search.SearchResult method), 265
get_indices_and_scores() (chemfp.search.SearchResult

method), 265
get_input_format() (in module

chemfp.openbabel_toolkit), 289
get_input_format() (in module chemfp.openeye_toolkit),

301
get_input_format() (in module chemfp.rdkit_toolkit), 313
get_input_format() (in module chemfp.text_toolkit), 324
get_input_format() (in module chemfp.toolkit), 277
get_input_format_from_source() (in module

chemfp.openbabel_toolkit), 290

Index 369

chemfp Documentation, Release 3.1

get_input_format_from_source() (in module
chemfp.openeye_toolkit), 301

get_input_format_from_source() (in module
chemfp.rdkit_toolkit), 313

get_input_format_from_source() (in module
chemfp.text_toolkit), 325

get_input_format_from_source() (in module
chemfp.toolkit), 277

get_input_formats() (in module
chemfp.openbabel_toolkit), 289

get_input_formats() (in module chemfp.openeye_toolkit),
300

get_input_formats() (in module chemfp.rdkit_toolkit),
312

get_input_formats() (in module chemfp.text_toolkit), 324
get_input_formats() (in module chemfp.toolkit), 277
get_kwargs_from_text_settings()

(chemfp.types.FingerprintFamily method),
230

get_max_threads() (in module chemfp), 227
get_metadata() (chemfp.types.FingerprintType method),

233
get_num_threads() (in module chemfp), 227
get_output_format() (in module

chemfp.openbabel_toolkit), 290
get_output_format() (in module

chemfp.openeye_toolkit), 301
get_output_format() (in module chemfp.rdkit_toolkit),

313
get_output_format() (in module chemfp.text_toolkit), 325
get_output_format() (in module chemfp.toolkit), 277
get_output_format_from_destination() (in module

chemfp.openbabel_toolkit), 290
get_output_format_from_destination() (in module

chemfp.openeye_toolkit), 302
get_output_format_from_destination() (in module

chemfp.rdkit_toolkit), 313
get_output_format_from_destination() (in module

chemfp.text_toolkit), 325
get_output_format_from_destination() (in module

chemfp.toolkit), 278
get_output_formats() (in module

chemfp.openbabel_toolkit), 289
get_output_formats() (in module

chemfp.openeye_toolkit), 300
get_output_formats() (in module chemfp.rdkit_toolkit),

312
get_output_formats() (in module chemfp.text_toolkit),

324
get_output_formats() (in module chemfp.toolkit), 277
get_reader_args_from_text_settings()

(chemfp.base_toolkit.Format method), 286
get_scores() (chemfp.search.SearchResult method), 265
get_sdf_id() (in module chemfp.text_toolkit), 340

get_sdf_tag() (in module chemfp.text_toolkit), 339
get_sdf_tag_pairs() (in module chemfp.text_toolkit), 340
get_tag() (chemfp._text_toolkit.TextRecord method), 342
get_tag() (in module chemfp.openbabel_toolkit), 299
get_tag() (in module chemfp.openeye_toolkit), 311
get_tag() (in module chemfp.rdkit_toolkit), 322
get_tag() (in module chemfp.text_toolkit), 334
get_tag() (in module chemfp.toolkit), 280
get_tag_as_bytes() (chemfp._text_toolkit.TextRecord

method), 342
get_tag_pairs() (chemfp._text_toolkit.TextRecord

method), 342
get_tag_pairs() (in module chemfp.openbabel_toolkit),

299
get_tag_pairs() (in module chemfp.openeye_toolkit), 311
get_tag_pairs() (in module chemfp.rdkit_toolkit), 322
get_tag_pairs() (in module chemfp.text_toolkit), 334
get_tag_pairs() (in module chemfp.toolkit), 280
get_tag_pairs_as_bytes()

(chemfp._text_toolkit.TextRecord method),
342

get_toolkit() (in module chemfp), 227
get_toolkit_names() (in module chemfp), 227
get_type() (chemfp.types.FingerprintType method), 233
get_unqualified_reader_args()

(chemfp.base_toolkit.Format method), 287
get_unqualified_writer_args()

(chemfp.base_toolkit.Format method), 288
get_writer_args_from_text_settings()

(chemfp.base_toolkit.Format method), 286
getvalue() (chemfp.base_toolkit.MoleculeStringWriter

method), 285

H
has_fingerprint_family() (in module chemfp), 226
has_toolkit() (in module chemfp), 228
hex_contains() (in module chemfp.bitops), 267
hex_contains_bit() (in module chemfp.bitops), 267
hex_decode() (in module chemfp.bitops), 267
hex_difference() (in module chemfp.bitops), 267
hex_encode() (in module chemfp.bitops), 267
hex_encode_as_bytes() (in module chemfp.bitops), 267
hex_from_bitlist() (in module chemfp.bitops), 267
hex_intersect() (in module chemfp.bitops), 267
hex_intersect_popcount() (in module chemfp.bitops), 267
hex_isvalid() (in module chemfp.bitops), 267
hex_popcount() (in module chemfp.bitops), 267
hex_tanimoto() (in module chemfp.bitops), 267
hex_to_bitlist() (in module chemfp.bitops), 267
hex_tversky() (in module chemfp.bitops), 267
hex_union() (in module chemfp.bitops), 267

I
id_bytes (chemfp._text_toolkit.TextRecord attribute), 341

370 Index

chemfp Documentation, Release 3.1

IdAndMoleculeReader (class in chemfp.base_toolkit),
283

IdAndRecordReader (class in chemfp.base_toolkit), 283
ids (chemfp.arena.FingerprintArena attribute), 245
InputOrderFPBWriter (class in chemfp.fpb_io), 275
is_available (chemfp.base_toolkit.Format attribute), 285
is_input_format (chemfp.base_toolkit.Format attribute),

285
is_licensed() (in module chemfp.openbabel_toolkit), 289
is_licensed() (in module chemfp.openeye_toolkit), 300
is_licensed() (in module chemfp.rdkit_toolkit), 312
is_licensed() (in module chemfp.text_toolkit), 323
is_licensed() (in module chemfp.toolkit), 276
is_output_format (chemfp.base_toolkit.Format attribute),

285
iter_arenas() (chemfp.arena.FingerprintArena method),

247
iter_arenas() (chemfp.FingerprintReader method), 213
iter_arenas() (chemfp.fps_io.FPSReader method), 270
iter_ids() (chemfp.search.SearchResult method), 265
iter_ids() (chemfp.search.SearchResults method), 263
iter_ids_and_scores() (chemfp.search.SearchResults

method), 263
iter_indices() (chemfp.search.SearchResults method),

263
iter_indices_and_scores() (chemfp.search.SearchResults

method), 263
iter_scores() (chemfp.search.SearchResults method), 263

K
knearest_tanimoto_search() (in module chemfp), 220
knearest_tanimoto_search_arena()

(chemfp.fps_io.FPSReader method), 273
knearest_tanimoto_search_arena() (in module

chemfp.search), 259
knearest_tanimoto_search_fp()

(chemfp.arena.FingerprintArena method),
248

knearest_tanimoto_search_fp()
(chemfp.fps_io.FPSReader method), 273

knearest_tanimoto_search_fp() (in module
chemfp.search), 259

knearest_tanimoto_search_symmetric() (in module
chemfp), 221

knearest_tanimoto_search_symmetric() (in module
chemfp.search), 260

knearest_tversky_search() (in module chemfp), 224
knearest_tversky_search_arena() (in module

chemfp.search), 261
knearest_tversky_search_fp()

(chemfp.arena.FingerprintArena method),
248

knearest_tversky_search_fp() (chemfp.fps_io.FPSReader
method), 273

knearest_tversky_search_fp() (in module chemfp.search),
260

knearest_tversky_search_symmetric() (in module
chemfp), 225

knearest_tversky_search_symmetric() (in module
chemfp.search), 261

L
load_fingerprints() (in module chemfp), 209
location (chemfp.base_toolkit.BaseMoleculeReader at-

tribute), 282
location (chemfp.base_toolkit.BaseMoleculeWriter at-

tribute), 284
location (chemfp.base_toolkit.IdAndMoleculeReader at-

tribute), 283
location (chemfp.base_toolkit.IdAndRecordReader at-

tribute), 283
location (chemfp.base_toolkit.MoleculeReader attribute),

282
location (chemfp.base_toolkit.MoleculeStringWriter at-

tribute), 285
location (chemfp.base_toolkit.MoleculeWriter attribute),

284
location (chemfp.base_toolkit.RecordReader attribute),

283
location (chemfp.fps_io.FPSReader attribute), 270
location (chemfp.ParseError attribute), 212
Location (class in chemfp.io), 343

M
make_fingerprinter() (chemfp.types.FingerprintType

method), 233
make_id_and_molecule_fingerprint_parser()

(chemfp.types.FingerprintType method),
235

make_id_and_molecule_parser() (in module
chemfp.openbabel_toolkit), 294

make_id_and_molecule_parser() (in module
chemfp.openeye_toolkit), 305

make_id_and_molecule_parser() (in module
chemfp.rdkit_toolkit), 317

make_id_and_molecule_parser() (in module
chemfp.text_toolkit), 329

make_id_and_molecule_parser() (in module
chemfp.toolkit), 278

metadata (chemfp.arena.FingerprintArena attribute), 245
metadata (chemfp.base_toolkit.BaseMoleculeReader at-

tribute), 282
metadata (chemfp.base_toolkit.BaseMoleculeWriter at-

tribute), 284
metadata (chemfp.base_toolkit.IdAndMoleculeReader at-

tribute), 283
metadata (chemfp.base_toolkit.IdAndRecordReader at-

tribute), 283

Index 371

chemfp Documentation, Release 3.1

metadata (chemfp.base_toolkit.MoleculeReader at-
tribute), 282

metadata (chemfp.base_toolkit.MoleculeStringWriter at-
tribute), 285

metadata (chemfp.base_toolkit.MoleculeWriter at-
tribute), 284

metadata (chemfp.base_toolkit.RecordReader attribute),
283

metadata (chemfp.fpb_io.InputOrderFPBWriter at-
tribute), 275

metadata (chemfp.fpb_io.OrderedFPBWriter attribute),
274

metadata (chemfp.fps_io.FPSReader attribute), 270
Metadata (class in chemfp), 212
mol (chemfp.io.Location attribute), 344
MoleculeReader (class in chemfp.base_toolkit), 282
MoleculeStringWriter (class in chemfp.base_toolkit), 285
MoleculeWriter (class in chemfp.base_toolkit), 284
msg (chemfp.ParseError attribute), 212

N
name (chemfp.types.FingerprintFamily attribute), 229
name (chemfp.types.FingerprintType attribute), 231
name (in module chemfp.openbabel_toolkit), 288
name (in module chemfp.openeye_toolkit), 300
name (in module chemfp.rdkit_toolkit), 311
name (in module chemfp.text_toolkit), 323
name (in module chemfp.toolkit), 276
num_bits (chemfp.Metadata attribute), 212
num_bits (chemfp.types.FingerprintType attribute), 231
num_bytes (chemfp.Metadata attribute), 212

O
offsets (chemfp.io.Location attribute), 344
open() (in module chemfp), 208
open_fingerprint_writer() (in module chemfp), 211
open_molecule_writer() (in module

chemfp.openbabel_toolkit), 296
open_molecule_writer() (in module

chemfp.openeye_toolkit), 308
open_molecule_writer() (in module

chemfp.rdkit_toolkit), 319
open_molecule_writer() (in module chemfp.text_toolkit),

331
open_molecule_writer() (in module chemfp.toolkit), 279
open_molecule_writer_to_bytes() (in module

chemfp.openbabel_toolkit), 298
open_molecule_writer_to_bytes() (in module

chemfp.openeye_toolkit), 310
open_molecule_writer_to_bytes() (in module

chemfp.rdkit_toolkit), 321
open_molecule_writer_to_bytes() (in module

chemfp.text_toolkit), 333

open_molecule_writer_to_bytes() (in module
chemfp.toolkit), 280

open_molecule_writer_to_string() (in module
chemfp.openbabel_toolkit), 297

open_molecule_writer_to_string() (in module
chemfp.openeye_toolkit), 309

open_molecule_writer_to_string() (in module
chemfp.rdkit_toolkit), 320

open_molecule_writer_to_string() (in module
chemfp.text_toolkit), 332

open_molecule_writer_to_string() (in module
chemfp.toolkit), 279

OpenBabelFP2FingerprintType_v1 (class in
chemfp.openbabel_types), 236

OpenBabelFP3FingerprintType_v1 (class in
chemfp.openbabel_types), 237

OpenBabelFP4FingerprintType_v1 (class in
chemfp.openbabel_types), 237

OpenBabelMACCSFingerprintType_v1 (class in
chemfp.openbabel_types), 237

OpenBabelMACCSFingerprintType_v2 (class in
chemfp.openbabel_types), 237

OpenEyeCircularFingerprintType_v2 (class in
chemfp.openeye_types), 238

OpenEyeMACCSFingerprintType_v2 (class in
chemfp.openeye_types), 239

OpenEyeMACCSFingerprintType_v3 (class in
chemfp.openeye_types), 239

OpenEyePathFingerprintType_v2 (class in
chemfp.openeye_types), 239

OpenEyeTreeFingerprintType_v2 (class in
chemfp.openeye_types), 240

OrderedFPBWriter (class in chemfp.fpb_io), 274
output_recno (chemfp.io.Location attribute), 345

P
parse_id_and_molecule() (in module

chemfp.openbabel_toolkit), 295
parse_id_and_molecule() (in module

chemfp.openeye_toolkit), 306
parse_id_and_molecule() (in module

chemfp.rdkit_toolkit), 318
parse_id_and_molecule() (in module

chemfp.text_toolkit), 330
parse_id_and_molecule() (in module chemfp.toolkit),

279
parse_id_and_molecule_fingerprint()

(chemfp.types.FingerprintType method),
234

parse_molecule() (in module chemfp.openbabel_toolkit),
294

parse_molecule() (in module chemfp.openeye_toolkit),
306

parse_molecule() (in module chemfp.rdkit_toolkit), 317

372 Index

chemfp Documentation, Release 3.1

parse_molecule() (in module chemfp.text_toolkit), 329
parse_molecule() (in module chemfp.toolkit), 279
parse_molecule_fingerprint()

(chemfp.types.FingerprintType method),
234

ParseError (class in chemfp), 212
partial_count_tanimoto_hits_symmetric() (in module

chemfp.search), 250
partial_count_tversky_hits_symmetric() (in module

chemfp.search), 253
partial_threshold_tanimoto_search_symmetric() (in mod-

ule chemfp.search), 255
partial_threshold_tversky_search_symmetric() (in mod-

ule chemfp.search), 258
prefix (chemfp.base_toolkit.Format attribute), 285
Python Enhancement Proposals

PEP 343, 149

R
RDKitAtomPairFingerprint_v1 (class in

chemfp.rdkit_types), 242
RDKitAtomPairFingerprint_v2 (class in

chemfp.rdkit_types), 243
RDKitAvalonFingerprintType_v1 (class in

chemfp.rdkit_types), 244
RDKitFingerprintType_v1 (class in chemfp.rdkit_types),

241
RDKitFingerprintType_v2 (class in chemfp.rdkit_types),

241
RDKitMACCSFingerprintType_v1 (class in

chemfp.rdkit_types), 242
RDKitMACCSFingerprintType_v2 (class in

chemfp.rdkit_types), 242
RDKitMorganFingerprintType_v1 (class in

chemfp.rdkit_types), 242
RDKitPatternFingerprint_v1 (class in

chemfp.rdkit_types), 243
RDKitPatternFingerprint_v2 (class in

chemfp.rdkit_types), 244
RDKitPatternFingerprint_v3 (class in

chemfp.rdkit_types), 244
RDKitTorsionFingerprintType_v1 (class in

chemfp.rdkit_types), 243
RDKitTorsionFingerprintType_v2 (class in

chemfp.rdkit_types), 243
RDMACCSOpenBabelFingerprinter_v1 (class in

chemfp.openbabel_patterns), 238
RDMACCSOpenBabelFingerprinter_v2 (class in

chemfp.openbabel_patterns), 238
RDMACCSOpenEyeFingerprinter_v1 (class in

chemfp.openeye_patterns), 240
RDMACCSOpenEyeFingerprinter_v2 (class in

chemfp.openeye_patterns), 240

RDMACCSRDKitFingerprinter_v1 (class in
chemfp.rdkit_patterns), 244

RDMACCSRDKitFingerprinter_v2 (class in
chemfp.rdkit_patterns), 245

read_ids_and_molecules() (in module
chemfp.openbabel_toolkit), 292

read_ids_and_molecules() (in module
chemfp.openeye_toolkit), 304

read_ids_and_molecules() (in module
chemfp.rdkit_toolkit), 316

read_ids_and_molecules() (in module
chemfp.text_toolkit), 327

read_ids_and_molecules() (in module chemfp.toolkit),
278

read_ids_and_molecules_from_string() (in module
chemfp.openbabel_toolkit), 293

read_ids_and_molecules_from_string() (in module
chemfp.openeye_toolkit), 305

read_ids_and_molecules_from_string() (in module
chemfp.rdkit_toolkit), 316

read_ids_and_molecules_from_string() (in module
chemfp.text_toolkit), 328

read_ids_and_molecules_from_string() (in module
chemfp.toolkit), 278

read_molecule_fingerprints()
(chemfp.types.FingerprintType method),
233

read_molecule_fingerprints() (in module chemfp), 209
read_molecule_fingerprints_from_string()

(chemfp.types.FingerprintType method),
234

read_molecule_fingerprints_from_string() (in module
chemfp), 210

read_molecules() (in module chemfp.openbabel_toolkit),
291

read_molecules() (in module chemfp.openeye_toolkit),
302

read_molecules() (in module chemfp.rdkit_toolkit), 314
read_molecules() (in module chemfp.text_toolkit), 326
read_molecules() (in module chemfp.toolkit), 278
read_molecules_from_string() (in module

chemfp.openbabel_toolkit), 292
read_molecules_from_string() (in module

chemfp.openeye_toolkit), 303
read_molecules_from_string() (in module

chemfp.rdkit_toolkit), 315
read_molecules_from_string() (in module

chemfp.text_toolkit), 327
read_molecules_from_string() (in module

chemfp.toolkit), 278
read_sdf_ids_and_records() (in module

chemfp.text_toolkit), 336
read_sdf_ids_and_records_from_string() (in module

chemfp.text_toolkit), 338

Index 373

chemfp Documentation, Release 3.1

read_sdf_ids_and_values() (in module
chemfp.text_toolkit), 336

read_sdf_ids_and_values_from_string() (in module
chemfp.text_toolkit), 339

read_sdf_records() (in module chemfp.text_toolkit), 335
read_sdf_records_from_string() (in module

chemfp.text_toolkit), 337
recno (chemfp.io.Location attribute), 345
record (chemfp._text_toolkit.TextRecord attribute), 341
record (chemfp.io.Location attribute), 345
record_format (chemfp._text_toolkit.TextRecord at-

tribute), 341
record_format (chemfp.base_toolkit.FormatMetadata at-

tribute), 281
record_format (chemfp.io.Location attribute), 345
RecordReader (class in chemfp.base_toolkit), 283
reorder() (chemfp.search.SearchResult method), 265
reorder_all() (chemfp.search.SearchResults method), 264

S
save() (chemfp.arena.FingerprintArena method), 246
save() (chemfp.FingerprintReader method), 214
save() (chemfp.fps_io.FPSReader method), 271
SDFRecord (class in chemfp._text_toolkit), 342
SearchResult (class in chemfp.search), 264
SearchResults (class in chemfp.search), 262
set_id() (in module chemfp.openbabel_toolkit), 299
set_id() (in module chemfp.openeye_toolkit), 311
set_id() (in module chemfp.rdkit_toolkit), 322
set_id() (in module chemfp.text_toolkit), 334
set_id() (in module chemfp.toolkit), 280
set_num_threads() (in module chemfp), 227
set_sdf_id() (in module chemfp.text_toolkit), 340
severity (chemfp.ChemFPProblem attribute), 216
shape (chemfp.search.SearchResults attribute), 263
smiles (chemfp._text_toolkit.TextRecord attribute), 341
SmiRecord (class in chemfp._text_toolkit), 342
SmiStringRecord (class in chemfp._text_toolkit), 343
software (chemfp.Metadata attribute), 213
software (chemfp.types.FingerprintType attribute), 231
software (in module chemfp.openbabel_toolkit), 288
software (in module chemfp.openeye_toolkit), 300
software (in module chemfp.rdkit_toolkit), 312
software (in module chemfp.text_toolkit), 323
software (in module chemfp.toolkit), 276
sources (chemfp.Metadata attribute), 213
SubstructOpenBabelFingerprinter_v1 (class in

chemfp.openbabel_patterns), 237
SubstructOpenEyeFingerprinter_v1 (class in

chemfp.openeye_patterns), 240
SubstructRDKitFingerprintType_v1 (class in

chemfp.rdkit_patterns), 244
supports_io (chemfp.base_toolkit.Format attribute), 286

T
TextRecord (class in chemfp._text_toolkit), 341
threshold_tanimoto_search() (in module chemfp), 219
threshold_tanimoto_search_arena()

(chemfp.fps_io.FPSReader method), 272
threshold_tanimoto_search_arena() (in module

chemfp.search), 254
threshold_tanimoto_search_fp()

(chemfp.arena.FingerprintArena method),
248

threshold_tanimoto_search_fp()
(chemfp.fps_io.FPSReader method), 272

threshold_tanimoto_search_fp() (in module
chemfp.search), 254

threshold_tanimoto_search_symmetric() (in module
chemfp), 219

threshold_tanimoto_search_symmetric() (in module
chemfp.search), 254

threshold_tversky_search() (in module chemfp), 222
threshold_tversky_search_arena() (in module

chemfp.search), 257
threshold_tversky_search_fp()

(chemfp.arena.FingerprintArena method),
248

threshold_tversky_search_fp()
(chemfp.fps_io.FPSReader method), 272

threshold_tversky_search_fp() (in module
chemfp.search), 256

threshold_tversky_search_symmetric() (in module
chemfp), 223

threshold_tversky_search_symmetric() (in module
chemfp.search), 257

to_csr() (chemfp.search.SearchResults method), 264
toolkit (chemfp.types.FingerprintFamily attribute), 229
toolkit (chemfp.types.FingerprintType attribute), 231
type (chemfp.Metadata attribute), 212

U
UsmRecord (class in chemfp._text_toolkit), 343
UsmStringRecord (class in chemfp._text_toolkit), 343

V
version (chemfp.types.FingerprintFamily attribute), 229
version (chemfp.types.FingerprintType attribute), 231

W
where() (chemfp.io.Location method), 345
write_fingerprint (class in chemfp.fpb_io), 275
write_fingerprint() (chemfp.FingerprintWriter method),

216
write_fingerprint() (chemfp.fps_io.FPSWriter method),

274
write_fingerprints (class in chemfp.fpb_io), 275, 276

374 Index

chemfp Documentation, Release 3.1

write_fingerprints() (chemfp.FingerprintWriter method),
216

write_fingerprints() (chemfp.fps_io.FPSWriter method),
274

write_id_and_molecule()
(chemfp.base_toolkit.BaseMoleculeWriter
method), 284

write_ids_and_molecules()
(chemfp.base_toolkit.BaseMoleculeWriter
method), 284

write_molecule() (chemfp.base_toolkit.BaseMoleculeWriter
method), 284

write_molecules() (chemfp.base_toolkit.BaseMoleculeWriter
method), 284

Index 375

	List of chapters
	Installing
	Configuration options

	Working with the command-line tools
	Generate fingerprint files from PubChem SD tags
	k-nearest neighbor search
	Threshold search
	Combined k-nearest and threshold search
	NxN (self-similar) searches
	Using a toolkit to process the ChEBI dataset
	Alternate error handlers
	chemfp's two cross-toolkit substructure fingerprints
	Generate binary FPB files from a structure file
	Convert between FPS and FPB formats
	Specify the fpcat output format
	Similarity search with the FPB format
	Converting large data sets to FPB format
	Generate fingerprints in parallel and merge to FPB format

	Help for the command-line tools
	fpcat command-line options
	ob2fps command-line options
	oe2fps command-line options
	rdkit2fps command-line options
	sdf2fps command-line options
	simsearch command-line options

	Fingerprints and fingerprint search examples
	Python 2 vs. Python 3
	Unicode and byte strings
	Hex representation of a binary fingerprint
	Byte and hex fingerprints
	Fingerprint reader and metadata
	Working with a FingerprintArena
	Save a fingerprint arena
	How to use query fingerprints to search for similar target fingerprints
	How to search an FPS file
	How do to a Tversky search using the Dice weights
	FingerprintArena searches returning indices instead of ids
	Computing a distance matrix for clustering
	Convert SearchResults to a SciPy csr matrix
	Taylor-Butina clustering
	Configuring OpenMP threads
	OpenMP and multi-threaded applications
	Fingerprint Substructure Screening (experimental)
	Substructure screening with RDKit
	Reading structure fingerprints using a toolkit
	Select a random fingerprint sample
	Don't reorder an arena by popcount
	Look up a fingerprint with a given id
	Sorting search results
	Working with raw scores and counts in a range
	Cumulative search result counts and scores
	Writing fingerprints with a fingerprint writer
	Fingerprint readers and writers are context managers
	Write fingerprints to stdout or a file-like object
	Writing fingerprints to an FPB file
	Specify the output fingerprint format
	Merging multiple structure-based fingerprint sources
	Merging multiple fingerprint files
	Check for metadata compatibility problems
	How to write very large FPB files
	FPS fingerprint writer errors
	FPS fingerprint writer location
	MACCS dependency on hydrogens
	Create similarity search web service

	Fingerprint family and type examples
	Fingerprint families and types
	Fingerprint family
	Fingerprint family discovery
	get_fingerprint_type() and get_type()
	Create a fingerprint using text settings
	FingerprintType properties and methods
	Convert a structure record to a fingerprint
	Convert a structure record to an id and fingerprint
	Make a specialized id and molecule fingerprint parser
	Read a structure file and compute fingerprints
	Structure-based fingerprint reader location
	Read fingerprints from a string containing structures
	Structure-based fingerprint reader errors
	Experimental error handler
	Compute a fingerprint for a native toolkit molecule
	Fingerprint many native toolkit molecules
	Make a specialized molecule fingerprinter

	Toolkit API examples
	Get a chemfp toolkit
	Parse and create SMILES
	Canonical, non-isomeric, and arbitrary SMILES
	Use format to create a record in SDF format
	Use zlib record compression
	Get a list of available formats and distinguish between input and output formats
	Determine the format for a given filename
	Parse the id and the molecule at the same time
	Specify alternate error behavior
	Specify a SMILES delimiter through reader_args
	Specify an output SMILES delimiter through writer_args
	RDKit-specific SMILES reader_args and writer_args
	OpenEye-specific SMILES reader_args and writer_args
	OpenEye-specific aromaticity
	Open Babel-specific SMILES reader_args and writer_args
	Get the default reader_args or writer_args for a format
	Convert text settings into reader and writer arguments
	Multi-toolkit reader_args and writer_args
	Qualified reader and writer parameters names
	Qualified parameter priorities
	Qualified names and text settings
	Read molecules from an SD file or stdin
	Read ids and molecules from an SD file at the same time
	Read ids and molecules using an SD tag for the id
	Read from a string instead of a file
	The reader may reuse molecule objects!
	Write molecules to a SMILES file
	Reader and writer context managers
	Write molecules to stdout in a specified format
	Write molecules to a string (and a bit of InChI)
	Handling errors when reading molecules from a string
	Handling errors when reading molecules from a file
	Ignore errors in create_string() and create_bytes()
	Ignore errors when writing molecules
	Reader and writer format metadata
	Location information: filename, record_format, recno and output_recno
	Location information: record position and content
	Writing your own error handler (Experimental)
	A Babel-like structure format converter
	argparse text settings to reader and writer args
	Creating a specialized record parser
	Molecule API: Get and set the molecule id
	Molecule API: Copy a molecule
	Molecule API: Working with SD tags
	Add fingerprints to an SD file using a toolkit

	Text toolkit examples
	Toolkits may modify the molecular structure
	Toolkits may modify SDF syntax
	The text toolkit ``molecules''
	The text toolkit implements the toolkit API
	Reading and adding SD tags with the text_toolkit
	Synchronizing readers from different toolkits through the text toolkit
	Add multiple toolkit fingerprints to an SD file
	Text toolkit and SDF files
	Read id and tag value pairs from an SD file
	Extract the id and atom and bond counts from an SD file
	SDF-specific parser parameters
	Working with SD records as strings
	Unicode and other character encoding
	Mixed encodings and raw bytes

	chemfp API
	chemfp top-level module
	ChemFPError
	ParseError
	Metadata
	FingerprintReader
	FingerprintIterator
	Fingerprints
	FingerprintWriter
	ChemFPProblem

	chemfp.types - fingerprint families and types
	Fingerprint family class
	FingerprintFamily
	Base fingerprint type
	FingerprintType
	Open Babel fingerprints
	OpenBabelFP2FingerprintType_v1
	OpenBabelFP3FingerprintType_v1
	OpenBabelFP4FingerprintType_v1
	OpenBabelMACCSFingerprintType_v1
	OpenBabelMACCSFingerprintType_v2
	SubstructOpenBabelFingerprinter_v1
	RDMACCSOpenBabelFingerprinter_v1
	RDMACCSOpenBabelFingerprinter_v2
	OpenEye fingerprints
	OpenEyeCircularFingerprintType_v2
	OpenEyeMACCSFingerprintType_v2
	OpenEyeMACCSFingerprintType_v3
	OpenEyePathFingerprintType_v2
	OpenEyeTreeFingerprintType_v2
	SubstructOpenEyeFingerprinter_v1
	RDMACCSOpenEyeFingerprinter_v1
	RDMACCSOpenEyeFingerprinter_v2
	RDKit fingerprints
	RDKitFingerprintType_v1
	RDKitFingerprintType_v2
	RDKitMACCSFingerprintType_v1
	RDKitMACCSFingerprintType_v2
	RDKitMorganFingerprintType_v1
	RDKitAtomPairFingerprint_v1
	RDKitAtomPairFingerprint_v2
	RDKitTorsionFingerprintType_v1
	RDKitTorsionFingerprintType_v2
	RDKitPatternFingerprint_v1
	RDKitPatternFingerprint_v2
	RDKitPatternFingerprint_v3
	RDKitAvalonFingerprintType_v1
	SubstructRDKitFingerprintType_v1
	RDMACCSRDKitFingerprinter_v1
	RDMACCSRDKitFingerprinter_v2

	chemfp.arena module
	FingerprintArena

	chemfp.search module
	SearchResults
	SearchResult

	chemfp.bitops module
	chemfp.encodings
	chemfp.fps_io module
	FPSReader
	FPSWriter

	chemfp.fpb_io module
	OrderedFPBWriter
	write_fingerprint
	write_fingerprints
	close
	InputOrderFPBWriter
	write_fingerprint
	write_fingerprints
	close

	chemfp toolkit API
	name
	software
	is_licensed
	get_formats
	get_input_formats
	get_output_formats
	get_format
	get_input_format
	get_output_format
	get_input_format_from_source
	get_output_format_from_destination
	read_molecules
	read_molecules_from_string
	read_ids_and_molecules
	read_ids_and_molecules_from_string
	make_id_and_molecule_parser
	parse_molecule
	parse_id_and_molecule
	create_string
	create_bytes
	open_molecule_writer
	open_molecule_writer_to_string
	open_molecule_writer_to_bytes
	copy_molecule
	add_tag
	get_tag
	get_tag_pairs
	get_id
	set_id

	chemfp.base_toolkit
	FormatMetadata
	FormatMetadata
	Toolkit readers
	BaseMoleculeReader
	Toolkit writers
	BaseMoleculeWriter
	Format
	Format

	chemfp.openbabel_toolkit module
	name
	software
	is_licensed (openbabel_toolkit)
	get_formats (openbabel_toolkit)
	get_input_formats (openbabel_toolkit)
	get_output_formats (openbabel_toolkit)
	get_format (openbabel_toolkit)
	get_input_format (openbabel_toolkit)
	get_output_format (openbabel_toolkit)
	get_input_format_from_source (openbabel_toolkit)
	get_output_format_from_destination (openbabel_toolkit)
	read_molecules (openbabel_toolkit)
	read_molecules_from_string (openbabel_toolkit)
	read_ids_and_molecules (openbabel_toolkit)
	read_ids_and_molecules_from_string (openbabel_toolkit)
	make_id_and_molecule_parser (openbabel_toolkit)
	parse_molecule (openbabel_toolkit)
	parse_id_and_molecule (openbabel_toolkit)
	create_string (openbabel_toolkit)
	create_bytes (openbabel_toolkit)
	open_molecule_writer (openbabel_toolkit)
	open_molecule_writer_to_string (openbabel_toolkit)
	open_molecule_writer_to_bytes (openbabel_toolkit)
	copy_molecule (openbabel_toolkit)
	add_tag (openbabel_toolkit)
	get_tag (openbabel_toolkit)
	get_tag_pairs (openbabel_toolkit)
	get_id (openbabel_toolkit)
	set_id (openbabel_toolkit)

	chemfp.openeye_toolkit module
	name
	software
	is_licensed (openeye_toolkit)
	get_formats (openeye_toolkit)
	get_input_formats (openeye_toolkit)
	get_output_formats (openeye_toolkit)
	get_format (openeye_toolkit)
	get_input_format (openeye_toolkit)
	get_output_format (openeye_toolkit)
	get_input_format_from_source (openeye_toolkit)
	get_output_format_from_destination (openeye_toolkit)
	read_molecules (openeye_toolkit)
	read_molecules_from_string (openeye_toolkit)
	read_ids_and_molecules (openeye_toolkit)
	read_ids_and_molecules_from_string (openeye_toolkit)
	make_id_and_molecule_parser (openeye_toolkit)
	parse_molecule (openeye_toolkit)
	parse_id_and_molecule (openeye_toolkit)
	create_string (openeye_toolkit)
	create_bytes (openeye_toolkit)
	open_molecule_writer (openeye_toolkit)
	open_molecule_writer_to_string (openeye_toolkit)
	open_molecule_writer_to_bytes (openeye_toolkit)
	copy_molecule (openeye_toolkit)
	add_tag (openeye_toolkit)
	get_tag (openeye_toolkit)
	get_tag_pairs (openeye_toolkit)
	get_id (openeye_toolkit)
	set_id (openeye_toolkit)

	chemfp.rdkit_toolkit module
	name
	software
	is_licensed (rdkit_toolkit)
	get_formats (rdkit_toolkit)
	get_input_formats (rdkit_toolkit)
	get_output_formats (rdkit_toolkit)
	get_format (rdkit_toolkit)
	get_input_format (rdkit_toolkit)
	get_output_format (rdkit_toolkit)
	get_input_format_from_source (rdkit_toolkit)
	get_output_format_from_destination (rdkit_toolkit)
	read_molecules (rdkit_toolkit)
	read_molecules_from_string (rdkit_toolkit)
	read_ids_and_molecules (rdkit_toolkit)
	read_ids_and_molecules_from_string (rdkit_toolkit)
	make_id_and_molecule_parser (rdkit_toolkit)
	parse_molecule (rdkit_toolkit)
	parse_id_and_molecule (rdkit_toolkit)
	create_string (rdkit_toolkit)
	create_bytes (rdkit_toolkit)
	open_molecule_writer (rdkit_toolkit)
	open_molecule_writer_to_string (rdkit_toolkit)
	open_molecule_writer_to_bytes (rdkit_toolkit)
	copy_molecule (rdkit_toolkit)
	add_tag (rdkit_toolkit)
	get_tag (rdkit_toolkit)
	get_tag_pairs (rdkit_toolkit)
	get_id (rdkit_toolkit)
	set_id (rdkit_toolkit)

	chemfp.text_toolkit module
	name
	software
	is_licensed (text_toolkit)
	get_formats (text_toolkit)
	get_input_formats (text_toolkit)
	get_output_formats (text_toolkit)
	get_format (text_toolkit)
	get_input_format (text_toolkit)
	get_output_format (text_toolkit)
	get_input_format_from_source (text_toolkit)
	get_output_format_from_destination (text_toolkit)
	read_molecules (text_toolkit)
	read_molecules_from_string (text_toolkit)
	read_ids_and_molecules (text_toolkit)
	read_ids_and_molecules_from_string (text_toolkit)
	make_id_and_molecule_parser (text_toolkit)
	parse_molecule (text_toolkit)
	parse_id_and_molecule (text_toolkit)
	create_string (text_toolkit)
	create_bytes (text_toolkit)
	open_molecule_writer (text_toolkit)
	open_molecule_writer_to_string (text_toolkit)
	open_molecule_writer_to_bytes (text_toolkit)
	copy_molecule (text_toolkit)
	add_tag (text_toolkit)
	get_tag (text_toolkit)
	get_tag_pairs (text_toolkit)
	get_id (text_toolkit)
	set_id (text_toolkit)
	read_sdf_records (text_toolkit)
	read_sdf_ids_and_records (text_toolkit)
	read_sdf_ids_and_values (text_toolkit)
	read_sdf_records_from_string (text_toolkit)
	read_sdf_ids_and_records_from_string (text_toolkit)
	read_sdf_ids_and_values_from_string (text_toolkit)
	get_sdf_tag (text_toolkit)
	add_sdf_tag (text_toolkit)
	get_sdf_tag_pairs (text_toolkit)
	get_sdf_id (text_toolkit)
	set_sdf_id (text_toolkit)

	chemfp._text_toolkit module (private)
	TextRecord
	SDFRecord
	SmiRecord
	CanRecord
	UsmRecord
	SmiStringRecord
	CanStringRecord
	UsmStringRecord

	chemfp.io module
	Location

	License and advertisement
	What's new in version 3.1
	What's new in version 3.0.1
	What's new in version 3.0
	What's new in version 2.1
	What's new in version 2.0
	Future
	Thanks
	Indices and tables
	Python Module Index

