
chemfp Documentation
Release 3.4

Andrew Dalke

Jun 24, 2020

Table of Contents

1 Installing 3
1.1 Installing a pre-compiled package . 3
1.2 Installing from source . 3
1.3 Configuration options . 4

2 Working with the command-line tools 7
2.1 Generate fingerprint files from PubChem SD tags . 7
2.2 k-nearest neighbor search . 8
2.3 Threshold search . 9
2.4 Combined k-nearest and threshold search . 10
2.5 NxN (self-similar) searches . 11
2.6 Using a toolkit to process the ChEBI dataset . 11
2.7 Alternate error handlers . 15
2.8 chemfp’s two cross-toolkit substructure fingerprints . 16
2.9 Generate binary FPB files from a structure file . 18
2.10 Convert between FPS and FPB formats . 19
2.11 Specify the fpcat output format . 20
2.12 Alternate fingerprint file formats . 20
2.13 Similarity search with the FPB format . 21
2.14 Converting large data sets to FPB format . 22
2.15 Generate fingerprints in parallel and merge to FPB format 23

3 Help for the command-line tools 25
3.1 fpcat command-line options . 25
3.2 ob2fps command-line options . 27
3.3 oe2fps command-line options . 30
3.4 rdkit2fps command-line options . 36
3.5 sdf2fps command-line options . 41
3.6 simsearch command-line options . 43

4 Fingerprints and fingerprint search examples 45
4.1 Python 2 vs. Python 3 . 45
4.2 Unicode and byte strings . 46
4.3 Hex representation of a binary fingerprint . 46
4.4 Byte and hex fingerprints . 47
4.5 Fingerprint reader and metadata . 51
4.6 Working with a FingerprintArena . 52

i

4.7 Create an arena with user-specified fingerprints . 54
4.8 Save a fingerprint arena . 56
4.9 How to use query fingerprints to search for similar target fingerprints 57
4.10 How to search an FPS file . 59
4.11 How do to a Tversky search using the Dice weights . 60
4.12 FingerprintArena searches returning indices instead of ids . 61
4.13 Access the fingerprint arena bytes as a NumPy array . 64
4.14 Access the fingerprint bits as a NumPy array . 66
4.15 Computing a distance matrix for clustering . 68
4.16 Convert SearchResults to a SciPy csr matrix . 70
4.17 Taylor-Butina clustering . 71
4.18 MinMax Diversity Selection using RDKit . 73
4.19 Configuring OpenMP threads . 75
4.20 OpenMP and multi-threaded applications . 76
4.21 Fingerprint Substructure Screening (experimental) . 77
4.22 Substructure screening with RDKit . 78
4.23 Reading structure fingerprints using a toolkit . 84
4.24 Select a random fingerprint sample . 86
4.25 Don’t reorder an arena by popcount . 88
4.26 Look up a fingerprint with a given id . 89
4.27 Sorting search results . 90
4.28 Working with raw scores and counts in a range . 92
4.29 Cumulative search result counts and scores . 93
4.30 Writing fingerprints with a fingerprint writer . 97
4.31 Fingerprint readers and writers are context managers . 99
4.32 Write fingerprints to stdout or a file-like object . 100
4.33 Writing fingerprints to an FPB file . 101
4.34 Specify the output fingerprint format . 104
4.35 Merging multiple structure-based fingerprint sources . 105
4.36 Merging multiple fingerprint files . 107
4.37 Check for metadata compatibility problems . 109
4.38 How to write very large FPB files . 113
4.39 FPS fingerprint writer errors . 114
4.40 FPS fingerprint writer location . 115
4.41 MACCS dependency on hydrogens . 117
4.42 Create similarity search web service . 120

5 Fingerprint family and type examples 125
5.1 Fingerprint families and types . 125
5.2 Fingerprint family . 127
5.3 Fingerprint family discovery . 129
5.4 get_fingerprint_type() and get_type() . 133
5.5 Create a fingerprint using text settings . 134
5.6 FingerprintType properties and methods . 136
5.7 Convert a structure record to a fingerprint . 137
5.8 Convert a structure record to an id and fingerprint . 138
5.9 Make a specialized id and molecule fingerprint parser . 138
5.10 Read a structure file and compute fingerprints . 140
5.11 Structure-based fingerprint reader location . 141
5.12 Read fingerprints from a string containing structures . 143
5.13 Structure-based fingerprint reader errors . 143
5.14 Experimental error handler . 144
5.15 Compute a fingerprint for a native toolkit molecule . 145
5.16 Fingerprint many native toolkit molecules . 146

ii

5.17 Make a specialized molecule fingerprinter . 147

6 Toolkit API examples 149
6.1 Get a chemfp toolkit . 149
6.2 Parse and create SMILES . 151
6.3 Canonical, non-isomeric, and arbitrary SMILES . 152
6.4 Use format to create a record in SDF format . 153
6.5 Use zlib record compression . 155
6.6 Use zst record compression . 156
6.7 Get a list of available formats and distinguish between input and output formats 156
6.8 Determine the format for a given filename . 158
6.9 Parse the id and the molecule at the same time . 160
6.10 Specify alternate error behavior . 161
6.11 Specify a SMILES delimiter through reader_args . 163
6.12 Specify an output SMILES delimiter through writer_args . 164
6.13 RDKit-specific SMILES reader_args and writer_args . 165
6.14 OpenEye-specific SMILES reader_args and writer_args . 166
6.15 OpenEye-specific aromaticity . 169
6.16 Open Babel-specific SMILES reader_args and writer_args 171
6.17 Get the default reader_args or writer_args for a format . 172
6.18 Convert text settings into reader and writer arguments . 173
6.19 Multi-toolkit reader_args and writer_args . 174
6.20 Qualified reader and writer parameters names . 176
6.21 Qualified parameter priorities . 177
6.22 Qualified names and text settings . 178
6.23 Read molecules from an SD file or stdin . 179
6.24 Read ids and molecules from an SD file at the same time . 180
6.25 Read ids and molecules using an SD tag for the id . 182
6.26 Read from a string instead of a file . 183
6.27 The reader may reuse molecule objects! . 185
6.28 Write molecules to a SMILES file . 186
6.29 Reader and writer context managers . 187
6.30 Write molecules to stdout in a specified format . 188
6.31 Write molecules to a string (and a bit of InChI) . 189
6.32 Handling errors when reading molecules from a string . 190
6.33 Handling errors when reading molecules from a file . 193
6.34 Ignore errors in create_string() and create_bytes() . 197
6.35 Ignore errors when writing molecules . 198
6.36 Reader and writer format metadata . 200
6.37 Location information: filename, record_format, recno and output_recno 201
6.38 Location information: record position and content . 203
6.39 Writing your own error handler (Experimental) . 205
6.40 A Babel-like structure format converter . 208
6.41 argparse text settings to reader and writer args . 214
6.42 Creating a specialized record parser . 220
6.43 Molecule API: Get and set the molecule id . 222
6.44 Molecule API: Copy a molecule . 223
6.45 Molecule API: Working with SD tags . 224
6.46 Add fingerprints to an SD file using a toolkit . 226

7 Text toolkit examples 229
7.1 Toolkits may modify the molecular structure . 229
7.2 Toolkits may modify SDF syntax . 230
7.3 The text toolkit “molecules” . 232

iii

7.4 The text toolkit implements the toolkit API . 234
7.5 Reading and adding SD tags with the text_toolkit . 235
7.6 Synchronizing readers from different toolkits through the text toolkit 236
7.7 Add multiple toolkit fingerprints to an SD file . 239
7.8 Text toolkit and SDF files . 242
7.9 Read id and tag value pairs from an SD file . 243
7.10 Extract the id and atom and bond counts from an SD file . 243
7.11 SDF-specific parser parameters . 245
7.12 Working with SD records as strings . 246
7.13 Unicode and other character encoding . 248
7.14 Mixed encodings and raw bytes . 251

8 chemfp API 255
8.1 chemfp top-level API . 255
8.2 chemfp.types - fingerprint families and types . 278
8.3 chemfp.arena module . 298
8.4 chemfp.search module . 303
8.5 chemfp.bitops module . 323
8.6 chemfp.encodings . 324
8.7 chemfp.fps_io module . 327
8.8 chemfp.fpb_io module . 332
8.9 chemfp toolkit API . 333
8.10 is_licensed . 334
8.11 get_formats . 334
8.12 get_input_formats . 334
8.13 get_output_formats . 334
8.14 get_format . 334
8.15 get_input_format . 334
8.16 get_output_format . 335
8.17 get_input_format_from_source . 335
8.18 get_output_format_from_destination . 335
8.19 read_molecules . 335
8.20 read_molecules_from_string . 335
8.21 read_ids_and_molecules . 335
8.22 read_ids_and_molecules_from_string . 336
8.23 make_id_and_molecule_parser . 336
8.24 parse_molecule . 336
8.25 parse_id_and_molecule . 336
8.26 create_string . 336
8.27 create_bytes . 336
8.28 open_molecule_writer . 337
8.29 open_molecule_writer_to_string . 337
8.30 open_molecule_writer_to_bytes . 337
8.31 copy_molecule . 337
8.32 add_tag . 337
8.33 get_tag . 337
8.34 get_tag_pairs . 338
8.35 get_id . 338
8.36 set_id . 338
8.37 chemfp.base_toolkit . 338
8.38 Toolkit readers . 339
8.39 Toolkit writers . 341
8.40 chemfp.openbabel_toolkit module . 345
8.41 chemfp.openeye_toolkit module . 357

iv

8.42 chemfp.rdkit_toolkit module . 369
8.43 chemfp.text_toolkit module . 380
8.44 chemfp._text_toolkit module (private) . 398
8.45 chemfp.io module . 400

9 What’s New / CHANGELOG 403
9.1 What’s new in 3.4 (24 June 2020) . 403
9.2 What’s new in 3.4b3 (18 June 2020) . 405
9.3 What’s new in 3.4b2 (12 June 2020) . 405
9.4 What’s new in 3.4b1 (24 April 2020) . 406
9.5 What’s new in 3.4a4 (18 March 2020) . 407
9.6 What’s new in version 3.4a2 . 407
9.7 What’s new in version 3.4a1 . 408
9.8 What’s new in version 3.3 . 408
9.9 What’s new in version 3.2.1 . 410
9.10 What’s new in version 3.2 . 411
9.11 What’s new in version 3.1 . 413
9.12 What’s new in version 3.0.1 . 413
9.13 What’s new in version 3.0 . 413
9.14 What’s new in version 2.1 . 414
9.15 What’s new in version 2.0 . 415

10 License and advertisement 417

11 Future 423

12 Thanks 425

13 Indices and tables 427

Python Module Index 429

Index 431

v

vi

chemfp Documentation, Release 3.4

chemfp is a set of command-line tools and a Python package for working with cheminformatics fingerprints.

This is the documentation for the commerical version of chemfp, which support Python 2.7 and 3.6 or later.
The documentation for chemfp 1.6, the most recent version of the no-cost/open source version of chemfp, is
available from http://chemfp.readthedocs.io/en/chemfp-1.6/. Chemfp 1.6 only supports Python 2.7.

Most people will use the command-line programs to generate and search fingerprint files. ob2fps, oe2fps, and
rdkit2fps use respectively the Open Babel, OpenEye, and RDKit chemistry toolkits to convert structure files
into fingerprint files. sdf2fps extracts fingerprints encoded in SD tags to make the fingerprint file. simsearch
finds targets in a fingerprint file which are sufficiently similar to the queries. fpcat converts between FPS
and FPB formats and merges multiple fingerprint files into one.

The programs are built using the chemfp Python library API . The search capabilities are part of the public
API, as well as a cross-toolkit API for reading and writing molecules from structure files or strings, and for
computing molecular fingerprints.

Remember: chemfp cannot generate fingerprints from a structure file without a third-party chemistry toolkit.

Chemfp 3.4 was released on 24 June 2020. It supports Python 2.7 and 3.6+ and can be used with any recent
version of OEChem/OEGraphSim, Open Babel, or RDKit. See What’s New for a description of the changes.

For a different, more scholarly discussion of chemfp see “The chemfp project” in the Journal of Cheminfor-
matics. That paper covers the purpose of the project, its architecture and design, the FPS and FPB file
formats, and the experience in trying to run chemfp as a self-funded open source project.

To cite chemfp use: Dalke, A. The chemfp project. J Cheminform 11, 76 (2019). https://doi.org/10.1186/
s13321-019-0398-8 .

Table of Contents 1

http://chemfp.com/
http://chemfp.readthedocs.io/en/chemfp-1.6/
http://openbabel.org/
http://www.eyesopen.com/
http://www.rdkit.org/
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0398-8
https://doi.org/10.1186/s13321-019-0398-8
https://doi.org/10.1186/s13321-019-0398-8

chemfp Documentation, Release 3.4

2 Table of Contents

CHAPTER 1

Installing

Chemfp 3.4 is available as a pre-compiled package or a source distribution.

1.1 Installing a pre-compiled package

Pre-compiled packages for chemfp are available for Python 2.7, Python 3.6, Python 3.7, and Python 3.8.
They were compiled under the “manylinux1” and “manylinux2014” Docker build environment, which means
they should work for most Linux-based operating systems.

These binary packages are NOT open source. By default they are distributed under the Chemfp Base License
Agreement v1.1, which lets you use some of the chemfp functionality for internal purposes, including the
ability to create FPS files and use the “toolkit” APIs.

However, the following features require a time-limited license key:

• generate FPB files

• create or search in-memory fingerprint arenas with more than 50,000 fingerprints

• perform Tversky searches

• perform Tanimoto searches of FPS files with more than 20 queries at a time.

These features can be enabled with a valid license key, set via the environment variable CHEMFP_LICENSE.
Email sales@dalkescientific.com to request a evaluation license or to purchase a license.

Use the following command to install a pre-compiled version of chemfp:

python -m pip install chemfp -i https://chemfp.com/packages/

1.2 Installing from source

The chemfp source distribution requires that Python and a C compiler be installed in your machines. Since
chemfp doesn’t run on Microsoft Windows (for tedious technical reasons), then your machine likely already

3

mailto:sales@dalkescientific.com

chemfp Documentation, Release 3.4

has both Python and a C compiler installed. In case you don’t have Python, or you want to install a newer
version, you can download a copy of Python from http://www.python.org/download/ . If you don’t have a
C compiler, .. well, do I really need to give you a pointer for that?

You may use chemfp 3.4 with either Python 2.7, or Python 3.6 or newer.

The core chemfp functionality does not depend on a third-party library but you will need a chemistry toolkit
in order to generate new fingerprints from structure files. chemfp supports the free Open Babel and RDKit
toolkits and the proprietary OEChem toolkit. Make sure you install the Python libraries for the toolkit(s)
you select.

The easiest way to install chemfp is with the pip installer. This comes with Python 2.7.9 or later, and with
Python 3.4 and later so is almost certainly installed if you have Python. To install the source distribution
tar.gz file with pip:

python -m pip install chemfp-3.4.tar.gz

Otherwise you can use Python’s standard “setup.py”. Read http://docs.python.org/install/index.html for
details of how to use it. The short version is to do the following:

tar xf chemfp-3.4.tar.gz
cd chemfp-3.4
python setup.py build
python setup.py install

The last step may need a sudo if you otherwise cannot write to your Python site-package. Another option
is to use a virtual environment.

1.3 Configuration options

The setup.py file has several compile-time options which can be set either from the python setup.py build
command-line or through environment variables. The environment variable solution is the easiest way to
change the settings under pip.

--with-openmp, --without-openmp

Chemfp uses OpenMP to parallelize multi-query searches. The default is --with-openmp. If you have a very
old version of gcc, or an older version of clang, or are on a Mac where the clang version doesn’t support
OpenMP, then you will need to use --without-openmp to tell setup.py to compile without OpenMP:

python setup.py build --without-openmp

You can also set the environment variable CHEMFP_OPENMP to “1” to compile with OpenMP support,
or to “0” to compile without OpenMP support:

CHEMFP_OPENMP=0 python -m pip install chemfp-3.4.tar.gz

Note: you can use the environment variable CC to change the C compiler. For example, the clang compiler
on Mac doesn’t support OpenMP so I installed gcc-6 and compile using:

CC=gcc-6 LDFLAGS="-L/usr/local/lib -lomp" \
python -m pip install chemfp-3.4.tar.gz

(Hmm. Perhaps I should upgrade my copy of gcc.)

--with-ssse3, --without-ssse3

4 Chapter 1. Installing

http://www.python.org/download/
https://pip.pypa.io/
http://docs.python.org/install/index.html
https://pypi.python.org/pypi/virtualenv

chemfp Documentation, Release 3.4

Chemfp by default compiles with SSSE3 support, which was first available in 2006 so almost certainly
available on your Intel-like processor. In case I’m wrong (are you compiling for ARM? If so, send me any
compiler patches), you can disable SSSE3 support using the --without-ssse3, or set the environment
variable CHEMFP_SSSE3 to “0”.

Compiling with SSSE3 support has a very odd failure case. If you compile with the SSSE3 flag enabled,
then take the binary to a machine without SSSE3 support, then it will crash because all of the code will
be compiled to expect the SSSE3 instruction set even though only one file, popcount_SSSE3.c, should be
compiledthat way.

--with-avx2, --without-avx2

Chemfp 3.0 added support for the AVX2 instruction set. This can be 30% faster than the POPCNT
instruction for 1024 or 2048 bit fingerprints. By default it is enabled, and chemfp checks that the chip
implements AVX2 before calling the functions which are explicitly written with AVX2.

Use --without-avx2 or set the environment variable CHEMFP_AVX2 to “0” to disable it.

1.3. Configuration options 5

chemfp Documentation, Release 3.4

6 Chapter 1. Installing

CHAPTER 2

Working with the command-line tools

The sections in this chapter describe examples of using the command-line tools to generate fingerprint files
and to do similarity searches of those files.

2.1 Generate fingerprint files from PubChem SD tags

In this section you’ll learn how to create a fingerprint file from an SD file which contains pre-computed
CACTVS fingerprints. You do not need a chemistry toolkit for this section.

PubChem is a great resource of publically available chemistry information. The data is available for ftp
download. We’ll use some of their SD formatted files. Each record has a PubChem/CACTVS fingerprint
field, which we’ll extract to generate an FPS file.

Start by downloading the files Compound_099000001_099500000.sdf.gz (from ftp://ftp.ncbi.nlm.
nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz) and
Compound_048500001_049000000.sdf.gz (from ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/
CURRENT-Full/SDF/Compound_048500001_049000000.sdf.gz). At the time of writing they con-
tain 10,826 and 14,967 records, respectively. (I chose some of the smallest files so they would be easier to
open and review.)

Next, convert the files into fingerprint files. On the command line do the following two commands:

sdf2fps --pubchem Compound_099000001_099500000.sdf.gz -o pubchem_queries.fps
sdf2fps --pubchem Compound_048500001_049000000.sdf.gz -o pubchem_targets.fps

Congratulations, that was it!

If you’re curious about what an FPS file looks like, here are the first 10 lines of pubchem_queries.fps, with
some of the lengthy fingerprint lines replaced with an ellipsis:

#FPS1
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2

(continues on next page)

7

http://pubchem.ncbi.nlm.nih.gov/
ftp://ftp.ncbi.nlm.nih.gov
ftp://ftp.ncbi.nlm.nih.gov
http://en.wikipedia.org/wiki/Structure_Data_File#SDF
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_048500001_049000000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_048500001_049000000.sdf.gz

chemfp Documentation, Release 3.4

(continued from previous page)

#software=CACTVS/unknown
#source=Compound_099000001_099500000.sdf.gz
#date=2020-05-11T14:35:08
07de0d00000000000000 ... 393e338d1017100000000204000000000000010200000000000000000 ␣
↪→99000039
07de1c00020000000000 ... 995e1398a405000010000000000008000000000000000000000000000 ␣
↪→99000230
07de0c00000000000000 ... b1be31913097110008000000008000800400000000400000000000000 ␣
↪→99002251
07de0500000000000000 ... 313e43891037901000000004000040000000000200002000000000000 ␣
↪→99003537

How does this work? Each PubChem record contains the precomputed CACTVS substructure keys in the
PUBCHEM_CACTVS_SUBSKEYS tag. Here’s what it looks like for record 99000039, which is the first
record in Compound_099000001_099500000.sdf.gz:

> <PUBCHEM_CACTVS_SUBSKEYS>
AAADceB7sAAAAAAAAAAAAAAAAAAAAAAAAAA8YIAABYAAAACx9AAAHgAQAAAADCjBngQ8wPLIEACoAzV3
VACCgCA1AiAI2KG4ZNgIYPrA1fGUJYhglgDIyccci4COAAAAAAQCAAAAAAAACAQAAAAAAAAAAA==

The --pubchem flag tells sdf2fps to get the value of that tag and decode it to get the fingerprint. It also
adds a few metadata fields to the fingerprint file header.

The order of the FPS fingerprints are the same as the order of the corresponding record in the SDF. You
can see that in the output, where 99000039 is the first record in the FPS fingerprints.

If you store records in an SD file then you almost certainly don’t use the same fingerprint encoding as
PubChem. sdf2fps can decode from a number of encodings, like hex and base64. Use --help to see the list
of available decoders.

The example uses -o to have sdf2fps write the output to a file instead of to stdout. By default, filenames
ending in “.fps” are saved in FPS format. Use “.fps.gz” for the gzip-compressed FPS format and “.fps.zst”
for the zstandard-compressed FPS format.

2.2 k-nearest neighbor search

In this section you’ll learn how to search a fingerprint file to find the k-nearest neighbors. You will need the
FPS fingerprint files generated in Generate fingerprint files from PubChem SD tags but you do not need a
chemistry toolkit.

We’ll use the pubchem_queries.fps as the queries for a k=2 nearest neighor similarity search of the target
file puchem_targets.gps:

simsearch -k 2 -q pubchem_queries.fps pubchem_targets.fps

That’s all! You should get output which starts:

#Simsearch/1
#num_bits=881
#type=Tanimoto k=2 threshold=0.0
#software=chemfp/3.4
#queries=pubchem_queries.fps
#targets=pubchem_targets.fps

(continues on next page)

8 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.4

(continued from previous page)

#query_source=Compound_099000001_099500000.sdf.gz
#target_source=Compound_048500001_049000000.sdf.gz
2 99000039 48503376 0.8785 48503380 0.8729
2 99000230 48563034 0.8588 48731730 0.8523
2 99002251 48798046 0.8110 48625236 0.8107
2 99003537 48997075 0.9036 48997697 0.8985

Here’s how to interpret the output. The lines starting with ‘#’ are header lines. It contains metadata
information describing that this is a similarity search report. You can see the search parameters, the name
of the tool which did the search, and the filenames which went into the search.

After the ‘#’ header lines come the search results, with one result per line. There are in the same order
as the query fingerprints. Each result line contains tab-delimited columns. The first column is the number
of hits. The second column is the query identifier used. The remaining columns contain the hit data, with
alternating target id and its score.

For example, the first result line contains the 2 hits for the query 99000039. The first hit is the target
id 48503376 with score 0.8785 and the second hit is 48503380 with score 0.8729. Since this is a k-nearest
neighor search, the hits are sorted by score, starting with the highest score. Do be aware that ties are broken
arbitrarily. There may be additional hits with the score 0.8729 which are not reported.

2.3 Threshold search

In this section you’ll learn how to search a fingerprint file to find all of the neighbors at or above a given
threshold. You will need the FPS fingerprint files generated in Generate fingerprint files from PubChem SD
tags but you do not need a chemistry toolkit.

Let’s do a threshold search and find all hits which are at least 0.85 similar to the queries:

simsearch --threshold 0.85 -q pubchem_queries.fps pubchem_targets.fps

The first 15 lines of output from this are:

#Simsearch/1
#num_bits=881
#type=Tanimoto k=all threshold=0.85
#software=chemfp/3.4
#queries=pubchem_queries.fps
#targets=pubchem_targets.fps
#query_source=Compound_099000001_099500000.sdf.gz
#target_source=Compound_048500001_049000000.sdf.gz
4 99000039 48732162 0.8596 48503380 0.8729 48503376 0.
↪→8785 48520532 0.8541
2 99000230 48563034 0.8588 48731730 0.8523
0 99002251
4 99003537 48566113 0.8724 48998000 0.8535 48997697 0.
↪→8985 48997075 0.9036
4 99003538 48566113 0.8724 48998000 0.8535 48997697 0.
↪→8985 48997075 0.9036
0 99005028
0 99005031

2.3. Threshold search 9

chemfp Documentation, Release 3.4

Take a look at the first result line, which contains the 4 hits for the query id 99000039. As before, the hit
information alternates between the target ids and the target scores, but unlike the k-nearest search, the hits
are not in a particular order. You can see that here where the scores are 0.8596, 0.8729, 0.8785, and 0.8541.

You might be wondering why I chose the 0.85 threshold, or decided to show only the first 15 lines of output.
Quite simply, it was for presentation. With a threshold of 0.8, the first record has 41 hits, which requires 84
columns to show, which is a bit overwhelming.

2.4 Combined k-nearest and threshold search

In this section you’ll learn how to search a fingerprint file to find the k-nearest neighbors, where all of the
hits must be at or above given threshold. You will need the fingerprint files generated in Generate fingerprint
files from PubChem SD tags but you do not need a chemistry toolkit.

You can combine the -k and --threshold queries to find the k-nearest neighbors which are all at or above
a given threshold:

simsearch -k 3 --threshold 0.7 -q pubchem_queries.fps pubchem_targets.fps

This find the nearest 3 structures, which all must be at least 0.7 similar to the query fingerprint. The output
from the above starts:

#Simsearch/1
#num_bits=881
#type=Tanimoto k=3 threshold=0.7
#software=chemfp/3.4
#queries=pubchem_queries.fps
#targets=pubchem_targets.fps
#query_source=Compound_099000001_099500000.sdf.gz
#target_source=Compound_048500001_049000000.sdf.gz
3 99000039 48503376 0.8785 48503380 0.8729 48732162 0.
↪→8596
3 99000230 48563034 0.8588 48731730 0.8523 48583483 0.
↪→8412
3 99002251 48798046 0.8110 48625236 0.8107 48500395 0.
↪→7927
3 99003537 48997075 0.9036 48997697 0.8985 48566113 0.
↪→8724
3 99003538 48997075 0.9036 48997697 0.8985 48566113 0.
↪→8724
3 99005028 48651160 0.8288 48848576 0.8167 48660867 0.
↪→8000
3 99005031 48651160 0.8288 48848576 0.8167 48660867 0.
↪→8000
3 99006292 48945841 0.9652 48737522 0.8793 48575758 0.
↪→8537
3 99006293 48945841 0.9652 48737522 0.8793 48575758 0.
↪→8537
0 99006597
3 99006753 48655580 0.9310 48662591 0.9249 48654553 0.
↪→9096
3 99009085 48561250 0.8503 48588162 0.8027 48675288 0.
↪→7973

10 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.4

The output format is identical to the previous two search examples, and because this is a k-nearest search,
the hits are sorted from highest score to lowest.

2.5 NxN (self-similar) searches

In this section you’ll learn how to use the same fingerprints as both the queries and targets, that is, a self-
similarity search. You will need the pubchem_queries.fps fingerprint file generated in Generate fingerprint
files from PubChem SD tags but you do not need a chemistry toolkit.

Use the --NxN option if you want to use the same set of fingerprints as both the queries and targets. Using
the pubchem_queries.fps from the previous sections:

simsearch -k 3 --threshold 0.7 --NxN pubchem_queries.fps

This code is very fast because there are so few fingerprints. For larger files the --NxN will be about twice as
fast and use half as much memory compared to:

simsearch -k 3 --threshold 0.7 -q pubchem_queries.fps pubchem_queries.fps

In addition, the --NxN option excludes matching a fingerprint to itself (the diagonal term).

2.6 Using a toolkit to process the ChEBI dataset

In this section you’ll learn how to create a fingerprint file from a structure file. The structure processing
and fingerprint generation are done with a third-party chemisty toolkit. chemfp supports Open Babel,
OpenEye, and RDKit. (OpenEye users please note that you will need an OEGraphSim license to use the
OpenEye-specific fingerprinters.)

We’ll work with data from ChEBI, which are “Chemical Entities of Biological Interest”. They distribute
their structures in several formats, including as an SD file. For this section, download the “lite” version from
ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz . It contains the same structure data as
the complete version but many fewer tag data fields. For ChEBI 187 this file contains 107,207 records and
the compressed file is 34MB.

Unlike the PubChem data set, the ChEBI data set does not contain fingerprints so we’ll need to generate
them using a toolkit.

2.6.1 ChEBI record titles don’t contain the id

Strangely, the ChEBI dataset does not use the title line of the SD file to store the record id. A simple
examination shows that 58,288 of the title lines are empty, 39,524 have the title “null”, 4,345 have the title ”
” (with a single space), 1,983 have the title “ChEBI”, 57 of them are labeled “Structure #1”, and the others
are usually compound names like ‘fluprednidene acetate’, ‘bkas#30-CoA(4-)’, and ‘Compound 92’.

(I’ve asked ChEBI to fix this, to no success after many years. Perhaps you have more influence?)

Instead, the record id is stored as value of the “ChEBI ID” tag, which looks like:

> <ChEBI ID>
CHEBI:776

By default the toolkit-based fingerprint generation tools use the title as the identifier, and print a warning
and skip the record if the identifier is missing. Here’s an example with rdkit2fps:

2.5. NxN (self-similar) searches 11

http://www.ebi.ac.uk/chebi/
ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz

chemfp Documentation, Release 3.4

% rdkit2fps ChEBI_lite.sdf.gz
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 1, record #1. Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 62, record #2.␣
↪→Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 100, record #3.␣
↪→Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 135, record #4.␣
↪→Skipping.

... skipping many lines ...
ERROR: Empty title in SD record after cleanup, file 'ChEBI_lite.sdf.gz', line 2019,␣
↪→record #32: first line is ' '. Skipping.

... skipping a lot more lines ...
#FPS1
#num_bits=2048
#type=RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1
#software=RDKit/2020.03.1 chemfp/3.4
#source=ChEBI_lite.sdf.gz
#date=2020-05-12T09:36:52
031087be231150242e714400920000a193c1080c02858a1116a68100a588063428404052
53004080c8cc3c48114101b25081a10c025e634c08a1c00088102c0400121040a2080505
188a9c0a150000028211219c1001000981c4804417180aca0401408500180182210716db
1580708a0b8a0802820532854411200c1101040404001118600d0a518402385dc0001129
0602205a070480c148f240421000c321801922c7808740cd0b10ea4c40000403dc180121
94d8d120020150b3d00043a24370000201042881d15018c0e0901442881d68604c4a8380
8110c772a824051948003c801360600221040010e20418381668404b0424ec130f05a090
c94960e0 ChEBI
000080000000000000000028800000000000000002000000040080000000000000002000
40000002000c000000000000000080080000000200400100000000000000001000000400
00100000000000000080000000000000010000000801002000000001000000400004c000
000000000000800004000000001102000000200004000000100300080000000000000000
00000000000000000820000404000000800000400000200c000008040000000000000000
200101008000000000000000000202000002008000000000000002000000000008000400
000000000000000100400001000200800000010003002800000020020000000000000000
00000000 ChEBI
210809600d11180010010200820108302804406016040100a4019100001204a12800000c
400202200286000491800080c00019050000630a8222b4a10c10450170048100a0020600
200093020522088a9005040028100000890048004af130e280000445000526496044c228
0413804030000062060804c520002200030064114f2001803401af120100043248000c20
02008092020c6a042925c0800008c140848448541a42205c0305584810788441610a0400
000c8100088c4064000105128a824284300648008900000100c00201c41027400c8a2090
8700440a0012012180410291002200024002a1100b5038410206a0000900404400001150
000a020a null

.... more lines omitted ...

That output shown contains three fingerprint records; the first two with the id “ChEBI” and the third with
the id “ChEBI”. The other records had no title and were skipped, with a message sent to stderr describing
the problem and the location of the record containing the problem. (The “Empty title after cleanup” is
because chemfp removes trailing whitespace on the title line. If nothing is left after cleanup then chemfp
will report the problem.)

(If the first 100 records have no identifiers then the command-line tools will exit even if --errors is ignore.
This is a safety mechanism. Let me know if it’s a problem.)

Instead, use the --id-tag option to specify of the name of the data tag containing the id. For this data set

12 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.4

you’ll need to write it as:

--id-tag "ChEBI ID"

The quotes are important because of the space in the tag name.

Here’s what that looks like:

% rdkit2fps ChEBI_lite.sdf.gz --id-tag "ChEBI ID" | head -8 | fold
#FPS1
#num_bits=2048
#type=RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1
#software=RDKit/2020.03.1 chemfp/3.4
#source=ChEBI_lite.sdf.gz
#date=2020-05-12T09:44:29
10208220141258c184490038b4124609db0030024a0765883c62c9e1288a1dc224de62f445743b8b
30ad542718468104d521a214227b29ba3822fbf20e15491802a051532cd10d902c39b02b51648981
9c87eb41142811026d510a890a711cb02f2090ddacd990c5240cc282090640103d0a0a8b460184f5
11114e2a8060200804529804532313bb03912d5e2857a6028960189e370100052c63474748a1c000
8079f49c484ca04c0d0bcb2c64b72401042a1f82002b097e852830e5898302021a1203e412064814
a598741c014e9210bc30ab180f0162029d4c446aa01c34850071e4ff037a60e732fd85014344f82a
344aa98398654481b003a84f201f518f CHEBI:90
00000000080200412008000008000004000010100022008000400002000020100020006000800001
01000100080001000010000002002200000200000008000000400002100000000080000004401000
80200020800200002000001400022064000004244810000000000080000a80012002020004198002
00080200020020120040203001000802010100024211000004400000000100200003000001000100
0100021000a200601080002a00002020048004030000884084000008000002040200010800000000
2000010022000800002000020001400020800100025040000000200a080244000060008000000802
8100c801108000000041c00200800002 CHEBI:165

In addition to “ChEBI ID” there’s also a “ChEBI Name” tag which includes data values like “tropic acid”
and “(+)-guaia-6,9-diene”. Every ChEBI record has a unique name so the names could also be used as the
primary identifier instead of its id.

To use the ChEBI Name as the primary chemfp identifier, specify:

--id-tag "ChEBI Name"

The FPS fingerprint file format allows identifiers with a space, or comma, or anything other tab, newline,
and a couple of other bytes, so it’s no problem using those names directly.

2.6.2 Generate fingerprints with Open Babel

If you have the Open Babel Python library installed then you can use ob2fps to generate fingerprints:

ob2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fps

This takes about 2m45s on my 2019-era laptop to process all of the records, and generates messages like:

==============================
*** Open Babel Warning in Expand
Alias R was not chemically interpreted

==============================
(continues on next page)

2.6. Using a toolkit to process the ChEBI dataset 13

chemfp Documentation, Release 3.4

(continued from previous page)

*** Open Babel Warning in ReadMolecule
WARNING: Problem interpreting the valence field of an atom

The valence field specifies a valence 3 that is
less than the observed explicit valence 4.

==============================
*** Open Babel Warning in ReadMolecule
Failed to kekulize aromatic bonds in MOL file

==============================
*** Open Babel Warning in ReadMolecule
Invalid line: M RGP must only refer to pseudoatoms

M RGP 2 12 1 15 2

The default generates FP2 fingerprints, so the above is the same as:

ob2fps --FP2 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fps

ob2fps can generate several other types of fingerprints. (Use --help for a list.) For example, to generate the
Open Babel implementation of the MACCS definition specify:

ob2fps --MACCS --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

2.6.3 Generate fingerprints with OpenEye

If you have the OEChem Python library installed, with licenses for OEChem and OEGraphSim, then you
can use oe2fps to generate fingerprints:

oe2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o oe_chebi.fps

This takes about 35 seconds on my lap and generates a number of warnings like “Stereochemistry corrected
on atom number 17 of”, “Unsupported Sgroup information ignored”, and “Invalid stereochemistry specified
for atom number 9 of”. Normally the record title comes after the “… of”, but the title is blank for most of
the records.

OEChem could not parse 2 of the 107,207 records. I looked at the failing records (CHEBI:147324 and
CHEBI:147325) and noticed that they have 0 atoms and 0 bonds. By default OEChem’s SDF reader skips
empty records. If you really need those records, add the SuppressEmptyMolSkip flag to the default ‘flavor’
reader argument, like this:

oe2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o oe_chebi.fps \
-R flavor=Default,SuppressEmptyMolSkip

The default settings generate OEGraphSim path fingerprint with the values:

numbits=4096 minbonds=0 maxbonds=5
atype=Arom|AtmNum|Chiral|EqHalo|FCharge|HvyDeg|Hyb btype=Order|Chiral

Each of these can be changed through command-line options. Use --help for details.

oe2fps can generate several other types of fingerprints. For example, to generate the OpenEye implementation
of the MACCS definition specify:

14 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.4

oe2fps --maccs166 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

Use --help for a list of available oe2fps fingerprints or to see more configuration details.

2.6.4 Generate fingerprints with RDKit

If you have the RDKit Python library installed then you can use rdkit2fps to generate fingerprints. Based
on the previous examples you probably guessed that the command-line is:

rdkit2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o rdkit_chebi.fps

This takes 6 minutes on my laptop, and RDKit did not generate fingerprints for 242 of the 106,965 records.
RDKit logs warning and error messages to stderr. They look like:

[11:48:30] WARNING: not removing hydrogen atom without neighbors
[11:48:30] Explicit valence for atom # 12 N, 4, is greater than permitted
[11:48:30]

Post-condition Violation
Element 'X' not found
Violation occurred on line 91 in file /Users/dalke/ftps/rdkit-Release_2020_03_1/Code/
↪→GraphMol/PeriodicTable.h
Failed Expression: anum > -1

[11:48:30] Element 'X' not found

For example, RDKit is careful to check that structures make chemical sense. It rejects 4-valent nitrogen and
refuses to process that those structures, which is the reason for the first line of that output.

The default generates RDKit’s path fingerprints with parameters:

minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1

Each of those can be changed through command-line options. See rdkit2fps --help for details, where you’ll
also see a list of the other available fingerprint types.

For example, to generate the RDKit implementation of the MACCS definition use:

rdkit2fps --maccs166 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

while the following generates the Morgan/circular fingerprint with radius 3:

rdkit2fps --morgan --radius 3 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz

2.7 Alternate error handlers

In this section you’ll learn how to change the error handler for rdkit2fps using the --errors option.

By default the “<toolkit>2fps” programs “ignore” structures which could not be parsed into a molecule
option. There are two other options. They can “report” more information about the failure case and keep
on processing, or they can be “strict” and exit after reporting the error.

2.7. Alternate error handlers 15

chemfp Documentation, Release 3.4

This is configured with the --errors option.

Here’s the rdkit2fps output using --errors report:

[12:21:03] WARNING: not removing hydrogen atom without neighbors
[12:21:03] Explicit valence for atom # 12 N, 4, is greater than permitted
ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 24228, record #380.
↪→ Skipping.
[12:21:03] Explicit valence for atom # 12 N, 4, is greater than permitted
ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 24338, record #381.
↪→ Skipping.

The first two lines come from RDKit. The third line is from chemfp, reporting which record could not be
parsed. (The record starts at line 24228 of the file.) The fourth line is another RDKit error message, and
the last line is another chemfp error message.

Here’s the rdkit2fps output using --errors strict:

[12:24:24] WARNING: not removing hydrogen atom without neighbors
[12:24:24] Explicit valence for atom # 12 N, 4, is greater than permitted
ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 24228, record #380.
↪→ Exiting.

Because this is strict mode, processing exits at the first failure.

The ob2fps and oe2fps tools implement the --errors option, but they aren’t as useful as rdkit2fps because the
underlying APIs don’t give useful feedback to chemfp about which records failed. For example, the standard
OEChem file reader automatically skips records that it cannot parse. Chemfp can’t report anything when
it doesn’t know there was a failure.

The default error handler in chemfp 1.1 was “strict”. In practice this proved more annoying than useful
because most people want to skip the records which could not be processed. They would then contact me
asking what was wrong, or doing some pre-processing to remove the failure cases.

One of the few times when it is useful is for records which contain no identifier. When I changed the default
from “strict” to “ignore” and tried to process ChEBI, I was confused at first about why the output file was
so small. Then I realized that it’s because the many records without a title were skipped, and there was no
feedback about skipping those records.

I changed the code so missing identifiers are always reported, even if the error setting is “ignore”. Missing
identifiers will still stop processing if the error setting is “strict”.

2.8 chemfp’s two cross-toolkit substructure fingerprints

In this section you’ll learn how to generate the two substructure-based fingerprints which come as part of
chemfp. These are based on cross-toolkit SMARTS pattern definitions and can be used with Open Babel,
OpenEye, and RDKit. (For OpenEye users, these fingerprints use the base OEChem library but do not use
the separately licensed OEGraphSim library.)

chemfp implements two platform-independent fingerprints where were originally designed for substructure
filters but which are also used for similarity searches. One is based on the 166-bit MACCS implementation
in RDKit and the other comes from the 881-bit PubChem/CACTVS substructure fingerprints.

The chemfp MACCS definition is called “rdmaccs” because it closely derives from the MACCS SMARTS
patterns used in RDKit. (These pattern definitions are also used in Open Babel and the CDK, while OpenEye
has a completely independent implementation.)

16 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.4

Here are example of the respective rdmaccs fingerprint for phenol using each of the toolkits.

Open Babel:

% echo "c1ccccc1O phenol" | ob2fps --in smi --rdmaccs
#FPS1
#num_bits=166
#type=RDMACCS-OpenBabel/2
#software=OpenBabel/3.0.0 chemfp/3.4
#date=2020-05-12T10:25:46
00000000000000000000000000000140004480101e phenol

OpenEye:

#FPS1
#num_bits=166
#type=RDMACCS-OpenEye/2
#software=OEChem/2.3.0 (20191016) chemfp/3.4
#date=2020-06-15T09:47:41
00000000000000000000000000000140004480101e phenol

RDKit:

#FPS1
#num_bits=166
#type=RDMACCS-RDKit/2
#software=RDKit/2020.03.1 chemfp/3.4
#date=2020-05-12T10:26:17
00000000000000000000000000000140004480101e phenol

For more complex molecules it’s possible that different toolkits produce different fingerprint rdmaccs, even
though the toolkits use the same SMARTS definitions. Each toolkit has a different understanding of chem-
istry. The most notable is the different definition of aromaticity, so the bit for “two or more aromatic rings”
will be toolkit dependent.

2.8.1 substruct fingerprints

chemp also includes a “substruct” substructure fingerprint. This is an 881 bit fingerprint derived from the
PubChem/CACTVS substructure keys. They do not match the CACTVS fingerprints exactly, in part due
to differences in ring perception. Some of the substruct bits will always be 0. With that caution in mind, if
you want to try them out, use the --substruct option.

The term “substruct” is a horribly generic name. If you can think of a better one then let me know.
Until chemfp 3.0 I said these fingerprints were “experimental”, in that I hadn’t fully validated them against
PubChem/CACTVS and could not tell you the error rate. I still haven’t done that.

What’s changed is that I’ve found out over the years that people are using the substruct fingerprints, even
without full validatation. That surprised me, but use is its own form of validation. I still would like to
validate the fingerprints, but it’s slow, tedious work which I am not really interested in doing. Nor does it
earn me any money. Plus, if the validation does lead to any changes, it’s easy to simply change the version
number.

2.8. chemfp’s two cross-toolkit substructure fingerprints 17

chemfp Documentation, Release 3.4

2.9 Generate binary FPB files from a structure file

In this section you’ll learn how to generate an FPB file instead of an FPS file. You will need the the
ChEBI file from Using a toolkit to process the ChEBI dataset and a chemistry toolkit. The FPB format was
introduced with chemfp-2.0.

Note: Several chemfp features, like creating FPB files, require a valid license key. If you are using chemfp
under the Base License Agreement then contact sales@dalkescientific.com to purchase a license key or request
an evaluation license.

The FPB format was designed so the fingerprints can be memory-mapped directly to chemfp’s internal data
structures. This makes it very fast to load, but unlike the FPS format, it’s not so easy to write with your
own code. You should think of the FPB format as an binary application format, for chemfp-based tools,
while the FPS format is a text-based format for data exchange between diverse programs.

The easiest way to generate an FPB file from the command line is to use the “.fpb” extension instead of
“.fps” or “.fps.gz”. Here are examples using each of the toolkits.

Open Babel:

% ob2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fpb

OpenEye:

% oe2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o oe_chebi.fpb

RDKit:

% rdkit2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o rdkit_chebi.fpb

The binary format isn’t human-readable. Use fpcat command-line options to see what’s inside:

% fpcat oe_chebi.fpb
#FPS1
#num_bits=4096
#type=OpenEye-Path/2 numbits=4096 minbonds=0 maxbonds=5␣
↪→atype=Arom|AtmNum|Chiral|EqHalo|FCharge|HvyDeg|Hyb btype=Order|Chiral
#software=OEGraphSim/2.4.3 (20191016) chemfp/3.4
0000000 ... many zeros ...00000000000000 CHEBI:15378
0000000 ... many zeros ...00000000000000 CHEBI:16042
0000000 ... many zeros ...00000000000000 CHEBI:17792

....
182b528 ... many hex values ... a8c10c0c CHEBI:60493

By default the fingerprints are ordered from smallest popcount to largest, which you can see in the output.
A pre-ordered index is faster to search because the target popcounts are pre-computed and because it often
reduces the search space.

If you want to preserve the input order then you’ll need to pipe the FPS output to fpcat and use its
--preserve-order flag. See the next section for an example.

18 Chapter 2. Working with the command-line tools

mailto:sales@dalkescientific.com

chemfp Documentation, Release 3.4

2.10 Convert between FPS and FPB formats

In this section you’ll learn how to convert an FPS file into an FPB file and back, and you’ll learn how to
control the fingerprint ordering. You will need the FPS files generated in Generate fingerprint files from
PubChem SD tags but you do not need a chemistry toolkit. The FPB format was introduced with chemfp-2.0.

If you already have an FPS file then you can convert it directly into an FPB file, and without using a
chemistry toolkit. The fpcat program converts from one format to the other.

In an earlier section I generated the files pubchem_queries.fps and pubchem_targets.fps . I’ll convert each
to FPB format:

% fpcat pubchem_targets.fps -o pubchem_targets.fpb
% fpcat pubchem_queries.fps -o pubchem_queries.fpb

The FPB format is a binary format which is difficult to read directly. The easiest way to see what’s inside
is to use fpcat. If you don’t specify an output filename then it sends the results to stdout in FPS format:

% fpcat pubchem_queries.fpb | head -5 | fold
#FPS1
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
00028000e0009840000000
0000c0010003000200000000000000000000000000
00 99116624

The keen-eyed reader might have noticed that the conversion does not have a “source” or “date” field. I
haven’t figured out if this is a bug. Should I keep the original date and structure file source, or use the
current date and FPS file source? Let me know if this is important to you.

By default when fpcat generates an FPB file it reorders the fingerprints by population count and creates a
popcount index. This improves the similarity search performance, but it means that the order of the FPB file
is likely different than the original FPS format. You can get a sense of this by looking at the first fingerprint
in the original pubchem_queries.fps file:

% grep -v # pubchem_queries.fps | head -1 | fold
07de0d000000000000000000000000000000000000003c060100a0010000008d2f00007800080000
0030148379203c034f13080015c0acee2a00410104ac4004101b851d261b10065f03ab8f29a41106
69001393e338d1017100000000204000000000000010200000000000000000 99000039

and confirming that it isn’t the same as the first fingerpritn in pubchem_queries.fpb.

If you want the FPB file to store the fingerprints in input order instead of the popcount order needed for
optimized similarity search, then use the --preserve-order flag:

% fpcat pubchem_queries.fps --preserve-order -o input_order.fpb
% fpcat input_order.fpb | grep -v # | head -1 | fold
07de0d000000000000000000000000000000000000003c060100a0010000008d2f00007800080000
0030148379203c034f13080015c0acee2a00410104ac4004101b851d261b10065f03ab8f29a41106
69001393e338d1017100000000204000000000000010200000000000000000 99000039

On the flip side, fpcat by default preserves the input order when it creates FPS output. If you instead want
to the output FPS file to be in popcount order then use the --reorder flag:

2.10. Convert between FPS and FPB formats 19

chemfp Documentation, Release 3.4

% fpcat --reorder pubchem_queries.fps | grep -v # | head -1 | fold
00028000e0009840000000
0000c0010003000200000000000000000000000000
00 99116624

2.11 Specify the fpcat output format

In this section you’ll learn how to specify the output format for fpcat using a command-line option instead
of the filename extension. You will need the pubchem_queries.fpb file from Generate fingerprint files from
PubChem SD tags.

If you do not specify an output filename then fpcat will output the fingerprints in FPS format to stdout.
If you specify a filename then by default it will look at the extension to determine if the output should be
an FPB (“.fpb”), FPS (“.fps”), or gzip or Zstandard compressed FPS (“.fps.gz” or “.fps.zst”) file. The FPS
format is used for unrecognized extensions.

In a few rare cases you may want to use a format which doesn’t match the default. To be honest, the
examples I can think of aren’t that realistic, but let’s suppose you want to output the contents of an FPB
file to stdout in gzip’ed FPS format, and count the number of bytes in compressed output. I’ll use the use
the –out flag to change the format to ‘fps.gz’ from the default of ‘fps’, then compare the resulting size with
the uncompressed form:

% fpcat pubchem_queries.fpb --out fps | wc -c
2511714
% fpcat pubchem_queries.fpb --out fps.gz | wc -c
314393

It’s not that useful because you could pipe the uncompressed output to gzip, which is also likely faster:

% fpcat pubchem_queries.fpb --out fps | gzip -c -9 | wc -c
11921

In case you’re wondering, chemfp 3.4 added support for zstandard compression, if the “zstandard” Python
module is available.

% fpcat pubchem_queries.fpb –out fps.zst | wc -c 293806

Chemfp cannot write an FPB file to stdout. In fact, the output file must be seek-able, which means it can’t
be a named pipe either.

2.12 Alternate fingerprint file formats

In this section you’ll learn about chemfp’s support for other fingerprint file formats.

Chemfp started as a way to promote the FPS file format for fingerprint exchange. Chemfp 2.0 added the
FPB format, which is a binary format designed around chemfp’s internal search data structure so it can be
loaded quickly.

There are many other fingerprint formats. Perhaps the best known is the Open Babel FastSearch format.
Two others are Dave Cosgrove’s flush format, and OpenEye’s “fpbin” format.

The chemfp_converters package contains utilities to convert between the chemfp formats and these other
formats.:

20 Chapter 2. Working with the command-line tools

http://openbabel.org/wiki/FastSearch
https://github.com/OpenEye-Contrib/Flush
https://pypi.python.org/pypi/chemfp-converters/

chemfp Documentation, Release 3.4

Convert from/to Dave Cosgrove Flush format
flush2fps drugs.flush
fps2flush drugs.fps -o drugs.flush

Convert from/to OpenEye's fpbin format
fpbin2fps drugs.fpbin --moldb drugs.sdf
fps2fpbin drugs_openeye_path.fps --moldb drugs.sdf -o drugs.fpbin

Convert from/to Open Babel's FastSearch format
fs2fps drugs.fs --datafile drugs.sdf
fps2fs drugs_openbabel_FP2.fps --datafile drugs.sdf -o drugs.fs

Of the three formats, the flush format is closest to the FPS data model. That is, it stores fingerprint
records as an identifier and the fingerprint bytes. By comparison, the FastSearch and fpbin formats store
the fingerprint bytes and an index into another file containing the structure and identifier. It’s impossible
for chemfp to get the data it needs without reading both files.

Chemfp has special support for the flush format. If chemfp_converters is installed, chemfp will use it to
read and write flush files nearly everywhere that it accepts FPS files. You can use it at the output to oe2fps,
rdkit2fps, and ob2fps, and as the input queries to simsearch, and as both input and output to fpcat. (You
cannot use it as the simsearch targets because that code has been optimized for FPS and FPB search, and
I haven’t spent the time to optimize flush file support.)

This means that if chemfp_converters is installed then you can use fpcat to convert between FPS, FPB, and
and flush file formats. For examples:

fpcat drugs.flush -o drugs.fps
fpcat drugs.fps -o drugs.flush

In addition, you can use it at the API level in chemfp.open(), chemfp.load_fingerprints(), chemfp.
open_fingerprint_writer(), and FingerprintArena.save().

Note that the flush format does not support the FPS metadata fields, like the fingerprint type, and it only
support fingerprints which are a multiple of 32 bits long. Also, compressed flush files are not supported.

2.13 Similarity search with the FPB format

In this section you’ll learn how to do a similarity search using an FPB file as the target. You will need the
fingerprint files from Generate fingerprint files from PubChem SD tags but you do not need a chemistry
toolkit.

NOTE: The Chemfp Base License does not let you generate FPB files. Contact sales@dalkescientific.com to
learn about other licensing options.

Simsearch, like all of the tools starting with chemfp-2.0, understands both FPS and FPB files:

% simsearch -k 3 --threshold 0.85 -q pubchem_queries.fps pubchem_targets.fpb | head
#Simsearch/1
#num_bits=881
#type=Tanimoto k=3 threshold=0.85
#software=chemfp/3.4
#queries=pubchem_queries.fps
#targets=pubchem_targets.fpb
#query_source=Compound_099000001_099500000.sdf.gz

(continues on next page)

2.13. Similarity search with the FPB format 21

mailto:sales@dalkescientific.com

chemfp Documentation, Release 3.4

(continued from previous page)

3 99000039 48503376 0.8785 48503380 0.8729 48732162 0.
↪→8596
2 99000230 48563034 0.8588 48731730 0.8523
0 99002251

You can also use an FPB file as the queries. The pubchem_queries.fpb file are indexed, which means the
queries with the fewest bits set come first. These will likely be less similar to the targets, so I’ve lowered the
threshold quite considerably:

% simsearch -k 3 --threshold 0.15 -q pubchem_queries.fpb pubchem_targets.fpb | head
#Simsearch/1
#num_bits=881
#type=Tanimoto k=3 threshold=0.15
#software=chemfp/3.4
#queries=pubchem_queries.fpb
#targets=pubchem_targets.fpb
1 99116624 48637532 0.1607
1 99116625 48637532 0.1607
3 99116667 48656359 0.2727 48656867 0.2667 48839868 0.
↪→2642
3 99116668 48656359 0.2727 48656867 0.2667 48839868 0.
↪→2642

By default simsearch uses the query and target filename extensions to figure out if the file is in FPS, FPB,
or flush format.

If you don’t want it to auto-detect the format then use the --query-format and --target-format options
to tell it the format to use. The values can be one of “fps”, “fps.gz”, “fps.zst”, “fpb”, “fpb.gz”, “fpb.zst”, or
“flush”.

2.14 Converting large data sets to FPB format

In this section you’ll learn how to generate an FPB file on computers with relatively limited memory.
To be realistic, this example uses the complete PubChem data set, and extracts the CACTVS/PubChem
fingerprints which are in each record. You do not need a chemistry toolkit for this section.

The most direct way to extract the PubChem fingerprints from a PubChem distribution is to use sdf2fps:

sdf2fps --pubchem pubchem/Compound_*.sdf.gz -o pubchem.fpb

This uses the default FPB writer options, which stores all of the fingerprints in memory, sorts them, and
saves the result to the output file. This may use about 2-3 times as much memory as the final FPB output
size, which is a bit unfortunate if you want to generate a 7 GB FPB file on a 12 GB machine.

When I updated this section in June 2020, it took around 25GB of memory to create an FPB file with
102,768,482 PubChem fingerprints, and the final file was about 14GB.

(Note: see the next section for a two-stage solution that lets you parallelize fingerprint generation.)

The “*2fps” command-line tools do not have a way to change the default writer options, although fpcat does.
The --max-spool-size option sets a rough upper bound to the amount of memory to use. When enabled,
the writer breaks the input into parts and creates a temporary FPB file for each part. At the end, it merges
the sorted data from the temporary FPB files to get the final FPB file. Be aware that the specified spool

22 Chapter 2. Working with the command-line tools

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/

chemfp Documentation, Release 3.4

size is only approximate and is not a hard limit on the maximum amount of memory to use. You may need
to experiment a bit if you have tight constraints, and this option might not be as useful as I thought it was.

The value must be a size in bytes, though suffixes like M or MB for megabyte and T or TB for terabyte are
also allowed. These are in base-10 units, so 1 MB = 1,000,000 bytes. Spaces are not allowed between the
number and the suffix, so “200MB” is okay but “200 MB” is not. The size must be at least 20 MB.

Here is an example of how to convert the CACTVS fingerprints from all of PubChem to an FPB file, using
a relatively small limit of 200 MB:

sdf2fps --pubchem pubchem/Compound_*.sdf.gz | fpcat --max-spool-size 200MB -o pubchem.fpb

This will take a while! The sdf2fps alone takes almost 45 minutes on a ca. 2017-era Haswell machine.

If I save the intermediate results to an FPS file then the in-memory fpcat conversion from FPS to FPB takes
5½ minutes and requires 25GB of memory.

With spool of 200MB, the conversion takes nearly 10 minutes. According to htop, the spooled conversion
required, near the peak, 13.3G of virtual memory, a resident set size of 12G, and 10.6G of shared shared
pages. The shared pages are from memory-mapping the intermediate FPB files, so this probably required
only 2GB of real memory.

If I use a 1GB spool size, the conversion time decreases from 10 to 8 minutes, and uses about the same
amount of peak memory.

The temporary files will be placed under the appropriate temporary directory for your operating system. If
that disk isn’t large enough for the intermediate files then use the --tmpdir option of fpcat to specify an
alternate directory:

fpcat --max-spool-size 1GB pubchem.fps -o pubchem.fpb --tmpdir /usr/tmp

Another option is to specify the directory location using the TMPDIR, TEMP, or TMP environment vari-
ables, which are resolved in that order. The details are described in the Python documentation for temp-
file.tempdir.

2.15 Generate fingerprints in parallel and merge to FPB format

In this section you’ll learn how to merge multiple sorted fingerprints into a single FPB file.

The previous section used a single shell command to extract the PubChem/CACTVS fingerprints from
PubChem and generate an FPB file. This is easy to write and understand, but more complex versions may
be more appropriate.

For one, I have four cores on my desktop computer, and I want to use them to process the PubChem files in
parallel. The previous section was only single threaded.

I have all my PubChem files in ~/pubchem/. For each “Compound_*.sdf.gz” file in that directory I want
to extract the CACTVS/PubChem fingerprints and create an intermediate FPS file in the local directory.
That’s equivalent to running the following commands:

sdf2fps --pubchem ~/pubchem/Compound_000000001_000500000.sdf.gz \\
-o Compound_000000001_000500000.fps

sdf2fps --pubchem ~/pubchem/Compound_000500001_001000000.sdf.gz \\
-o Compound_000500001_001000000.fps

... 291 more lines ...

2.15. Generate fingerprints in parallel and merge to FPB format 23

https://docs.python.org/3.7/library/tempfile#tempfile.tempdir
https://docs.python.org/3.7/library/tempfile#tempfile.tempdir

chemfp Documentation, Release 3.4

except that I want to run four at a time.

This is what GNU Parallel was designed for. It’s a command-line tool which can parallelize the execution
of other command-lines.

I’ll start by explaining the core command-line substitution pattern:

sdf2fps --pubchem {} -o {/..}.fps'

The {} will be replaced with a filename, and {/..} will be replaced with the base file-
name, without the directory path prefix or the two suffixes. That is, when {} is
“/Users/dalke/pubchem/Compound_000000001_000500000.sdf.gz” then {/..} will be “Com-
pound_000000001_000500000.fps”.

Since I want to generate an FPS file, I added the “.fps” as a suffix to the second substitution parameter.

I then tell GNU parallel which command-line to use, along with a few other parameters. Here’s the full line,
which I split over two lines to make it more readable:

parallel --plus --no-notice --bar 'sdf2fps --pubchem {}
-o {/..}.fps' ::: ~/pubchem/Compound_*.sdf.gz

The --plus tells GNU parallel to recognize an expanded set of replacement strings. (“{/..}” is not part of
the standard set of patterns.)

The --no-notice tells it to not display the message about citing GNU parallel in scientific papers.

The --bar enables a progress bar, which looks like this:

30% 88:205=11m17s /Users/dalke/pubchem/Compound_045500001_046000000.sdf.gz

This status line shows that processing is 30% complete, which is file 88 out of 205, and there’s an estimated
11 minutes and 17 seconds remaining.

Finally, the “:::” indicates that the remaining options are the list of parameters to pass to the command-line
template for parallelization.

After about 21 minutes, using 4 CPUs on my laptop (with an effective scaling of 2.8), I now have a large
number of FPS files, which I want to merge into a single FPB file. I’ll use fpcat:

fpcat --max-spool-size 1GB Compound*.fps -o pubchem.fpb

Unfortunately my laptop ran out of disk space, so I’ll just leave it a that; re-doing the same command on a
server machine won’t provide you any new information.

24 Chapter 2. Working with the command-line tools

http://www.gnu.org/software/parallel/

CHAPTER 3

Help for the command-line tools

The chemfp command-line tools are:

• fpcat - merge multiple fingerprint files into one

• ob2fps - use Open Babel to generate fingerprints

• oe2fps - use OEChem/OEGraphSim to generate fingerprints

• rdkit2fps - use RDKit to generate fingerprints

• sdf2fps - extract fingerprints from an SD file

• simsearch - search a fingerprint file for similar fingerprints

3.1 fpcat command-line options

The following comes from fpcat --help:

usage: fpcat [-h] [--in FORMAT] [--merge] [-o FILENAME] [--out FORMAT]
[--level LEVEL] [--reorder] [--preserve-order] [--alignment N]
[--show-progress] [--max-spool-size SIZE] [--tmpdir DIRNAME]
[--version] [--license-check]
[filename ...]

Combine multiple fingerprint files into a single file.

positional arguments:
filename input fingerprint filenames (default: use stdin)

optional arguments:
-h, --help show this help message and exit
--in FORMAT input fingerprint format. One of fps or fpb (with

optional gz or zst compression), or flush. (default
(continues on next page)

25

chemfp Documentation, Release 3.4

(continued from previous page)

guesses from filename or is fps)
--merge assume the input fingerprint files are in popcount

order and do a merge sort
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output fingerprint format. One of fps, fps.gz,

fps.zst, fpb, or flush. (default guesses from output
filename, or is 'fps')

--level LEVEL compression level. Must be a positive integer or one
of 'min', 'default', or 'max'.

--reorder reorder the output fingerprints by popcount (default
for FPB output)

--preserve-order save the output fingerprints in the same order as the
input (default for FPS output)

--alignment N alignment size when saving a FPB file (default=8)
--show-progress show progress
--max-spool-size SIZE

use temporary files for extra storage space for huge
FPB files (default uses RAM)

--tmpdir DIRNAME directory for the temporary files (default uses the
system temp directory)

--version show program's version number and exit
--license-check Check the license and report results to stdout.

Examples:

fpcat can be used to convert between FPS and FPB formats. This is
handy if you want to see what's inside of an FPB file:

fpcat fingerprints.fpb

You can use also use fpcat to make an FPB file from an FPS file:

fpcat fingerprints.fps -o fingerprints.fpb

You might have generated a set of FPS file which you want to merge
into a single FPB. (For example, you might have used GNU parallel to
generate FPS files for each of the PubChem files, which you want to
merge into a single file.):

fpcat Compound_*.fps -o pubchem.fpb

By default the FPB format sorts the fingerprints by popcount. (Use
--preserve-order if you really want to preserve the input order.) The
sort overhead for PubChem uses about 10 GB of RAM. If you don't have
that much memory then ask fpcat to use less memory:

fpcat --max-spool-size 1GB Compound_*.fps -o pubchem.fpb

This will use about 2 GB of RAM and the --tmpdir for the rest. (Yes,
it would be nice if I could get those two memory size numbers to
match.)

(continues on next page)

26 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.4

(continued from previous page)

The --merge option is experimental. Use it if the input fingerprints
are in popcount order, because sorted output is a simple merge sort of
the individual sorted inputs. However, this option opens all input
files at the same time, which may exceed your resource limit on file
descriptors. The current implementation also requires a lot of disk
seeks so is slow for many files.

The flush format is only available if the chemfp_converter package was
installed.

3.2 ob2fps command-line options

The following comes from ob2fps --help:

usage: ob2fps [-h] [--FP2 | --FP3 | --FP4 | --MACCS | --ECFP0 | --ECFP2
| --ECFP4 | --ECFP6 | --ECFP8 | --ECFP10
| --substruct | --rdmaccs | --rdmaccs/1]

[--nBits INT] [--id-tag NAME] [--in FORMAT] [-o FILENAME]
[--out FORMAT] [--errors {strict,report,ignore}]
[--help-formats] [-R NAME=VALUE]
[--delimiter {tab,whitespace,to-eol,space}] [--has-header]
[--version] [--license-check]
[filenames ...]

Generate FPS or FPB fingerprints from a structure file using Open Babel

positional arguments:
filenames input structure files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--FP2 linear fragments up to 7 atoms
--FP3 SMARTS patterns specified in the file patterns.txt
--FP4 SMARTS patterns specified in the file

SMARTS_InteLigand.txt
--MACCS Open Babel's implementation of the MACCS 166 keys
--ECFP0 ECFP (circular) fingerprints with diameter 0
--ECFP2 ECFP (circular) fingerprints with diameter 2
--ECFP4 ECFP (circular) fingerprints with diameter 4
--ECFP6 ECFP (circular) fingerprints with diameter 6
--ECFP8 ECFP (circular) fingerprints with diameter 8
--ECFP10 ECFP (circular) fingerprints with diameter 10
--substruct ChemFP substructure fingerprints
--rdmaccs, --rdmaccs/2

166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs
--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default autodetects from the

filename extension)
(continues on next page)

3.2. ob2fps command-line options 27

chemfp Documentation, Release 3.4

(continued from previous page)

-o FILENAME, --output FILENAME
save the fingerprints to FILENAME (default=stdout)

--out FORMAT output structure format (default guesses from output
filename, or is 'fps')

--errors {strict,report,ignore}
how should structure parse errors be handled?
(default=ignore)

--help-formats list the available formats and reader arguments
-R NAME=VALUE specify a reader argument
--delimiter {tab,whitespace,to-eol,space}

delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--has-header Skip the first line of a SMILES or InChI file Alias
for '-R has_header=1'

--version show program's version number and exit
--license-check Check the license and report results to stdout.

ECFP argument:
--nBits INT number of bits in the fingerprint (default=4096)

By default the Open Babel structure reader determines the file format
and compression type based on the filename extension. Unknown
filename extensions are treated as a uncompressed SMILES files.

If the data comes from stdin, or the guess based on extension name is
wrong, then use "--in FORMAT" option to change the default input format.
For examples:

--in smi
--in sdf.gz

Use `-R` to specify format-specific reader arguments.

Use `--help-formats` for a list of available formats and reader arguments.

The following comes from ob2fps --help-formats, though I’ve removed most of the Open Babel formats
from the list.

chemfp has special support for the SMILES, InChI, and SDF formats when
using the Open Babel toolkit.

For these formats, by default, chemfp uses the filename extension to
determine the format type. If the filename ends with ".gz" or ".zst"
then it is intepreted as a gzip or Zstandard compressed file, and the
second-to-last extension is used to determine the format type. Unknown
or unsupported extensions are then tested against Open Babel format
names (see below), and if still unknown, interpreted as a SMILES file.

Note: To enable Zstandard compression, please install the "zstandard"
Python package from https://pypi.org/project/zstandard/ .

You will need to use "-R implementation=chemfp" to enable zst support for
(continues on next page)

28 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.4

(continued from previous page)

the SDF format.

You may instead specify the file format by name (see below), which is
especially important when reading from stdin, which has no associated
filename extension.

These specially supported filename extensions are:

File Type Extension(s)
========== =============
SMILES can, ism, isosmi, smi, usm
SDF sdf
InChI inchi

The format can also be specified by name using the '--in' option:

File Type Format name (append .gz or .zst if compressed)
========== ===========
SMILES smi, can, usm
SDF sdf
InChI inchi

The input format parsers can be configured with the "-R" option. For
examples, the following reader arguments tell the SMILES readers that
the fields are whitespace delimited and the first line is a header.

-R delimiter=whitespace -R has_header=true

All of the readers support the 'options' reader argument, which is a
string passed directly to OBConversion(). This is a compact way to
encode all of the Open Babel parameters used in the conversion. For
example, 'ab"text"', would set option 'a' to True, and option 'b' to
the string "text".

The SMILES format parsers use two additional reader arguments:
* 'delimiter' specifies the delimiter type. The default is 'to-eol'.
The other values are 'tab', 'whitespace', 'space' and 'native'.
Use "-R delimiter=native" to match Open Babel's native delimiter
style, which is 'to-eol'.

* 'has_header', if false will skip the first line
of the SMILES file (because it is a header line).

The SDF format parser supports one additional reader argument:
* 'implementation': if "openbabel" or "native", use Open Babel's
native SDF parser. If "chemfp" use chemfp's own implementation
to find SDF records, which are then passed to Open Babel for
parsing. This gives more fine-grained error reporting, and
supports zst compression, and with similar performance.

(Note: Open Babel supports additional options.)

The InChI format parser supports one additional reader argument:
* 'delimiter' works the same as it does for the SMILES formats

(continues on next page)

3.2. ob2fps command-line options 29

chemfp Documentation, Release 3.4

(continued from previous page)

In addition, you may specify an Open Babel formats, either by one of
the following format names, or by reading a filename ending with one
of the format names, optionally with a .gz suffix. Zstandard
compression is not supported by the native Open Babel reader.

Format Description and options
========= ==========================
CONFIG DL-POLY CONFIG

CONTCAR VASP format
s Output single bonds only
b Disable bonding entirely

CONTFF MDFF format
HISTORY DL-POLY HISTORY

.... many lines removed from the chemfp documentation ...
xyz XYZ cartesian coordinates format

s Output single bonds only
b Disable bonding entirely

yob YASARA.org YOB format

You will need to consult the Open Babel documentation
(see http://openbabel.org/wiki/List_of_extensions) and
implementation for full details about how these options work.

3.3 oe2fps command-line options

The following comes from oe2fps --help:

usage: oe2fps [-h] [--path] [--circular] [--tree] [--numbits INT]
[--minbonds INT] [--maxbonds INT] [--minradius INT]
[--maxradius INT] [--atype ATYPE] [--btype BTYPE]
[--maccs166] [--substruct] [--rdmaccs] [--rdmaccs/1]
[--aromaticity NAME] [--id-tag NAME] [--in FORMAT]
[-o FILENAME] [--out FORMAT]
[--errors {strict,report,ignore}] [--help-formats]
[-R NAME=VALUE] [--delimiter {tab,whitespace,to-eol,space}]
[--has-header] [--version] [--license-check]
[filenames ...]

Generate FPS or FPB fingerprints from a structure file using OEChem

positional arguments:
filenames input structure files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--aromaticity NAME use the named aromaticity model (same as '-R

aromaticity=NAME')
--id-tag NAME tag name containing the record id (SD files only)

(continues on next page)

30 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.4

(continued from previous page)

--in FORMAT input structure format (default guesses from filename)
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output structure format (default guesses from output

filename, or is 'fps')
--errors {strict,report,ignore}

how should structure parse errors be handled?
(default=ignore)

--help-formats list the available formats and reader arguments
-R NAME=VALUE specify a reader argument
--delimiter {tab,whitespace,to-eol,space}

delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--has-header Skip the first line of a SMILES or InChI file Alias
for '-R has_header=1'

--version show program's version number and exit
--license-check Check the license and report results to stdout.

path, circular, and tree fingerprints:
--path generate path fingerprints (default)
--circular generate circular fingerprints
--tree generate tree fingerprints
--numbits INT number of bits in the fingerprint (default=4096)
--minbonds INT minimum number of bonds in the path or tree

fingerprint (default=0)
--maxbonds INT maximum number of bonds in the path or tree

fingerprint (path default=5, tree default=4)
--minradius INT minimum radius for the circular fingerprint

(default=0)
--maxradius INT maximum radius for the circular fingerprint

(default=5)
--atype ATYPE atom type flags, described below (default=Default)
--btype BTYPE bond type flags, described below (default=Default)

166 bit MACCS substructure keys:
--maccs166 generate MACCS fingerprints

881 bit ChemFP substructure keys:
--substruct generate ChemFP substructure fingerprints

ChemFP version of the 166 bit RDKit/MACCS keys:
--rdmaccs, --rdmaccs/2

generate 166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs

ATYPE is one or more of the following, separated by the '|' character

Arom AtmNum Chiral EqArom EqHBAcc EqHBDon EqHalo FCharge HCount HvyDeg
Hyb InRing

The following shorthand terms and expansions are also available:
DefaultPathAtom = AtmNum|Arom|Chiral|FCharge|HvyDeg|Hyb|EqHalo

(continues on next page)

3.3. oe2fps command-line options 31

chemfp Documentation, Release 3.4

(continued from previous page)

DefaultCircularAtom = AtmNum|Arom|Chiral|FCharge|HCount|EqHalo
DefaultTreeAtom = AtmNum|Arom|Chiral|FCharge|HvyDeg|Hyb
and 'Default' selects the correct value for the specified fingerprint.

Examples:
--atype Default
--atype "Arom|AtmNum|FCharge|HCount"
--atype Arom,AtmNum,FCharge,HCount

BTYPE is one or more of the following, separated by the '|' character

Chiral InRing Order

The following shorthand terms and expansions are also available:
DefaultPathBond = Order|Chiral
DefaultCircularBond = Order
DefaultTreeBond = Order
and 'Default' selects the correct value for the specified fingerprint.

Examples:
--btype Default
--btype Order|InRing

To simplify command-line use, a comma may be used instead of a '|' to
separate different fields. Example:
--atype AtmNum,HvyDegree

By default, chemfp will use the filename extension to determine the
structure file format type and possible compression. Most of the file
readers support configuration parameters. Use the '-R' option to
specify those parameters.

Use '--help-formats' to list available formats and reader parameters.

The following comes from oe2fps --help-formats

These are the structure file formats that chemfp can read when using
the OEChem toolkit.

By default, chemfp uses the filename extension to determine the format
type. If the filename ends with ".gz" then it is intepreted as a gzip
compressed file, and the second-to-last extension is used to determine
the format type. Unknown or unsupported extensions are interpreted as
a SMILES file.

(The OEChem structure file readers do not support Zstandard
compression.)

You may instead specify the file format by name (see below), which is
especially important when reading from stdin, which has no associated
filename extension.

(continues on next page)

32 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.4

(continued from previous page)

The supported filename extensions are:

File Type Extension(s)
========== =============
SMILES can, ism, isosmi, smi, usm
SDF mdl, rxn, sd, sdf
InChI inchi

Tripos Mol2 mol2, mol2h
PDB ent, pdb
XYZ xyz
SKC skc

Macromodel mmd, mmod
ChemDraw CDX cdx
OE binary oeb

OEB compressed oez
CIF cif
mmCIF mmcif
FASTA fasta
CSV csv

Append a '.gz' to the filename to indicate that the contents are
gzip-compressed.

The format can also be specified by name using the '--in' option:

File Type Format name
========== =============
SMILES smi, can, usm
SDF sdf
InChI inchi

Tripos Mol2 mol2, mol2h
PDB pdb
XYZ xyz
SKC skc

Macromodel mmod
ChemDraw CDX cdx
OE binary oeb

OEB compressed oez
CIF cif
mmCIF mmcif
FASTA fasta
CSV csv

Append a '.gz' to the format name to indicate that the contents are
gzip-compressed.

The input format parsers can be configured with the "-R" option. For
example, the following reader arguments tell the SMILES readers that
the fields are whitespace delimited and the first line is a header.

-R delimiter=whitespace -R has_header=true

(continues on next page)

3.3. oe2fps command-line options 33

chemfp Documentation, Release 3.4

(continued from previous page)

All formats handle the following two reader arguments:

aromaticity - one of 'openeye', 'daylight', 'tripos', 'mdl', or 'mmff'
(this can also be set via the older '--aromaticity' command-line option)

flavor - a '|' or ',' separated list of flavor names, or a numeric value.
A leading '-' means to remove the given flavor. Examples include:

o Canon,Strict -- the bitwise merger of the format's Canon and Strict values
o Default,-Kekule -- the format's Default flavor but without the Kekule bits

(every flavor has a Default)
o 42 -- the specific OEChem flavor value 42

The SMILES and InChI formats also handle reader arguments for the
delimiter style and the presence of an initial header line using the
following:

delimiter - one of 'to-eol' (Daylight/OEChem style), 'tab',
'whitespace', 'space', or 'native' (for the native toolkit style)

has_header - '1' if the first line contains a header, else '0'.

The supported format, default reader arguments, and input flavors are:

Format: can
aromaticity: openeye
delimiter: to-eol
flavor: Default

default flags: <none>
available flags: Canon, Strict

has_header: 0

Format: cdx
aromaticity: openeye
flavor: Default

default flags: SuperAtom
available flags: SuperAtom

Format: cif
aromaticity: openeye
flavor: Default

default flags: BondHydToClosest, BondOrder, FormalCrg, ImplicitH,
NormalizeHydPos, OccFilterOneHalf, RemovePBCImages,
RemoveQuestionMarkInLabel, Rings

available flags: BondHydToClosest, BondOrder, FormalCrg, ImplicitH,
NormalizeHydPos, OccFilterOneHalf, RemovePBCImages,
RemoveQuestionMarkInLabel, Rings

Format: csv
aromaticity: openeye
flavor: Default

default flags: Header
(continues on next page)

34 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.4

(continued from previous page)

available flags: Header

Format: fasta
aromaticity: openeye
flavor: Default

default flags: <none>
available flags: CustomResidues, EmbeddedSMILES

Format: inchi
aromaticity: <N/A>
delimiter: to-eol
flavor: Default
no flavor flags available

has_header: 0

Format: mmcif
aromaticity: openeye
flavor: Default

default flags: <none>
available flags: NoAltLoc

Format: mmod
aromaticity: openeye
flavor: Default

default flags: <none>
available flags: FormalCrg

Format: mol2
aromaticity: openeye
flavor: Default

default flags: <none>
available flags: Forcefield, M2H

Format: mol2h
aromaticity: openeye
flavor: Default

default flags: M2H
available flags: M2H

Format: oeb
aromaticity: <N/A>
flavor: Default
no flavor flags available

Format: oez
aromaticity: <N/A>
flavor: Default
no flavor flags available

Format: pdb
aromaticity: openeye
flavor: Default

(continues on next page)

3.3. oe2fps command-line options 35

chemfp Documentation, Release 3.4

(continued from previous page)

default flags: BondOrder, Connect, END, ENDM, FormalCrg, ImplicitH,
Rings, SecStruct

available flags: ALL, ALTLOC, BondOrder, CHARGE, Connect, DATA, END,
ENDM, FORMALCHARGE, FormalCrg, ImplicitH, RADIUS, Rings,
SecStruct, TER

Format: sdf
aromaticity: openeye
flavor: Default

default flags: <none>
available flags: FixBondMarks, SuppressEmptyMolSkip,

SuppressImp2ExpENHSTE

Format: skc
aromaticity: openeye
flavor: Default
no flavor flags available

Format: smi
aromaticity: openeye
delimiter: to-eol
flavor: Default

default flags: <none>
available flags: Canon, Strict

has_header: 0

Format: usm
aromaticity: openeye
delimiter: to-eol
flavor: Default

default flags: <none>
available flags: Canon, Strict

has_header: 0

Format: xyz
aromaticity: openeye
flavor: Default

default flags: BondOrder, Connect, FormalCrg, ImplicitH, Rings
available flags: BondOrder, Connect, FormalCrg, ImplicitH, Rings

See https://docs.eyesopen.com/toolkits/cpp/oechemtk/molreadwrite.html#flavored-input-and-
↪→output
for documentation about the flavors for each format.

3.4 rdkit2fps command-line options

The following comes from rdkit2fps --help:

36 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.4

usage: rdkit2fps [-h] [--fpSize INT] [--radius INT] [--nBitsPerEntry INT]
[--includeChirality 0|1] [--from-atoms INT,INT,...]
[--RDK] [--minPath INT] [--maxPath INT]
[--nBitsPerHash INT] [--useHs 0|1] [--branchedPaths 0|1]
[--useBondOrder 0|1] [--morgan] [--useFeatures 0|1]
[--useChirality 0|1] [--useBondTypes 0|1]
[--includeRedundantEnvironments 0|1] [--torsions]
[--targetSize INT] [--pairs] [--minLength INT]
[--maxLength INT] [--use2D 0|1] [--maccs166] [--avalon]
[--isQuery 0_or_1] [--bitFlags INT] [--secfp]
[--rings 0|1] [--isomeric 0|1] [--kekulize 0|1]
[--min_radius INT] [--pattern] [--substruct] [--rdmaccs]
[--rdmaccs/1] [--id-tag NAME] [--in FORMAT] [-o FILENAME]
[--out FORMAT] [--errors {strict,report,ignore}]
[--help-formats] [-R NAME=VALUE]
[--delimiter {tab,whitespace,to-eol,space}] [--has-header]
[--version]
[filenames ...]

Generate FPS or FPB fingerprints from a structure file using RDKit

positional arguments:
filenames input structure files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default guesses from filename)
-o FILENAME, --output FILENAME

save the fingerprints to FILENAME (default=stdout)
--out FORMAT output structure format (default guesses from output

filename, or is 'fps')
--errors {strict,report,ignore}

how should structure parse errors be handled?
(default=ignore)

--help-formats list the available formats and reader arguments
-R NAME=VALUE specify a reader argument
--delimiter {tab,whitespace,to-eol,space}

delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--has-header Skip the first line of a SMILES or InChI file Alias
for '-R has_header=1'

--version show program's version number and exit

Common Parameters (used by more than one fingerprint type):
--fpSize INT number of bits in the fingerprint. Default of 2048 for

RDK, Morgan, topological torsion, atom pair, pattern
and SECFP fingerprints, and 512 for Avalon
fingerprints

--radius INT radius for the Morgan or SECFP fingerprints. Default
of 2 for Morgan, 3 for SECFP

--nBitsPerEntry INT number of bits per entry

(continues on next page)

3.4. rdkit2fps command-line options 37

chemfp Documentation, Release 3.4

(continued from previous page)

--includeChirality 0|1
include chirality information in the atom invariants

--from-atoms INT,INT,...
fingerprint generation must use these atom indices
(out of range indices are ignored)

RDKit topological fingerprints:
Branched or linear hash fingerprint.
Uses --fpSize and --fromAtoms plus:

--RDK generate RDK fingerprints (default)
--minPath INT minimum number of bonds to include in the subgraph

(default=1)
--maxPath INT maximum number of bonds to include in the subgraph

(default=7)
--nBitsPerHash INT number of bits to set per path (default=2)
--useHs 0|1 include information about the number of hydrogens on

each atom (default=1)
--branchedPaths 0|1 if set both branched and unbranched paths will be used

in the fingerprint (default=1)
--useBondOrder 0|1 if set both bond orders will be used in the path

hashes (default=1)

RDKit Morgan fingerprints:
Circular fingerprints similar to ECFP or FCFP fingerprints.
Uses --fpSize, --radius, and --fromAtoms plus:

--morgan generate Morgan fingerprints
--useFeatures 0|1 use chemical-feature invariants (default=0)
--useChirality 0|1 include chirality information (default=0)
--useBondTypes 0|1 include bond type information (default=1)
--includeRedundantEnvironments 0|1

if set, the check for redundant atom environments will
not be done (default=0)

RDKit Topological Torsion fingerprints:
See Nilakantan et al., JCICS 27, 82-85 (1987).
Uses --fpSize, --nBitsPerEntry, --includeChirality, and --fromAtoms plus:

--torsions generate Topological Torsion fingerprints
--targetSize INT number of bonds per torsion (default=4)

RDKit Atom Pair fingerprints:
See Carhart et al., JCICS 25, 64-73 (1985).
Uses --fpSize, --nBitsPerEntry, --includeChirality, and --fromAtoms plus:

--pairs generate Atom Pair fingerprints
--minLength INT minimum bond count for a pair (default=1)
--maxLength INT maximum bond count for a pair (default=30)
--use2D 0|1 use 2D instead of 3D distance matrix (default=1)

166 bit MACCS substructure keys:
(continues on next page)

38 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.4

(continued from previous page)

--maccs166 generate MACCS fingerprints

Avalon fingerprints:
Fingerprints from the Avalon toolkit.
Uses --fpSize plus:

--avalon generate Avalon fingerprints
--isQuery 0_or_1 is the fingerprint for a query structure? (1 if yes, 0

if no) (default=0)
--bitFlags INT bit flags, SSSBits are 32767 and similarity bits are

15761407 (default=15761407)

SECFP fingerprints:
A circular fingerprint based on fragment SMILES instead of hashing.
Uses --fpSize and --radius plus:

--secfp generate SECFP fingerprints
--rings 0|1 if 1, add SSSR ring to the fingerprint (default=1)
--isomeric 0|1 if 1, use isomeric SMILES instead of non-isomeric

SMILES (default=0)
--kekulize 0|1 if 1, use Kekule SMILES instead of aromatic SMILES

(default=1)
--min_radius INT minimum radius used to extract n-grams (default=1)

RDKit Pattern fingerprints:
Fingerprints for substructure search screening.

--pattern generate (substructure) pattern fingerprints

chemfp's version of the 881 bit PubChem substructure keys:
--substruct generate ChemFP substructure fingerprints

chemfp's version of the 166 bit RDKit/MACCS keys:
--rdmaccs, --rdmaccs/2

generate 166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs

This program guesses the input structure format and the compression
based on the filename extension. If the guess fails then it assumes
the input is an uncompressed SMILES file.

If the data comes from stdin, or the guess based on extension name is
wrong, then use "--in" to change the default input format.

Use the '-R' reader arguments option to pass in format-specific structure
reader arguments. The details depend on the specific format.

Use the command-line option `--help-formats` to display a list of
available formats and reader arguments.

The following comes from rdkit2fps --help-formats

3.4. rdkit2fps command-line options 39

chemfp Documentation, Release 3.4

These are the structure file formats that chemfp can read when using
the RDKit toolkit.

By default, chemfp uses the filename extension to determine the format
type. If the filename ends with ".gz" or ".zst" then it is intepreted
as a gzip or Zstandard compressed file, and the second-to-last
extension is used to determine the format type. Unknown or unsupported
extensions are interpreted as a SMILES file.

You may instead specify the file format by name (see below), which is
especially important when reading from stdin, which has no associated
filename extension.

The supported filename extensions are:

File Type Extension(s)
========== =============
SMILES can, ism, isosmi, smi, usm
SDF mdl, sd, sdf
InChI inchi

Tripos Mol2 mol2
PDB ent, pdb

Maestro mae, maegz
FASTA faa, fasta

The format can also be specified by name using the '--in' option:

File Type Format name (append .gz or .zst if compressed)
========== ==
SMILES smi, can, usm
SDF sdf
InChI inchi

Tripos Mol2 mol2
PDB pdb

Maestro mae
FASTA fasta

The input format parsers can be configured with the "-R" option. For
example, the following reader arguments tell the SMILES readers that
the fields are whitespace delimited and the first line is a header.

-R delimiter=whitespace -R has_header=true

All of the input formats implement the 'sanitize' option, which is
enabled by default. Use "-R sanitize=false" to disable sanitization.

The SMILES format parsers use two additional reader arguments:
* 'delimiter' specifies the delimiter type. The default is 'to-eol'.
The other values are 'tab', 'whitespace', 'space' and 'native'.
Use "-R delimiter=native" to match RDKit's native delimiter
style, which is 'whitespace'.

* 'has_header', if false will skip the first line

(continues on next page)

40 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.4

(continued from previous page)

of the SMILES file (because it is a header line).

The SDF format parser supports two additional reader arguments:
* 'strictParsing', if false will disable strict parsing
* 'removeHs', if false will keep all of the hydrogens

The InChI format parser supports four additional reader arguments:
* 'delimiter' works the same as it does for the SMILES formats
* 'removeHs' works the same as it does for the SDF format
* 'treatWarningAsError', if true treats all warnings as errors
* 'logLevel' specifies the RDKit/InChI library log level, as an integer

The Tripos Mol2 format parser supports two additional reader arguments:
* 'removeHs' works the same as it does for the SDF format
* 'cleanupSubstructures' if false disables standardizing

some substructures found in Mol2 files

The PDB format parser supports three additional reader arguments:
* 'removeHs' works the same as it does for the SDF format
* 'flavor', an input parameter with no documented meaning
* 'proximityBonding', if false will disable automatic

automatic proximity bonding

The Maestro format parser supports one additional reader argument:
* 'removeHs' works the same as it does for the SDF format

The FASTA format parser supports one additional reader argument:
* 'flavor', an integer from 0 to 9. The values mean:

0 - the sequence contains L-amino acids
1 - allow lowercase for D-amino acids
2 - RNA with no cap 6 - DNA with no cap
3 - RNA with 5' cap 7 - DNA with 5' cap
4 - RNA with 3' cap 8 - DNA with 3' cap
5 - RNA with both caps 9 - DNA with both caps

3.5 sdf2fps command-line options

The following comes from sdf2fps --help:

usage: sdf2fps [-h] [--id-tag TAG] [--fp-tag TAG] [--in FORMAT]
[--num-bits INT] [--errors {strict,report,ignore}]
[-o FILENAME] [--out FORMAT] [--software TEXT] [--type TEXT]
[--version] [--license-check] [--binary] [--binary-msb]
[--hex] [--hex-lsb] [--hex-msb] [--base64] [--cactvs]
[--daylight] [--decoder DECODER] [--pubchem]
[filenames ...]

Extract a fingerprint tag from an SD file and generate FPS or FPB fingerprints

positional arguments:
(continues on next page)

3.5. sdf2fps command-line options 41

chemfp Documentation, Release 3.4

(continued from previous page)

filenames input SD files (default is stdin)

optional arguments:
-h, --help show this help message and exit
--id-tag TAG get the record id from TAG instead of the first line

of the record
--fp-tag TAG get the fingerprint from tag TAG (required)
--in FORMAT Specify the input format (one of "sdf", "sdf.gz", or

"sdf.zst")
--num-bits INT use the first INT bits of the input. Use only when the

last 1-7 bits of the last byte are not part of the
fingerprint. Unexpected errors will occur if these
bits are not all zero.

--errors {strict,report,ignore}
how should structure parse errors be handled?
(default=strict)

-o FILENAME, --output FILENAME
save the fingerprints to FILENAME (default=stdout)

--out FORMAT output format, one of 'fps', 'fps.gz', 'fps.zst',
'fpb', or 'flush' (default guesses from output
filename, or is 'fps')

--software TEXT use TEXT as the software description
--type TEXT use TEXT as the fingerprint type description
--version show program's version number and exit
--license-check Check the license and report results to stdout.

Fingerprint decoding options:
--binary Encoded with the characters '0' and '1'. Bit #0 comes

first. Example: 00100000 encodes the value 4
--binary-msb Encoded with the characters '0' and '1'. Bit #0 comes

last. Example: 00000100 encodes the value 4
--hex Hex encoded. Bit #0 is the first bit (1<<0) of the

first byte. Example: 01f2 encodes the value \x01\xf2 =
498

--hex-lsb Hex encoded. Bit #0 is the eigth bit (1<<7) of the
first byte. Example: 804f encodes the value \x01\xf2 =
498

--hex-msb Hex encoded. Bit #0 is the first bit (1<<0) of the
last byte. Example: f201 encodes the value \x01\xf2 =
498

--base64 Base-64 encoded. Bit #0 is first bit (1<<0) of first
byte. Example: AfI= encodes value \x01\xf2 = 498

--cactvs CACTVS encoding, based on base64 and includes a
version and bit length

--daylight Daylight encoding, which is a base64 variant
--decoder DECODER import and use the DECODER function to decode the

fingerprint

shortcuts:
--pubchem decode CACTVS substructure keys used in PubChem. Same as

--software=CACTVS/unknown --type 'CACTVS-E_SCREEN/1.0
extended=2' --fp-tag=PUBCHEM_CACTVS_SUBSKEYS --cactvs

42 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.4

3.6 simsearch command-line options

The following comes from simsearch --help:

usage: simsearch [-h] [-k K_NEAREST] [-t THRESHOLD] [--alpha ALPHA]
[--beta BETA] [--queries QUERIES] [--NxN] [--query QUERY]
[--hex-query HEX_QUERY] [--query-id QUERY_ID]
[--query-format FORMAT] [--target-format FORMAT]
[--query-type STRING] [--id-tag NAME]
[--errors {strict,report,ignore}] [-R NAME=VALUE]
[--delimiter {tab,whitespace,to-eol,space}] [--has-header]
[-o FILENAME] [-c] [-b BATCH_SIZE] [--scan] [--memory]
[--times] [--version] [--license-check]
target_filename

Search an FPS or FPB file for similar fingerprints

positional arguments:
target_filename target filename

optional arguments:
-h, --help show this help message and exit
-k K_NEAREST, --k-nearest K_NEAREST

select the k nearest neighbors (use 'all' for all
neighbors)

-t THRESHOLD, --threshold THRESHOLD
minimum similarity score threshold

--alpha ALPHA Tversky alpha parameter (default: 1.0)
--beta BETA Tversky beta parameter (default: the value of --alpha)
--queries QUERIES, -q QUERIES

filename containing the query fingerprints
--NxN use the targets as the queries, and exclude the self-

similarity term
--query QUERY query as a structure record (default format: 'smi')
--hex-query HEX_QUERY

query in hex
--query-id QUERY_ID id for the query or hex-query (default: 'Query1'
--query-format FORMAT, --in FORMAT

input query format (default uses the file extension,
else 'fps')

--target-format FORMAT
input target format (default uses the file extension,
else 'fps')

--query-type STRING fingerprint type string if the queries are structures
(default: use the target fingerprint type)

--id-tag NAME tag containing the record id if --query-format is an
SD file)

--errors {strict,report,ignore}
how should structure parse errors be handled?
(default=ignore)

-R NAME=VALUE specify a reader argument
--delimiter {tab,whitespace,to-eol,space}

delimiter style for SMILES and InChI files. Alias for
(continues on next page)

3.6. simsearch command-line options 43

chemfp Documentation, Release 3.4

(continued from previous page)

'-R delimiter=VALUE'.
--has-header Skip the first line of a SMILES or InChI file Alias

for '-R has_header=1'
-o FILENAME, --output FILENAME

output filename (default is stdout)
-c, --count report counts
-b BATCH_SIZE, --batch-size BATCH_SIZE

batch size
--scan scan the file to find matches (low memory overhead)
--memory build and search an in-memory data structure (faster

for multiple queries)
--times report load and execution times to stderr
--version show program's version number and exit
--license-check Check the license and report results to stdout.

44 Chapter 3. Help for the command-line tools

CHAPTER 4

Fingerprints and fingerprint search examples

The chemfp command-line programs use a Python library called chemfp. Portions of the API are in flux
and subject to change. The stable portions of the API which are open for general use are documented in
chemfp API .

The API includes:

• low-level Tanimoto, Tversky, and popcount operations

• Tanimoto and Tversky search algorithms based on threshold and/or k-nearest neighbors

• routines for reading and writing fingerprints

• a cross-toolkit molecule I/O API

• a cross-toolkit fingerprint type API

The following chapters give examples of how to use the API, starting with fingerprints, fingerprint I/O, and
fingerprint search.

4.1 Python 2 vs. Python 3

Python 2.7 support by the core Python developers ended at the start of 2020. While there are people who will
continue to support Python for the next few years, the Python 2 series has reached its effective end-of-life.
It’s time for you to migrate code to Python 3.

If you are writing new code which uses chemfp then you really should start using Python 3. OpenEye stopped
shipping a Python 2.7 version of OEChem by the end of 2017, and Open Babel and RDKit stopped Python
2.7 support by 2019. Chemfp 3.4 is the last version of the commercial chemfp development track which will
support Python 2.

If you have code which works under Python 2 and you want it to work on Python 3, then there are two main
options. In some cases you can re-write all the incompatible code, so the result works under Python 3 but
not Python 2. However, that can be too big of a step.

45

chemfp Documentation, Release 3.4

Another option is to port your code to the subset of Python which works under both Python 2 and Python
3. While this is more work overall, the steps are smaller, and it’s possible to develop new features while
gradually doing the port.

A goal of the chemfp 3 series is to help with that migration. It supports both Python 2.7 and Python 3.6 or
later, with the same API.

This documentation is written with that second option in mind. The examples are shown in Python 2.7,
but the same code will work under Python 3. The only differences are in the output, which I’ll detail in the
next section.

4.2 Unicode and byte strings

In chemfp 3.x, the record identifier is a Unicode string while the fingerprint is a byte string. Earlier versions
of chemfp treated both identifiers and fingerprints as byte strings. To make things more confusing, Python
2 and Python 3 use different ways to input and denote Unicode and binary strings.

Under Python 2, normal strings are byte strings, while Unicode strings are represented with the u"" syntax:

>>> "This is a byte string" # Python 2
'This is a byte string'
>>> u"This is a Unicode string"
u'This is a Unicode string'

Under Python 3, normal strings are Unicode strings, while byte strings are represented with the b"" syntax:

>>> b"This is a byte string" # Python 3
b'This is a byte string'
>>> "This is a Unicode string"
'This is a Unicode string'

Python 2.7 understands the b"" notation, and Python 3 understands the u"" notation, so the portable way
to represent a Unicode identifier and binary fingerprint is to be explicit about the string type:

>>> id = u"España" # Works in Python 2.7 and Python 3
>>> fp = b"\x00A!\xff"

While the data types are the same, the output representations are different on the two versions of Python:

>>> (id, fp) # Python 2.7
(u'Espa\xf1a', '\x00A!\xff')

>>> (id, fp) # Python 3
('España', b'\x00A!\xff')

The output in these examples will be from Python 3. Unless otherwise stated, the equivalent output in
Python 2.7 differs only in the prefix.

4.3 Hex representation of a binary fingerprint

In Python 2 it is easy to turn a byte string into a hex-encoded string:

46 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

>>> fp = b"\x00A!\xff" # Python 2.7
>>> fp.encode("hex")
'004121ff'

The more direct route (and faster) is to use the binascii.hexlify function:

>>> import binascii # Python 2.7
>>> binascii.hexlify(fp)
'004121ff'

In Python 3 it’s even easier to turn a byte string into a hex-encoded string:

>>> fp = b"\x00A!\xff" # Python 3
>>> fp.hex()
'004121ff'

but that is not portable. Nor does fp.encode("hex") work, because in Python 3 byte strings do not have
an encode() method:

>>> fp.encode("hex") # Python 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'bytes' object has no attribute 'encode'

If you want a byte string as output then the portable solution is to use hexlify:

>>> import binascii # Python 3
>>> binascii.hexlify(fp)
b'004121ff'

However, on Python 2.7 I often want the hex-encoded version as a byte (“normal”) string, while on Python
3 I want it as a (“normal”) Unicode string, because I use hex strings for text output.

Python does not offer a portable solution, but chemfp does, in the chemfp.bitops module, named
hex_encode

>>> from chemfp import bitops # Python 2 and Python 3
>>> bitops.hex_encode(b"\x00A!\xff")
'004121ff'

The variant hex_encode_as_bytes returns a byte string, and I think is easier to remember than binascii.
hexlify:

>>> bitops.hex_encode_as_bytes(b"\x00A!\xff")
b'004121ff'

4.4 Byte and hex fingerprints

In this section you’ll learn how chemfp stores fingerprints and some of the low-level bit operations on those
fingerprints.

chemfp stores fingerprints as byte strings. Here are two 8 bit fingerprints:

4.4. Byte and hex fingerprints 47

https://docs.python.org/2/library/binascii.html#binascii.hexlify

chemfp Documentation, Release 3.4

>>> fp1 = b"A"
>>> fp2 = b"B"

The chemfp.bitops module contains functions which work on byte fingerprints. Here’s the byte Tanimoto
of those two fingerprints:

>>> from chemfp import bitops
>>> bitops.byte_tanimoto(fp1, fp2)
0.3333333333333333

To understand why, you have to know that ASCII character “A” has the value 65, and “B” has the value
66. The bit representation is:

"A" = 01000001 and "B" = 01000010

so their intersection has 1 bit and the union has 3, giving a Tanimoto of 1/3 or 0.3333333333333333 as stored
in Python’s 64 bit floating point value.

You can compute the Tanimoto between any two byte strings with the same length, as in:

>>> bitops.byte_tanimoto(b"apples&", b"oranges")
0.58333333333333334

You’ll get a ValueError if they have different lengths:

>>> bitops.byte_tanimoto(b"ABC", b"A")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: byte fingerprints must have the same length

The Tversky index is also available. The default values for alpha and beta are 1.0, which is identical to
the Tanimoto:

>>> bitops.byte_tversky(b"apples&", b"oranges")
0.5833333333333334
>>> bitops.byte_tversky(b"apples&", b"oranges", 1.0, 1.0)
0.5833333333333334

Using alpha = beta = 0.5 gives the Dice index:

>>> bitops.byte_tversky(b"apples&", b"oranges", 0.5, 0.5)
0.7368421052631579

In chemfp, the alpha and beta may be between 0.0 and 100.0, inclusive. Values outside that range will raise
a ValueError:

>>> bitops.byte_tversky(b"A", b"B", 0.2, 101)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: beta must be between 0.0 and 100.0, inclusive

Most fingerprints are not as easy to read as the English ones I showed above. They tend to look more like:

P1@\x84K\x1aN\x00\n\x01\xa6\x10\x98\\\x10\x11

which is hard to read. I usually show hex-encoded fingerprints. The above fingerprint in hex is:

48 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

503140844b1a4e000a01a610985c1011

which is simpler to read. I’ll use hex_encode as the portable way to convert a byte fingerprint to a string
under Python 2 and Python 3:

>>> bitops.hex_encode(b"apples&") # Portable (returns a native string)
'6170706c657326'
>>> bitops.hex_encode(b"oranges")
'6f72616e676573'
>>> bitops.hex_decode(b"416e64726577") # (returns a byte string)
b'Andrew'

If you do not need to support Python 2.7 then it’s easier to use the Python3 specific “.hex()” and “fromhex()”
methods of byte strings:

>>> b"apples&".hex() # Python 3 only!
'6170706c657326'
>>> b"oranges".hex() # Python 3 only!
'6f72616e676573'
>>> bytes.fromhex("416e64726577") # Python 3 only!
b'Andrew'

Most of the byte functions in the bitops module have an equivalent hex version, like bitops.hex_tanimoto()
which is the hex equivalent for bitops.byte_tanimoto():

>>> bitops.hex_tanimoto("6170706c657326", "6f72616e676573")
0.5833333333333334
>>> bitops.hex_tanimoto(u"6170706c657326", u"6f72616e676573")
0.5833333333333334
>>> bitops.hex_tanimoto(b"6170706c657326", b"6f72616e676573")
0.5833333333333334

These functions accept both byte strings and Unicode strings.

Even though hex-encoded fingerprints are easier to read than raw bytes, it can still be hard to figure out
that which bit is set in the hex fingerprint “00001000” (which is the byte fingerprint “\x00\x00\x10\x00”).
For what it’s worth, bit number 20 is set, where bit 0 is the first bit.

You can get the list of “on” bits with the bitops.byte_to_bitlist() function:

>>> bitops.byte_to_bitlist(b"P1@\x84K\x1aN\x00\n\x01\xa6\x10\x98\\\x10\x11")
[4, 6, 8, 12, 13, 22, 26, 31, 32, 33, 35, 38, 41, 43, 44, 49, 50,
51, 54, 65, 67, 72, 81, 82, 85, 87, 92, 99, 100, 103, 106, 107,
108, 110, 116, 120, 124]

That’s a lot of overhead if you only want to tell if, say, bit 41 is set. For that case use bitops.
byte_contains_bit():

>>> bitops.byte_contains_bit(b"P1@\x84K\x1aN\x00\n\x01", 41)
True
>>> bitops.byte_contains_bit(b"P1@\x84K\x1aN\x00\n\x01", 42)
False

The bitops.byte_from_bitlist() function creates a fingerprint given a list of ‘on’ bits. By default it
generates a 1024 bit fingerprint, which is a bit too long for this documentation. I’ll use 64 bits instead:

4.4. Byte and hex fingerprints 49

chemfp Documentation, Release 3.4

>>> bitops.byte_from_bitlist([0], 64)
b'\x01\x00\x00\x00\x00\x00\x00\x00'

The bit positions folded based on the modulo of the fingerprint size, so bit 65 is mapped to bit 1, as in the
following:

>>> bitops.byte_from_bitlist([0, 65], 64)
b'\x03\x00\x00\x00\x00\x00\x00\x00'
>>> bitops.byte_to_bitlist(bitops.byte_from_bitlist([0, 65], 64))
[0, 1]

The bitops module includes other low-level functions which work on byte fingerprints, as well as corresponding
functions which work on hex fingerprints. (Hex-encoded fingerprints are decidedly second-class citizens in
chemfp, but they are citizens.) The byte-based functions are:

• byte_contains - test if the first fingerprint is contained in the second

• byte_contains_bit - test if a specified fingerprint bit is on

• byte_difference - return a fingerprint which is the difference (xor) of two fingerprints

• byte_from_bitlist - create a fingerprint given ‘on’ bit positions

• byte_intersect - return a fingerprint which is the intersection of two fingerprints

• byte_intersect_popcount - intersection popcount between two fingerprints

• byte_popcount - fingerprint popcount

• byte_tanimoto - Tanimoto similarity between two fingerprints

• byte_tversky - Tversky index between two fingerprints

• byte_to_bitlist - get a list of the ‘on’ bit positions

• byte_union - return a fingerprint which is the union of two fingerprints

• hex_encode - hex encode a byte string, returns the native string type

• hex_encode_as_bytes - hex encode a byte string, returns a byte string

The hex-based functions are:

• hex_contains - test if the first hex fingerprint is contained in the second

• hex_contains_bit - test if a specified hex fingerprint bit is on

• hex_difference - return a fingerprint which is the difference (xor) of two hex fingerprints

• hex_from_bitlist - create a fingerprint given ‘on’ bit positions in a hex fingerprint

• hex_intersect - return a fingerprint which is the intersection of two hex fingerprints

• hex_intersect_popcount - intersection popcount between two hex fingerprints

• hex_isvalid - test if the string is a hex-encoded fingerprint

• hex_popcount - hex fingerprint popcount

• hex_tanimoto - Tanimoto similarity between two hex fingerprints

• hex_tversky - Tversky index between two hex fingerprints

• hex_to_bitlist - get a list of the ‘on’ bit positions in a hex fingerprint

• hex_union - return a fingerprint which is the union of two hex fingerprints

50 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

• hex_decode - convert a hex-encoded string into a byte string

There are two functions which compare a byte fingerprint to a hex fingerprint. These are somewhat faster
than the pure hex version because they don’t need to verify that the query fingerprint contain only hex
characters:

• byte_hex_tanimoto - Tanimoto similarity between a byte and a hex fingerprint

• byte_hex_tversky - Tversky index between a byte and a hex fingerprint

4.5 Fingerprint reader and metadata

In this section you’ll learn the basics of the fingerprint reader classes and fingerprint metadata.

A fingerprint record is the fingerprint plus an identifier. In chemfp, a fingerprint reader is an object which
supports iteration through fingerprint records. There some fingerprint readers, like the FingerprintArena
also support direct record lookup.

That’s rather abstract, so let’s work with a few real examples. You’ll need to create a copy of the “pub-
chem_targets.fps” file generated in Generate fingerprint files from PubChem SD tags in order to follow
along.

Here’s how to open an FPS file:

>>> import chemfp
>>> reader = chemfp.open("pubchem_targets.fps")

Every fingerprint collection has a metadata attribute with details about the fingerprints. It comes from the
header of the FPS file. You can view the metadata in Python repr format:

>>> reader.metadata
Metadata(num_bits=881, num_bytes=111, type='CACTVS-E_SCREEN/1.0 extended=2',
aromaticity=None, sources=['Compound_048500001_049000000.sdf.gz'],
software='CACTVS/unknown', date='2020-05-11T14:35:11')

In chemfp 3.x the type, software, date and the source filenames are Unicode strings. In earlier versions of
chemfp these were byte strings.

I added a few newlines to make that easier to read, but I think it’s easier still to view it in string format,
which matches the format of the FPS header:

>>> from __future__ import print_function # Only needed in Python 2
>>> print(reader.metadata)
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-11T14:35:11

(The print statement in Python 2 was replaced with a print function in Python 3. The special future
statement tells Python 2 to use the new print function syntax of Python 3.)

All fingerprint collections support iteration. Each step of the iteration returns the fingerprint identifier and
the fingerprint byte string. Since I know the 6th record has the id 14550010, I can write a simple loop which
stops with that record:

4.5. Fingerprint reader and metadata 51

https://docs.python.org/2/reference/simple_stmts.html#future
https://docs.python.org/2/reference/simple_stmts.html#future

chemfp Documentation, Release 3.4

>>> from chemfp import bitops
>>> for (id, fp) in reader:
... print(id, "starts with", bitops.hex_encode(fp)[:20])
... if id == u"48500199":
... break
...
48500020 starts with 07de0500000000000000
48500053 starts with 07de0c00000000000000
48500091 starts with 07de8c00000000000000
48500092 starts with 07de0d00020000000000
48500110 starts with 075e0c00000000000000
48500164 starts with 07de0c00000000000000
48500177 starts with 03de0500000800000000
48500199 starts with 07de0c00000000000000

Fingerprint collections also support iterating via arenas, and several support Tanimoto search methods.

4.6 Working with a FingerprintArena

In this section you’ll learn about the FingerprintArena fingerprint collection and how to iterate through
subarenas in a collection.

Chemfp supports two format types. The FPS format is designed to be easy to read and write, but searching
through it requires a linear scan of the disk, which can only be done once. If you want to do many queries
then it’s best to load the FPS data into memory as a FingerprintArena.

Use chemfp.load_fingerprints() to load fingerprints into an arena:

>>> from __future__ import print_function # Only needed for Python 2
>>> import chemfp
>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> print(arena.metadata)
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-11T14:35:11

The fingerprints can come from an FPS file, as in this example, or from an FPB file. The FPB format is
much more complex internally, but can be loaded directly and quickly into a FingerprintArena, also with
the same function:

>>> arena = chemfp.load_fingerprints("pubchem_targets.fpb")

An arena implements the fingerprint collection API, so you can do things like iterate over an arena and get
the id/fingerprint pairs:

>>> from chemfp import bitops
>>> for id, fp in arena:
... print(id, "with popcount", bitops.byte_popcount(fp))
... if id == u"48656867":
... break

(continues on next page)

52 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

...
48942244 with popcount 33
48941399 with popcount 39
48940284 with popcount 40
48943050 with popcount 40
48656359 with popcount 41
48656867 with popcount 42

If you look closely you’ll notice that the fingerprint record order has changed from the previous section, and
that the population counts are suspiciously non-decreasing. By default load_fingerprints() on an FPS
file reorders the fingerprints into a data structure which is faster to search, though you can disable that with
the reorder parameter if you want the fingerprints to be the same as the input order.

The FingerprintArena has new capabilities. You can ask it how many fingerprints it contains, get the list
of identifiers, and look up a fingerprint record given an index:

>>> len(arena)
14967
>>> list(arena.ids[:5])
['48942244', '48941399', '48940284', '48943050', '48656359']
>>> id, fp = arena[6]
>>> id
'48839855'
>>> arena[-1][0] # the identifier of the last record in the arena
'48985180'
>>> bitops.byte_popcount(arena[-1][1]) # its fingerprint
253

An arena supports iterating through subarenas. This is like having a long list and being able to iterate over
sublists. Here’s an example of iterating over the arena to get subarenas of size 2000 (excepting the last),
and print information about each subarena:

>>> for subarena in arena.iter_arenas(2000):
... print(subarena.ids[0], len(subarena))
...
48942244 2000
48629741 2000
48848217 2000
48873983 2000
48575094 2000
48531270 2000
48806978 2000
48584671 967
>>> arena[0][0]
'48942244'
>>> arena[2000][0]
'48629741'

To help demonstrate what’s going on, I showed the first id of each record along with the main arena ids for
records 0 and 2000, so you can verify that they are the same.

Arenas are a core part of chemfp. Processing one fingerprint at a time is slow, so the main search routines
expect to iterate over query arenas, rather than query fingerprints.

That’s why the FPSReaders – and all chemfp fingerprint collections – also support the chemfp.

4.6. Working with a FingerprintArena 53

chemfp Documentation, Release 3.4

FingerprintReader.iter_arenas() method. Here’s an example of reading 25 records at a time from
the targets file:

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for arena in queries.iter_arenas(25):
... print(len(arena))
...
25
25

<deleted additional lines saying '25'>
25
25
1

Those add up to 10826, which you can verify is the number of structures in the original source file.

If you have a FingerprintArena then you can also use Python’s slice notation to make a subarena:

>>> queries = chemfp.load_fingerprints("pubchem_queries.fps")
>>> queries[10:15]
<chemfp.arena.FingerprintArena object at 0x552c10>
>>> queries[10:15].ids
['99110546', '99110547', '99123452', '99123453', '99133437']
>>> queries.ids[10:15] # a different way to get the same list
['99110546', '99110547', '99123452', '99123453', '99133437']

The big restriction is that slices can only have a step size of 1. Slices like [10:20:2] and [::-1] aren’t
supported. If you want something like that then you’ll need to make a new arena instead of using a subarena
slice. (Hint: pass the list of indices to the arena's copy method.)

In case you were wondering, yes, you can use iter_arenas and the the other FingerprintArena methods on
a subarena:

>>> queries[10:15][1:3].ids
['99110547', '99123452']
>>> queries.ids[11:13]
['99110547', '99123452']

4.7 Create an arena with user-specified fingerprints

In this section you’ll learn how to create an arena containing user-specified fingerprint data.

Most of the examples in this manual use fingerprints created by a cheminformatics toolkit or extracted from
an SD file. Chemfp accepts any byte string as a fingerprint, which includes, for example, novel fingerprint
types which you have created for your own research.

The first parameter of the load_fingerprints() function can be any iterator which returns a sequence of
Unicode identifier and byte string fingerprint. For example, if you have three fingerprint records where each
fingerprint contains 32-bits of data, like this:

>>> data = [(u"ID1", b"\xc4\xa7\xd2\x1e"),
... (u"ID2", b"\x04\x82\xd6\x08"),
... (u"ID3", b"\xc1\xa3\xd2\x1e")]

54 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

then you can pass the list directly to load_fingerprints, along with a Metadata instance to tell chemfp the
fingerprint size and type:

>>> import chemfp
>>> arena = chemfp.load_fingerprints(data,
... chemfp.Metadata(num_bytes=4, type="Example/19"))
>>> len(arena)
3

What if the fingerprint data comes from a file which isn’t in FPS format? The chemfp.bitops and chemfp.
encodings modules contains functions which can help with the conversion. Suppose each line in the file
contains an id followed by a list of bit indices for the on bits:

>>> lines = ["ID1 0 1 9 10 11 14 15 16 18 19 43\n",
... "ID2 0 1 2 9 10 11 12 14 18 19 20 43\n"]

The following function reads the lines, parses the id and bit list, converts the bitlist into a 64-bit byte string,
and yields the id/fingerprint pairs:

>>> def get_id_and_fp(lines):
... for line in lines:
... fields = line.split()
... bitlist = [int(bit) for bit in fields[1:]]
... yield fields[0], bitops.byte_from_bitlist(bitlist, 64)
...
>>> for id, fp in get_id_and_fp(lines):
... print(id, repr(fp))
...
ID1 b'\x03\xce\r\x00\x00\x08\x00\x00'
ID2 b'\x07^\x1c\x00\x00\x08\x00\x00'

Here’s one way to use the function to create an arena:

>>> arena = chemfp.load_fingerprints(get_id_and_fp(lines),
... metadata=chemfp.Metadata(num_bits=64))
>>>
>>> len(arena)
n2
>>> arena.get_fingerprint(0)
b'\x03\xce\r\x00\x00\x08\x00\x00'

It’s a bit cumbersome to pass the metadata into load_fingerprints when the parser already knows that
information, but there’s a better way. If no metadata is passed to the load_fingerprints function then the
function will try to get it from the metadata attribute of the first function. That’s why you get an exception
if you omit the metadata:

>>> arena = chemfp.load_fingerprints(get_id_and_fp(lines))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 550, in load_fingerprints
alignment=alignment)

File "chemfp/arena.py", line 849, in fps_to_arena
metadata = fps_reader.metadata

AttributeError: 'generator' object has no attribute 'metadata'

4.7. Create an arena with user-specified fingerprints 55

chemfp Documentation, Release 3.4

Instead, wrap the metadata and id/fingerprint iterator inside of a FingerprintIterator utility class:

>>> def read_bitlist_format(lines):
... return chemfp.FingerprintIterator(
... chemfp.Metadata(num_bits=64),
... get_id_and_fp(lines))
...

The result can be passed directly to load_fingerprints:

>>> arena = chemfp.load_fingerprints(read_bitlist_format(lines))
>>> len(arena)
2

>>> arena[1]
('ID2', b'\x07^\x1c\x00\x00\x08\x00\x00')

The FingerprintIterator also implements the FingerprintReader.save() method, which can be used to
save the fingerprints to an FPS or FPB file. See the next section for more details.

4.8 Save a fingerprint arena

In this section you’ll learn how to save an arena in FPS and FPB formats.

This is probably the easiest section. If you have an arena (or any FingerprintReader), like:

>>> import chemfp
>>> queries = chemfp.load_fingerprints("pubchem_queries.fps")

then you can save it to an FPS file using the FingerprintReader.save() method and a filename ending
with “.fps”. (You’ll also get an FPS file if you specify an unknown extension.):

>>> queries.save("example.fps")

If the filename ends with “.fps.gz” then the file will be saved as a gzip-compressed FPS file, and if the
filename ends with “.fpb.zst” and the zstandard Python package is installed, then the file will be saved as a
zstandard-compressed FPS file.

Finally, if the name ends with “.fpb”, as in:

>>> queries.save("example.fpb")

then the result will be in FPB format. The save() method can also save gzip- and zstandard-compressed
FPB files.

The save method supports a second option, format, should you for some odd reason want the format to be
different than what’s implied by the filename extension:

>>> queries.save("example.fpb", "fps") # save in FPS format

The save method supports a third option, level, which specifies the compression level. This should be an
integer appropriate for the compression library. The string aliases “min”, “default”, and “max” are mapped
to the appropriate compression level for the given format: “min” is 1; “default” is 9 for gzip and 3 for
zstandard; “max” is 9 for gzip and 19 for zstandard.

56 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

4.9 How to use query fingerprints to search for similar target fingerprints

In this section you’ll learn how to do a Tanimoto search using the previously created PubChem fingerprint
files for the queries and the targets from Generate fingerprint files from PubChem SD tags.

It’s faster to search an arena, so I’ll load the target fingerprints:

>>> from __future__ import print_function # Only for Python 2.7
>>> import chemfp
>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> len(targets)
14967

and open the queries as an FPSReader.

>>> queries = chemfp.open("pubchem_queries.fps")

I’ll use chemfp.threshold_tanimoto_search() to find, for each query, all hits which are at least 0.7 similar
to the query.

>>> for (query_id, hits) in chemfp.threshold_tanimoto_search(queries, targets,␣
↪→threshold=0.7):
... print(query_id, len(hits), list(hits)[:2])
...
99000039 641 [(3619, 0.7085714285714285), (4302, 0.7371428571428571)]
99000230 373 [(2747, 0.703030303030303), (3608, 0.7041420118343196)]
99002251 270 [(2512, 0.7006369426751592), (2873, 0.7088607594936709)]
99003537 523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392)]
99003538 523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392)]
99005028 131 [(772, 0.7589285714285714), (796, 0.7522123893805309)]
99005031 131 [(772, 0.7589285714285714), (796, 0.7522123893805309)]
99006292 308 [(805, 0.7058823529411765), (808, 0.7)]
99006293 308 [(805, 0.7058823529411765), (808, 0.7)]
99006597 0 []

... many lines omitted ...

I’m only showing the first two hits for the sake of space. It seems rather pointless to show all 641 hits of
query id 99000039.

However, there’s a subtle problem here. The “list(hits)” returns a list of (index, score) tuples when the
targets are an arena, and (id, score) tuples when the targets are a FPS reader. (I’ll talk about that more
in the next section for how that works.) It’s best to always specify how you want the results. In my case I
always want the identifiers and the scores so I’ll use hits.get_ids_and_scores(), like this:

from __future__ import print_function # Only for Python 2
import chemfp
targets = chemfp.load_fingerprints("pubchem_targets.fps")
queries = chemfp.open("pubchem_queries.fps")
for (query_id, hits) in chemfp.threshold_tanimoto_search(queries, targets, threshold=0.
↪→7):

print(query_id, len(hits), hits.get_ids_and_scores()[:2])

which gives as output:

4.9. How to use query fingerprints to search for similar target fingerprints 57

chemfp Documentation, Release 3.4

99000039 641 [('48528698', 0.7085714285714285), ('48529189', 0.7371428571428571)]
99000230 373 [('48737535', 0.703030303030303), ('48502523', 0.7041420118343196)]
99002251 270 [('48857943', 0.7006369426751592), ('48846196', 0.7088607594936709)]
99003537 523 [('48542237', 0.7230769230769231), ('48739065', 0.7085427135678392)]
99003538 523 [('48542237', 0.7230769230769231), ('48739065', 0.7085427135678392)]
99005028 131 [('48659090', 0.7589285714285714), ('48657042', 0.7522123893805309)]
99005031 131 [('48659090', 0.7589285714285714), ('48657042', 0.7522123893805309)]
99006292 308 [('48976796', 0.7058823529411765), ('48542022', 0.7)]
99006293 308 [('48976796', 0.7058823529411765), ('48542022', 0.7)]
99006597 0 []

... many lines omitted ...

What you don’t see in either case is that the implementation uses the chemfp.FingerprintReader.
iter_arenas() interface on the queries so that it processes one subarena at a time. There’s a tradeoff
between a large arena, which is faster because it doesn’t often go back to Python code, or a small arena,
which uses less memory and is more responsive. You can change the tradeoff using the arena_size parameter.

If all you need is the count of the hits at or above a given threshold then use chemfp.
count_tanimoto_hits():

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for (query_id, count) in chemfp.count_tanimoto_hits(queries, targets, threshold=0.7):
... print(query_id, count)
...
99000039 641
99000230 373
99002251 270
99003537 523
99003538 523
99005028 131
99005031 131
99006292 308
99006293 308
99006597 0

... many lines omitted ...

Or, if you only want the k=2 nearest neighbors to each target within that same threshold of 0.7 then use
chemfp.knearest_tanimoto_search():

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for (query_id, hits) in chemfp.knearest_tanimoto_search(queries, targets, k=2,␣
↪→threshold=0.7):
... print(query_id, hits.get_ids_and_scores())
...
99000039 [('48503376', 0.8784530386740331), ('48503380', 0.8729281767955801)]
99000230 [('48563034', 0.8588235294117647), ('48731730', 0.8522727272727273)]
99002251 [('48798046', 0.8109756097560976), ('48625236', 0.8106508875739645)]
99003537 [('48997075', 0.9035532994923858), ('48997697', 0.8984771573604061)]
99003538 [('48997075', 0.9035532994923858), ('48997697', 0.8984771573604061)]
99005028 [('48651160', 0.8288288288288288), ('48848576', 0.8166666666666667)]
99005031 [('48651160', 0.8288288288288288), ('48848576', 0.8166666666666667)]
99006292 [('48945841', 0.9652173913043478), ('48737522', 0.8793103448275862)]
99006293 [('48945841', 0.9652173913043478), ('48737522', 0.8793103448275862)]

(continues on next page)

58 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

99006597 []
... many lines omitted ...

4.10 How to search an FPS file

In this section you’ll learn how to search an FPS file directly, without loading it into a FingerprintArena.
You’ll need the previously created PubChem fingerprint files for the queries and the targets from Generate
fingerprint files from PubChem SD tags.

The previous example loaded the fingerprints into a FingerprintArena. That’s the fastest way to do multiple
searches. Sometimes you only want to do one or a couple of queries. It seems rather excessive to read the
entire targets file into an in-memory data structure before doing the search when you could search while
processing the file.

For that case, use an FPSReader as the targets file. Here I’ll get the first two records from the queries file
and use it to search the targets file:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> query_arena = next(chemfp.open("pubchem_queries.fps").iter_arenas(2))
>>> query_arena
<chemfp.arena.FingerprintArena object at 0x11039c850>
>>> len(query_arena)
2

That first line is complicated. It opens the file and iterates over its fingerprint records two at a time as
arenas. The next() returns the first of these arenas, so that line is a way of saying “get the first two records
as an arena”.

Here are the k=5 closest hits against the targets file:

>>> targets = chemfp.open("pubchem_targets.fps")
>>> for query_id, hits in chemfp.knearest_tanimoto_search(query_arena, targets, k=5,␣
↪→threshold=0.0):
... print("** Hits for", query_id, "**")
... for hit in hits.get_ids_and_scores():
... print("", hit)
...
** Hits for 99000039 **
('48503376', 0.8784530386740331)
('48503380', 0.8729281767955801)
('48732162', 0.8595505617977528)
('48520532', 0.8540540540540541)
('48985130', 0.8449197860962567)
** Hits for 99000230 **
('48563034', 0.8588235294117647)
('48731730', 0.8522727272727273)
('48583483', 0.8411764705882353)
('48563042', 0.8352941176470589)
('48935653', 0.8333333333333334)

To make it easier to see, here’s the code in a single chunk:

4.10. How to search an FPS file 59

chemfp Documentation, Release 3.4

from __future__ import print_function # Only for Python 2
import chemfp
query_arena = next(chemfp.open("pubchem_queries.fps").iter_arenas(2))
targets = chemfp.load_fingerprints("pubchem_targets.fps")
for query_id, hits in chemfp.knearest_tanimoto_search(query_arena, targets, k=5,␣
↪→threshold=0.0):

print("**Hits for", query_id, "**")
for hit in hits.get_ids_and_scores():

print("", hit)

Remember that the FPSReader reads an FPS file. Once you’ve done a search, the file is read, and you can’t
do another search. (Well, you can; but it will return empty results.) You’ll need to reopen the file to reuse
the file, or reseek the file handle to the start position and pass the handle to a new FPSReader.

Each search processes arena_size query fingerprints at a time. You will need to increase that value if you
want to search more than that number of fingerprints with this method.

4.11 How do to a Tversky search using the Dice weights

In this section you’ll learn how to search a set of fingerprints using the more general Tversky parameters,
without loading it into a FingerprintArena. You’ll need the previously created PubChem fingerprint files for
the queries and the targets from Generate fingerprint files from PubChem SD tags.

Chemfp-2.1 added support for Tversky searches. The Tversky index supports weights for the superstructure
and substructure terms to the similarity. Some people like the Dice index, which is the Tversky index with
alpha = beta = 0.5, so here are a couple of ways to search the targets based on the Dice index.

The previous two sections did a Tanimoto search by using chemfp.knearest_tanimoto_search(). The
Tversky search uses chemfp.knearest_tversky_search(), which shouldn’t be much of a surprise. Just like
the Tanimoto search code, it can take a fingerprint arena or an FPS reader as the targets.

The first example loads all of the targets into an arena, then searches using each of the queries:

from __future__ import print_function # Only for Python 2
import chemfp
queries = chemfp.open("pubchem_queries.fps")
targets = chemfp.load_fingerprints("pubchem_targets.fps")
for query_id, hits in chemfp.knearest_tversky_search(queries, targets, k=5,

threshold=0.0, alpha=0.5, beta=0.5):
print("**Hits for", query_id, "**")
for hit in hits.get_ids_and_scores():

print("", hit)

The first two output records are:

**Hits for 99000039 **
('48503376', 0.9352941176470588)
('48503380', 0.9321533923303835)
('48732162', 0.9244712990936556)
('48520532', 0.9212827988338192)
('48985130', 0.9159420289855073)
**Hits for 99000230 **
('48563034', 0.9240506329113924)

(continues on next page)

60 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

('48731730', 0.9202453987730062)
('48583483', 0.9137380191693291)
('48563042', 0.9102564102564102)
('48935653', 0.9090909090909091)

On the other hand, the following reads the first two queries into an arena, then searches the targets as an
FPS file, without loading all of the targets into memory at once:

import chemfp
queries = next(chemfp.open("pubchem_queries.fps").iter_arenas(2))
targets = chemfp.open("pubchem_targets.fps")
for query_id, hits in chemfp.knearest_tversky_search(queries, targets, k=5,

threshold=0.0, alpha=0.5, beta=0.5):
print("** Hits for", query_id, "**")
for hit in hits.get_ids_and_scores():

print("", hit)

Not surprisingly, this gives the same output as before:

** Hits for 99000039 **
('48503376', 0.9352941176470588)
('48503380', 0.9321533923303835)
('48732162', 0.9244712990936556)
('48520532', 0.9212827988338192)
('48985130', 0.9159420289855073)
** Hits for 99000230 **
('48563034', 0.9240506329113924)
('48731730', 0.9202453987730062)
('48583483', 0.9137380191693291)
('48563042', 0.9102564102564102)
('48935653', 0.9090909090909091)

4.12 FingerprintArena searches returning indices instead of ids

In this section you’ll learn how to search a FingerprintArena and use hits based on integer indices rather
than string ids.

The previous sections used a high-level interface to the Tanimoto and Tversky search code. Those are
designed for the common case where you just want the query id and the hits, where each hit includes the
target id.

Working with strings is actually rather inefficient in both speed and memory. It’s usually better to work
with indices if you can, and in the next section I’ll show how to make a distance matrix using this interface.

The index-based search functions are in the chemfp.search module. They can be categorized into three
groups, with Tanimoto and Tversky versions for each group:

1. Count the number of hits:

• chemfp.search.count_tanimoto_hits_fp() - search an arena using a single fingerprint
(Tanimoto)

• chemfp.search.count_tanimoto_hits_arena() - search an arena using another arena
(Tanimoto)

4.12. FingerprintArena searches returning indices instead of ids 61

chemfp Documentation, Release 3.4

• chemfp.search.count_tanimoto_hits_symmetric() - search an arena using itself (Tani-
moto)

• chemfp.search.count_tversky_hits_fp() - search an arena using a single fingerprint
(Tversky)

• chemfp.search.count_tversky_hits_arena() - search an arena using another arena
(Tversky)

• chemfp.search.count_tversky_hits_symmetric() - search an arena using itself (Tversky)

2. Find all hits at or above a given threshold, sorted arbitrarily:

• chemfp.search.threshold_tanimoto_search_fp() - search an arena using a single finger-
print (Tanimoto)

• chemfp.search.threshold_tanimoto_search_arena() - search an arena using another
arena (Tanimoto)

• chemfp.search.threshold_tanimoto_search_symmetric() - search an arena using itself
(Tanimoto)

• chemfp.search.threshold_tversky_search_fp() - search an arena using a single finger-
print (Tversky)

• chemfp.search.threshold_tversky_search_arena() - search an arena using another
arena (Tversky)

• chemfp.search.threshold_tversky_search_symmetric() - search an arena using itself
(Tversky)

3. Find the k-nearest hits at or above a given threshold, sorted by decreasing similarity:

• chemfp.search.knearest_tanimoto_search_fp() - search an arena using a single finger-
print (Tanimoto)

• chemfp.search.knearest_tanimoto_search_arena() - search an arena using another
arena (Tanimoto)

• chemfp.search.knearest_tanimoto_search_symmetric() - search an arena using itself
(Tanimoto)

• chemfp.search.knearest_tversky_search_fp() - search an arena using a single finger-
print (Tversky)

• chemfp.search.knearest_tversky_search_arena() - search an arena using another arena
(Tversky)

• chemfp.search.knearest_tversky_search_symmetric() - search an arena using itself
(Tversky)

The functions ending “_fp” take a query fingerprint and a target arena. The functions ending “_arena”
take a query arena and a target arena. The functions ending “_symmetric” use the same arena as both the
query and target.

In the following example, I’ll use the first 5 fingerprints of a data set to search the entire data set. To do
this, I load the data set as an arena, extract the first 5 records as a sub-arena, and do the search.

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> from chemfp import search
>>> queries = next(chemfp.open("pubchem_queries.fps").iter_arenas(5))

(continues on next page)

62 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> results = search.threshold_tanimoto_search_arena(queries, targets, threshold=0.7)

The search.threshold_tanimoto_search_arena() call finds the target fingerprints which have a similarity
score of at least 0.7 compared to the query.

You can iterate over the results (which is a SearchResults) to get the list of hits for each of the queries.
The order of the results is the same as the order of the records in the query:

>>> for hits in results:
... print(len(hits), hits.get_ids_and_scores()[:3])
...
641 [('48528698', 0.7085714285714285), ('48529189', 0.7371428571428571), ('48937990', 0.
↪→7039106145251397)]
373 [('48737535', 0.703030303030303), ('48502523', 0.7041420118343196), ('48560268', 0.
↪→7)]
270 [('48857943', 0.7006369426751592), ('48846196', 0.7088607594936709), ('48855282', 0.
↪→710691823899371)]
523 [('48542237', 0.7230769230769231), ('48739065', 0.7085427135678392), ('48529584', 0.
↪→705)]
523 [('48542237', 0.7230769230769231), ('48739065', 0.7085427135678392), ('48529584', 0.
↪→705)]

The results object don’t store the query id. Instead, you have to know that the results are in the same order
as the input as the query arena, so you can match the query arena’s id attribute, which contains the list of
fingerprint identifiers, to each result:

>>> for query_id, hits in zip(queries.ids, results):
... print("Hits for", query_id)
... for hit in hits.get_ids_and_scores()[:3]:
... print("", hit)
...
Hits for 99000039
('48528698', 0.7085714285714285)
('48529189', 0.7371428571428571)
('48937990', 0.7039106145251397)
Hits for 99000230
('48737535', 0.703030303030303)
('48502523', 0.7041420118343196)
('48560268', 0.7)
Hits for 99002251
('48857943', 0.7006369426751592)
('48846196', 0.7088607594936709)
('48855282', 0.710691823899371)
Hits for 99003537
('48542237', 0.7230769230769231)
('48739065', 0.7085427135678392)
('48529584', 0.705)
Hits for 99003538
('48542237', 0.7230769230769231)
('48739065', 0.7085427135678392)
('48529584', 0.705)

What I really want to show is that you can get the same data only using the offset index for the target record

4.12. FingerprintArena searches returning indices instead of ids 63

chemfp Documentation, Release 3.4

instead of its id. The result from a Tanimoto search with a query arena is a SearchResults. Iterating over
the results gives a SearchResult object, with methods like SearchResult.get_indices_and_scores(),
SearchResult.get_ids(), and SearchResult.get_scores():

>>> for hits in results:
... print(len(hits), hits.get_indices_and_scores()[:3])
...
641 [(3619, 0.7085714285714285), (4302, 0.7371428571428571), (4576, 0.7039106145251397)]
373 [(2747, 0.703030303030303), (3608, 0.7041420118343196), (3777, 0.7)]
270 [(2512, 0.7006369426751592), (2873, 0.7088607594936709), (3185, 0.710691823899371)]
523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392), (7554, 0.705)]
523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392), (7554, 0.705)]
>>>
>>> targets.ids[0]
'48942244'
>>> targets.ids[1]
'48941399'
>>> targets.ids[3619]
'48528698'
>>> targets.ids[4302]
'48529189'

I did a few id lookups given the target dataset to show you that the index corresponds to the identifiers from
the previous code.

These examples iterated over each individual SearchResult to fetch the ids and scores, or indices and scores.
Another possibility is to ask the SearchResults collection to iterate directly over the list of fields you want.
SearchResults.iter_indices_and_scores(), for example, iterates through the get_indices_and_score
of each SearchResult.

>>> for row in results.iter_indices_and_scores():
... print(len(row), row[:3])
...
641 [(3619, 0.7085714285714285), (4302, 0.7371428571428571), (4576, 0.7039106145251397)]
373 [(2747, 0.703030303030303), (3608, 0.7041420118343196), (3777, 0.7)]
270 [(2512, 0.7006369426751592), (2873, 0.7088607594936709), (3185, 0.710691823899371)]
523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392), (7554, 0.705)]
523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392), (7554, 0.705)]

This was added to get a bit more performance out of chemfp and because the API is sometimes cleaner one
way and sometimes cleaner the other. Yes, I know that the Zen of Python recommends that “there should
be one– and preferably only one –obvious way to do it.” Oh well.

4.13 Access the fingerprint arena bytes as a NumPy array

In this section you’ll learn how to access the arena’s fingerprint data as a NumPy array. This returns a byte
view of the underlying arena data structure. If you want the fingerprint bits as 0 or 1 values, see the next
section. You will need to install NumPy for the following to work.

A FingerprintArena stores the fingerprints in a contiguous block of memory. Each fingerprint is stored as
the first arena.num_bytes bytes of a field containing arena.storage_size bytes of memory. If num_bytes
is smaller than storage_size then the field is 0-padded, that is, the remaining bytes are set to 0.

If you work with Python code then you can use chemfp’s Python API to access the fingerprints. But what

64 Chapter 4. Fingerprints and fingerprint search examples

http://numpy.scipy.org/

chemfp Documentation, Release 3.4

if you want to access the fingerprints from a C extension? More specifically, what if you want to access the
fingerprints from NumPy, which contains a lot of optimized routines for analyzing matrix-like data?

The FingerprintArena.to_numpy_array() method returns a read-only view of the fingerprint data as a
2D NumPy array with len(arena) rows and arena.storage_size columns. Each element of the matrix is
an unsigned 8 bit integer, that is, a byte.

The matrix is a “view” of the data, meaning that it uses the same contiguous block of memory that the
arena uses.

Warning: Do not use the NumPy view of an arena from an FPB file after the file has been closed as
that will likely cause your program to segfault.

Here is an example using MACCS fingerprints for ChEBI 187 generated by RDKit:

>>> import chemfp
>>> arena = chemfp.load_fingerprints("chebi_maccs.fps")
>>> arr = arena.to_numpy_array()
>>> arr
array([[0, 0, 0, ..., 0, 0, 0],

[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 16, 128, ..., 0, 0, 0],
[0, 16, 128, ..., 0, 0, 0],
[0, 0, 128, ..., 0, 0, 0]], dtype=uint8)

>>> arr.shape
(107207, 24)

While it isn’t chemically meaningful, I’ll sum the bytes down the rows:

>>> arr.sum(axis=0)
array([490116, 204316, 601303, 1485108, 968167, 2407708,

2464853, 2392025, 6600791, 5761640, 5880625, 10715664,
8568501, 12248444, 11166730, 13371871, 12146087, 13559574,
17746237, 20894627, 2761788, 0, 0, 0], dtype=uint64)

The last three values are 0 because of the 0-padding. By default chemfp uses 64-bit alignment, which means
192 bits or 24 bytes for the 166-bit MACCS key fingerprints, even though only 21 bytes are needed.

If the 0 padding is a problem then you can use NumPy indexing to make a new NumPy array which only
contains the actual fingerprint bytes:

>>> unpadded_arr = arr[:,:arena.num_bytes]
>>> unpadded_arr
array([[0, 0, 0, ..., 0, 0, 0],

[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 16, 128, ..., 255, 255, 31],
[0, 16, 128, ..., 255, 255, 31],
[0, 0, 128, ..., 255, 255, 31]], dtype=uint8)

>>> unpadded_arr.shape
(107207, 21)

(continues on next page)

4.13. Access the fingerprint arena bytes as a NumPy array 65

chemfp Documentation, Release 3.4

(continued from previous page)

>>> unpadded_arr.sum(axis=0)
array([490116, 204316, 601303, 1485108, 968167, 2407708,

2464853, 2392025, 6600791, 5761640, 5880625, 10715664,
8568501, 12248444, 11166730, 13371871, 12146087, 13559574,
17746237, 20894627, 2761788], dtype=uint64)

4.14 Access the fingerprint bits as a NumPy array

In this section you’ll learn how to access the arena’s fingerprint bit values as a NumPy array. This returns
a new array containing the values 0 or 1. If you want a view of the underlying arena bytes, see the previous
section. You will need to install NumPy for the following to work.

Some people use fingerprint bit values as descriptors for clustering or other machine learning algorithm.
The FingerprintArena.to_numpy_array() method returns a 2D array containing bit values. The array
contains len(arena) rows. By default it returns one column for each fingerprint bit.

Here is an example using MACCS fingerprints for ChEBI 187 generated by RDKit:

>>> import chemfp
>>> arena = chemfp.load_fingerprints("chebi_maccs.fps")
>>> bitarr = arena.to_numpy_bitarray()
>>> bitarr.shape
(107207, 166)

This is a normal NumPy array, so the usual NumPy methods work. For example, here are the bits for the
fingerprint at index 1000:

>>> bitarr[1000]
array([0, 0,

0, 1, 0, 0,
0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0], dtype=uint8)

and here are the number of occurrences of each bit:

>>> bitarr.sum(axis=0)
array([0, 2, 514, 31, 22, 53, 264, 3663,

452, 254, 4309, 215, 405, 326, 147, 1235,
2239, 256, 3632, 177, 407, 4063, 1112, 2929,
2780, 3946, 423, 2597, 11284, 2798, 481, 8993,
9241, 3179, 720, 6701, 9993, 8846, 2306, 2387,
2426, 9607, 10337, 11172, 2605, 1655, 6263, 13749,
18487, 12349, 10391, 7077, 29244, 28915, 11422, 1557,
50525, 11758, 10016, 11804, 11876, 20436, 1786, 9572,
29439, 16754, 12719, 843, 15222, 4294, 4281, 45510,
13238, 20715, 36963, 14132, 24909, 5101, 26283, 25017,
18533, 47630, 33626, 13009, 41392, 33512, 13809, 22733,

(continues on next page)

66 Chapter 4. Fingerprints and fingerprint search examples

http://numpy.scipy.org/

chemfp Documentation, Release 3.4

(continued from previous page)

56840, 50194, 58465, 50896, 36946, 20788, 57521, 38904,
51137, 48868, 26627, 46736, 49780, 28319, 7660, 44893,
51824, 41062, 16770, 41733, 59879, 54221, 56176, 42384,
39082, 19636, 44832, 45619, 56784, 54437, 6965, 58186,
50183, 46442, 45119, 36041, 0, 48938, 64600, 55153,
58571, 28754, 62726, 71980, 41656, 18204, 31671, 61932,
72978, 56210, 69568, 68414, 40483, 60826, 64600, 45469,
62761, 81488, 55865, 56584, 57693, 69504, 57550, 78234,
75151, 83824, 79623, 71747, 89966, 73571, 93265, 78099,
77122, 66637, 83354, 100861, 88193, 0], dtype=uint64)

While the default returns the bits for each fingerprint, you can use the transpose to get which fingerprints
indices contain a given bit.

For example, there are only 5 fingerprints which set the fifth bit. Key 5 is defined as “Lanthanide” and
implemented as the SMARTS pattern: [La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu]. Which fin-
gerprints contain a lanthanide?

>>> bitarr.T[4].nonzero()
(array([334, 335, 338, 339, 340, 444, 455, 553, 554,

1135, 1169, 1739, 1863, 3194, 3263, 3264, 3595, 4257,
6573, 6574, 42598, 45728]),)

To make that useful I need the compound ids, so I’ll use the indices to get the ids from the arena:

>>> [arena.ids[idx] for idx in bitarr.T[4].nonzero()[0]]
['CHEBI:33330', 'CHEBI:33331', 'CHEBI:33341', 'CHEBI:33342',
'CHEBI:33343', 'CHEBI:52622', 'CHEBI:52635', 'CHEBI:49962',
'CHEBI:49978', 'CHEBI:63020', 'CHEBI:134455', 'CHEBI:139502',
'CHEBI:32234', 'CHEBI:77566', 'CHEBI:134436', 'CHEBI:134440',
'CHEBI:53479', 'CHEBI:139496', 'CHEBI:50950', 'CHEBI:51000',
'CHEBI:59824', 'CHEBI:139501']

Picking out a few of these:

• CHEBI:33330 - scandium atom

• CHEBI:33331 - yttrium atom

• CHEBI:139502 - calcium titanate

• CHEBI: 139501 - titanium(IV) bis(ammonium lactato)dihydroxide

so at least I wasn’t able to find a false positive!

The above example created the entire bit array but only used the third column. If you only want the third
column then it’s faster to pass an explicit list of the bit columns you want to to_numpy_bitarray:

>>> arena.to_numpy_bitarray([4])
array([[0],

[0],
[0],
...,
[0],
[0],
[0]], dtype=uint8)

(continues on next page)

4.14. Access the fingerprint bits as a NumPy array 67

https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:33330
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:33331
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:139502
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:139501

chemfp Documentation, Release 3.4

(continued from previous page)

>>> arena.to_numpy_bitarray([2]).sum()
22

You can ask for more than one bit column. The following computes the Pearson product-moment correlation
coefficients between columns 163 and 158 (column 163 has the most often set bit, and 158 has the second
most often):

>>> bitarr = arena.to_numpy_bitarray([163, 158])
>>> bitarr
array([[0, 0],

[0, 0],
[0, 0],
...,
[1, 1],
[1, 1],
[1, 1]], dtype=uint8)

>>> import numpy
>>> numpy.corrcoef(bitarr, rowvar=0)
array([[1. , 0.64876171],

[0.64876171, 1.]])

When this section was originally written, extracting 1 column with to_numpy_bitarray was about 20x faster
than extracting all of the columns and selecting just the desired column. The break-even point for 166 bits
was around 45 columns.

4.15 Computing a distance matrix for clustering

In this section you’ll learn how to compute a distance matrix using the chemfp API. The next section shows
an alternative way to get the similarity matrix.

chemfp does not do clustering. There’s a huge number of tools which already do that. A goal of chemfp in
the future is to provide some core components which clustering algorithms can use.

That’s in the future, because I know little about how people want to cluster with chemfp. Right now you
can use the following to build a distance matrix and pass that to one of those tools. (I’ll use a distance
matrix of 1 - the similarity matrix.)

Since we’re using the same fingerprint arena for both queries and targets, we know the distance ma-
trix will be symmetric along the diagonal, and the diagonal terms will be 1.0. The chemfp.search.
threshold_tanimoto_search_symmetric() functions can take advantage of the symmetry for a factor of
two performance gain. There’s also a way to limit it to just the upper triangle, which cuts the memory use
in half.

Most of those tools use NumPy, which is a popular third-party package for numerical computing. You will
need to have it installed for the following to work.

import numpy # NumPy must be installed
from chemfp import search

Compute distance[i][j] = 1-Tanimoto(fp[i], fp[j])

def distance_matrix(arena):
(continues on next page)

68 Chapter 4. Fingerprints and fingerprint search examples

http://numpy.scipy.org/

chemfp Documentation, Release 3.4

(continued from previous page)

n = len(arena)

Start off a similarity matrix with 1.0s along the diagonal
similarities = numpy.identity(n, "d")

Compute the full similarity matrix.
The implementation computes the upper-triangle then copies
the upper-triangle into lower-triangle. It does not include
terms for the diagonal.
results = search.threshold_tanimoto_search_symmetric(arena, threshold=0.0)

Copy the results into the NumPy array.
NOTE: see below for an implementation which is much faster.
for row_index, row in enumerate(results.iter_indices_and_scores()):

for target_index, target_score in row:
similarities[row_index, target_index] = target_score

Return the distance matrix using the similarity matrix
return 1.0 - similarities

With the distance matrix in hand, it’s easy to cluster. The SciPy package contains many clustering al-
gorithms, as well as an adapter to generate a matplotlib graph. I’ll use it to compute a single linkage
clustering:

from __future__ import print_function # Only for Python 2
import chemfp
from scipy.cluster.hierarchy import linkage, dendrogram

... insert the 'distance_matrix' function definition here ...

dataset = chemfp.load_fingerprints("pubchem_queries.fps")
distances = distance_matrix(dataset)

linkage_matrix = linkage(distances, "single")
dendrogram(linkage_matrix, XXX REDO with pylab

orientation="right",
labels = dataset.ids)

import pylab
pylab.show()

NOTE: The above code created an empty NumPy array then filled it in with the scores. This is slow because
much of the work is in Python.

Another possibility is to convert the results into a SciPy compressed sparse row matrix (see the next section),
then turn that sparse array into a NumPy array. The following distance_matrix version is about 5x faster
than the earlier one, even though it makes an intermediate csr matrix, because more of the work is done at
the C level:

def distance_matrix(arena):
n = len(arena)

Compute the full similarity matrix.
(continues on next page)

4.15. Computing a distance matrix for clustering 69

http://scipy.org/
http://matplotlib.sourceforge.net/

chemfp Documentation, Release 3.4

(continued from previous page)

The implementation computes the upper-triangle then copies
the upper-triangle into lower-triangle. It does not include
terms for the diagonal.
results = search.threshold_tanimoto_search_symmetric(arena, threshold=0.0)

Extract the results as a SciPy compressed sparse row matrix
csr = results.to_csr()
Convert it to a NumPy array
similarities = csr.toarray()
Fill in the diagonal
numpy.fill_diagonal(similarities, 1)

Return the distance matrix using the similarity matrix
return 1.0 - similarities

4.16 Convert SearchResults to a SciPy csr matrix

In this section you’ll learn how to convert a SearchResults object into a SciPy compressed sparse row matrix.

In the previous section you learned how to use the chemfp API to create a NumPy similarity matrix, and
convert that into a distance matrix. The result is a dense matrix, and the amount of memory goes as the
square of the number of structures.

If you have a reasonably high similarity threshold, like 0.7, then most of the similarity scores will be zero.
Internally the SearchResults object only stores the non-zero values for each row, along with an index to
specify the column. This is a common way to compress sparse data.

SciPy has its own compressed sparse row (“csr”) matrix data type, which can be used as input to many of
the scikit-learn clustering algorithms.

If you want to use those algorithms, call the SearchResults.to_csr() method to convert the SearchResults
scores (and only the scores) into a csr matrix. The rows will be in the same order as the SearchResult (and
the original queries), and the columns will be in the same order as the target arena, including its ids.

I don’t know enough about scikit-learn to give a useful example. (If you do, let me know!) Instead, I’ll start
by doing an NxM search of two sets of fingerprints:

from __future__ import print_function # Only for Python 2
import chemfp
from chemfp import search

queries = chemfp.load_fingerprints("pubchem_queries.fps")
targets = chemfp.load_fingerprints("pubchem_targets.fps")
results = search.threshold_tanimoto_search_arena(queries, targets, threshold = 0.8)

The SearchResults attribute shape describes the number of rows and columns:

>>> results.shape
(10826, 14967)
>>> len(queries)
10826
>>> len(targets)

(continues on next page)

70 Chapter 4. Fingerprints and fingerprint search examples

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster

chemfp Documentation, Release 3.4

(continued from previous page)

14967
>>> >>> results[426].get_indices_and_scores()
[(133, 0.85), (153, 0.8064516129032258)]

I’ll turn it into a SciPy csr:

>>> csr = results.to_csr()
>>> csr
<10826x14967 sparse matrix of type '<class 'numpy.float64'>'

with 369471 stored elements in Compressed Sparse Row format>
>>> csr.shape
(10826, 14967)

and look at the same row to show it has the same indices and scores:

>>> csr[426]
<1x14967 sparse matrix of type '<class 'numpy.float64'>'

with 2 stored elements in Compressed Sparse Row format>
>>> csr[426].indices
array([133, 153], dtype=int32)
>>> csr[6].data
array([0.85 , 0.80645161])

4.17 Taylor-Butina clustering

For the last clustering example, here’s my (non-validated) variation of the Butina algorithm from JCICS
1999, 39, 747-750. See also http://www.redbrick.dcu.ie/~noel/R_clustering.html . You might know it as
Leader clustering.

First, for each fingerprint find all other fingerprints with a threshold of 0.8:

from __future__ import print_function # Only for Python 2
import chemfp
from chemfp import search

arena = chemfp.load_fingerprints("pubchem_targets.fps")
results = search.threshold_tanimoto_search_symmetric(arena, threshold = 0.8)

Sort the results so that fingerprints with more hits come first. This is more likely to be a cluster centroid.
Break ties arbitrarily by the fingerprint id; since fingerprints are ordered by the number of bits this likely
makes larger structures appear first:

Reorder so the centroid with the most hits comes first.
(That's why I do a reverse search.)
Ignore the arbitrariness of breaking ties by fingerprint index
results = sorted(((len(indices), i, indices)

for (i, indices) in enumerate(results.iter_indices())),
reverse=True)

Apply the leader algorithm to determine the cluster centroids and the singletons:

4.17. Taylor-Butina clustering 71

http://www.chemomine.co.uk/dbclus-paper.pdf
http://www.chemomine.co.uk/dbclus-paper.pdf
http://www.redbrick.dcu.ie/~noel/R_clustering.html

chemfp Documentation, Release 3.4

Determine the true/false singletons and the clusters
true_singletons = []
false_singletons = []
clusters = []

seen = set()
for (size, fp_idx, members) in results:

if fp_idx in seen:
Can't use a centroid which is already assigned
continue

seen.add(fp_idx)

True singletons have no neighbors within the threshold
if not members:

true_singletons.append(fp_idx)
continue

Figure out which ones haven't yet been assigned
unassigned = set(members) - seen

if not unassigned:
false_singletons.append(fp_idx)
continue

this is a new cluster
clusters.append((fp_idx, unassigned))
seen.update(unassigned)

Once done, report the results:

print(len(true_singletons), "true singletons")
print("=>", " ".join(sorted(arena.ids[idx] for idx in true_singletons)))
print()

print(len(false_singletons), "false singletons")
print("=>", " ".join(sorted(arena.ids[idx] for idx in false_singletons)))
print()

Sort so the cluster with the most compounds comes first,
then by alphabetically smallest id
def cluster_sort_key(cluster):

centroid_idx, members = cluster
return -len(members), arena.ids[centroid_idx]

clusters.sort(key=cluster_sort_key)

print(len(clusters), "clusters")
for centroid_idx, members in clusters:

print(arena.ids[centroid_idx], "has", len(members), "other members")
print("=>", " ".join(arena.ids[idx] for idx in members))

The algorithm is quick for this small data set.

Out of curiosity, I tried this on 100,000 compounds selected arbitrarily from PubChem. It took 35 seconds

72 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

on my desktop (a 3.2 GHZ Intel Core i3) with a threshold of 0.8. In the Butina paper, it took 24 hours to
do the same, although that was with a 1024 bit fingerprint instead of 881. It’s hard to judge the absolute
speed differences of a MIPS R4000 from 1998 to a desktop from 2011, but it’s less than the factor of about
2000 you see here.

More relevent is the comparison between these numbers for the 1.1 release compared to the original numbers
for the 1.0 release. On my old laptop, may it rest it peace, it took 7 minutes to compute the same benchmark.
Where did the roughly 16-fold peformance boost come from? Money. After 1.0 was released, Roche funded
various optimizations, including taking advantage of the symmetery (2x) and using hardware POPCNT if
available (4x). Roche and another company helped fund the OpenMP support, and when my desktop reran
this benchmark it used 4 cores instead of 1.

The wary among you might notice that 2*4*4 = 32x faster, while I said the overall code was only
16x faster. Where’s the factor of 2x slowdown? It’s in the Python code! The chemfp.search.
threshold_tanimoto_search_symmetric() step took only 13 seconds. The remaining 22 seconds was in
the leader code written in Python. To make the analysis more complicated, improvements to the chemfp
API sped up the clustering step by about 40%.

With chemfp 1.0 version, the clustering performance overhead was minor compared to the full similarity
search, so I didn’t keep track of it. With chemfp 1.1, those roles have reversed!

The most recent version now is chemfp 3.4, which is about 20% faster than chemfp 1.4 for this benchmark.
And of course the hardware is faster still.

4.18 MinMax Diversity Selection using RDKit

In this section you’ll learn how to do diversity selection using RDKit’s MaxMin picker. You will also learn
how to convert chemfp fingerprints into RDKit fingerprints. You will need to install RDKit for the following
to work. You will also need to download a dataset of benzodiazepine structures.

Diversity selection finds elements which are unlike each other. One way to implement diversity selection is
to cluster all of the compounds then pick a compound from each cluster, but this requires quadratic time to
compute the similarity/distance matrix.

Chemfp does not implement diversity selection, though it may be added in the future if there is enough
demand. I recommend people use the optimized version of the MaxMin from RDKit, which does diversity
selection without needing to compute the full matrix.

While it is possible to have RDKit’s MaxMinPicker use native chemfp fingerprints, there is a huge perfor-
mance overhead (about 100x!) because every fingerprint distance requires a Python function call. It is far
faster to convert chemfp fingerprints to RDKit fingerprints so that all of the processing can be done in C.

I’ll start with an example of selecting 100 diverse fingerprints from the benzodiazepine data set. The first
step is to generate fingerprints. I’ll use rdkit2fps to generate RDKit Morgan fingerprints.

% rdkit2fps --morgan benzodiazepine.sdf.gz -o benzodiazepine_morgan2.fps.gz

and then use the chemfp Python API to load the fingerprints. I’ll use reorder=False so the arena fingerprints
are in the same order as the input file. (The order isn’t important for this case, but may be important if
you, say, merge two data sets together where you know you want to keep the first data set and select diverse
compounds from the second.)

>>> import chemfp
>>> arena = chemfp.load_fingerprints("benzodiazepine_morgan2.fps.gz",
... reorder=False)

4.18. MinMax Diversity Selection using RDKit 73

http://rdkit.org/
http://dalkescientific.com/writings/benzodiazepine.sdf.gz
https://onlinelibrary.wiley.com/doi/abs/10.1002/qsar.200290002
http://dalkescientific.com/writings/benzodiazepine.sdf.gz

chemfp Documentation, Release 3.4

The next step is to read the FPS file and convert the chemfp fingerprints into RDKit fingerprints. This is
easy because RDKit function CreateFromBinaryText converts a chemfp fingerprint, which is just a byte
string, into the equivalent ExplicitBitVect fingerprint.

>>> from rdkit import DataStructs
>>> rdkit_fps = [DataStructs.CreateFromBinaryText(fp) for fp in arena.fingerprints]

The fingerprints attribute was added in chemfp 3.4. For older chemfp versions use:

>>> rdkit_fps = [DataStructs.CreateFromBinaryText(fp) for id, fp in arena]

Finally, use RDKit to pick 100 diverse record indices:

>>> from rdkit import SimDivFilters
>>> picker = SimDivFilters.MaxMinPicker()
>>> picks = picker.LazyBitVectorPick(rdkit_fps, len(rdkit_fps), 100)
>>> len(picks)
100
>>> list(picks)
[10879, 8375, 2390, 4683, 3549, 6257, 9194, 9953, 96, 6860, 8016,
6034, 3197, 4213, 5762, 2323, 7531, 9894, 12279, 3398, 4607, 4827,
2874, 1608, 3234, 6128, 8710, 7691, 3006, 4898, 4372, 11609, 11401,
10614, 3861, 1295, 6936, 6192, 7121, 11577, 5092, 2523, 4926, 4614,
4956, 8762, 2261, 9184, 11666, 2828, 7767, 12027, 5000, 6126, 6266,
6097, 7966, 9208, 8064, 1327, 6241, 3392, 5730, 7744, 8485, 9299,
358, 5332, 4434, 2935, 8405, 5480, 4648, 1665, 5848, 9053, 5735,
6583, 8407, 1706, 5347, 11779, 12022, 2598, 8378, 3565, 7394, 4888,
10454, 6611, 11472, 2146, 6101, 295, 6632, 6717, 2442, 5638, 5372,
8279]

The indices match the arena order, so you can use arena.ids to get the corresponding id for each index; in
this case, PubChem ids:

>>> arena.ids[10879]
'22984485'

The RDKit MaxMinPicker also lets you initialize the pick list with a set of indicies. This is useful if you
have a in-house compound data set X and want to select N diverse fingerprints from a vendor data set Y.
That algorithm might look like:

import chemfp
from rdkit import DataStructs, SimDivFilters

have_arena = chemfp.load_fingerprints("X.fps", reorder=False)
want_arena = chemfp.load_fingerprints("Y.fps", reorder=False)

Merge the two fingerprint sets together, but keep track
of which came from X.
fps = [DataStructs.CreateFromBinaryText(fp) for fp in have_arena.fingerprints]
num_have = len(fps)
fps.extend(DataStructs.CreateFromBinaryText(fp) for fp in want_arena.fingerprints)

Do the picking
num_to_pick = 100

(continues on next page)

74 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

picker = SimDivFilters.MaxMinPicker()
have_ids = list(range(num_have))
picks = picker.LazyBitVectorPick(fps, len(fps), num_have+num_to_pick, have_ids)
newly_picked = picks[-num_to_pick:]
want_indices = [idx-num_have for idx in newly_picked]

Report the picked compounds
print("Compound to evaluate:")
for idx in want_indices:

print(want_arena.ids[idx])

To learn more about the RDKit MaxMin picker and how to use it, see Roger Sayle’s slides from the 2017
RDKit User Group meeting and Tim Dudgeon’s commentary.

4.19 Configuring OpenMP threads

In this section you’ll learn about chemfp and OpenMP threads, including how to set the number of threads
to use.

OpenMP is an API for shared memory multiprocessing programming. Chemfp uses it to parallelize the
similarity search algorithms. Support for OpenMP is a compile-time option for chemfp, and can be disabled
with --without-openmp in setup.py. Versions 4.2 of gcc (released in 2007) and later support it, as do other
compilers, though chemfp has only been tested with gcc.

Chemfp uses one thread per query fingerprint. This means that single fingerprint queries are not parallelized.
There is no performance gain even if four cores are available.

(A note about nomenclature: a CPU can have one core, or it can have several cores. A single processor
computer has one CPU while a multiprocessor computer has several CPUs. I think some cores can even run
multiple threads. So it’s possible to have many more hardware threads than CPUs.)

Chemfp uses multiple threads when there are many queries, which occurs when using a query arena against
a target arena. These search methods include the high-level API in the top-level chemfp module (like
‘knearest_tanimoto_search’), and the arena search function in chemfp.search.

By default, OpenMP and therefore chemfp will use four threads:

>>> import chemfp
>>> chemfp.get_num_threads()
4

You can change this through the standard OpenMP environment variable OMP_NUM_THREADS in the
shell:

% env OMP_NUM_THREADS=2 python
Python 3.7.4 (default, Aug 13 2019, 15:17:50)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import chemfp
>>> chemfp.get_num_threads()
2

or you can specify the number of threads directly using set_num_threads():

4.19. Configuring OpenMP threads 75

https://github.com/rdkit/UGM_2017/blob/master/Presentations/Sayle_RDKitDiversity_Berlin17.pdf
https://github.com/rdkit/UGM_2017/blob/master/Presentations/Sayle_RDKitDiversity_Berlin17.pdf
http://rdkit.blogspot.com/2017/11/revisting-maxminpicker.html

chemfp Documentation, Release 3.4

>>> chemfp.set_num_threads(3)
>>> chemfp.get_num_threads()
3

If you specify 0 or 1 thread then chemfp will not use OpenMP at all and stick with a single-threaded
implementation. (You probably want to disable OpenMP in multi-threaded programs like web servers. See
the next section for details.)

Throwing more threads at a task doesn’t always make it faster. My old desktop has one CPU with two
cores, so it’s pointless to have more than two OpenMP threads running, as you can see from some timings:

threshold_tanimoto_search_symmetric (threshold=0.8) (desktop)
#threads time (in s)

1 22.6
2 13.1
3 12.3
4 12.9
5 12.6

On the other hand, my old laptop has 1 CPU with four cores, and while my desktop beats my laptop with
single threaded peformance, once I have three cores going, my laptop is faster:

threshold_tanimoto_search_symmetric (threshold=0.8) (laptop)
#threads time (in s)

1 27.4
2 14.6
3 10.3
4 8.2
5 9.0

How many cores/hardware threads are available? That’s a really good question. chemfp implements chemp.
get_max_threads(), but that doesn’t seem to do what I want. So don’t use it, and I’ll figure out a real
solution in a future release.

4.20 OpenMP and multi-threaded applications

In this section you’ll learn some of the problems of mixing OpenMP and multi-threaded code.

Do not use OpenMP and POSIX threads on a Mac. It will crash. This includes Django, which is a multi-
threaded web server. In multi-threaded code on a Mac you must either tell chemfp to be single-threaded,
using:

chemfp.set_num_threads(1)

or figure out some way to put the chemfp search code into its own process space, which is a much harder
solution.

Other OSes will let you mix POSIX and OpenMP threads, but life gets confusing. Might your web server
handle three search requests at the same time? If so, should all of those get four OpenMP threads, so that
12 threads are running in total? Can your hardware handle that many threads?

It may be better to have chemfp not use OpenMP threads when under a multi-threaded system, or have
some way to limit the number of chemfp search tasks running at the same time. Figuring out the right
solution will depend on your hardware and requirements.

76 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

4.21 Fingerprint Substructure Screening (experimental)

In this section you’ll learn how to find target fingerprints which contain the query fingerprint bit patterns
as a subset. Bear in mind that this is an experimental API.

Substructure search often uses a screening step to remove obvious mismatches before doing the subgraph
isomorphism. One way is to generate a binary fingerprint such that if a query molecule is a substructure of
a target molecule then the corresponding query fingerprint is completely contained in the target fingerprint,
that is, the target fingerprint must have ‘on’ bits for all of the query fingerprints which have ‘on’ bits.

I’ll start by loading a fingerprint arena with four fingerprints, where the identifiers are Unicode strings and
the fingerprint are byte strings of length 1, with the binary form shown to the right:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> from chemfp import bitops
>>> arena = chemfp.load_fingerprints([
... (u"A1", b"\x44"), # 0b01000100
... (u"B2", b"\x6c"), # 0b01101100
... (u"C3", b"\x95"), # 0b10010101
... (u"D4", b"\xea"), # 0b11101010
...], chemfp.Metadata(num_bits=8))
>>> for id, fp in arena:
... print(bitops.hex_encode(fp), id)
...
44 A1
6c B2
95 C3
ea D4

I could use bitops.byte_contains() to search for fingerprints in a loop, in this case with a query fingerprint
which requires that the 7th bit be set (they must fit the pattern 0b*1******):

>>> query_fingerprint = b"\x40" # 0b01000000
>>> bitops.hex_encode(query_fingerprint)
'40'
>>> for id, target_fingerprint in arena:
... if bitops.byte_contains(query_fingerprint, target_fingerprint):
... print(id)
...
A1
B2
D4

This is slow because it uses Python to do almost all of the work. Instead, use contains_fp() from the
chemfp.search module, which is faster because it’s all implemented in C:

>>> from chemfp import search
>>> result = search.contains_fp(query_fingerprint, arena)
>>> result
<chemfp.search.SearchResult object at 0x10195e090>
>>> print(result.get_ids())
['A1', 'B2', 'D4']

4.21. Fingerprint Substructure Screening (experimental) 77

chemfp Documentation, Release 3.4

This is the same SearchResult instance that the similarity search code returns, though the scores are all
0.0:

>>> result.get_ids_and_scores()
[('A1', 0.0), ('B2', 0.0), ('D4', 0.0)]

This API is experimental and likely to change. Please provide feedback. While I don’t think the current call
parameters will change, I might have it return the Tanimoto score (or Hamming distance?) instead of 0.0.
Or I might have a way to compute new scores given a SearchResult.

I also plan to support start/end parameters, to search only a subset of the arena.

There’s also a search.contains_arena() function which takes a query arena instead of only a query fin-
gerprint as the query, and returns a SearchResults:

>>> results = search.contains_arena(arena, arena)
>>> results
<chemfp.search.SearchResults object at 0x10195c2b8>
>>> for result in results:
... print(result.get_ids_and_scores())
...
[('A1', 0.0), ('B2', 0.0)]
[('B2', 0.0)]
[('C3', 0.0)]
[('D4', 0.0)]

I don’t think the NxN version of the “contains” search is all that useful, so there’s no function for that case.

The implementation doesn’t yet support OpenMP, contains_arena() is only slightly faster than multiple
calls to contains_fp().

4.22 Substructure screening with RDKit

In this section you’ll learn how to use RDKit’s pattern fingerprint for substructure screening.

RDKit has a fingerprint tuned for substructure search, though it’s marked as ‘experimental’ and subject to
change. This is the “pattern” fingerprint.

I’ll use it to make a screen for one of the PubChem files. Normally you would start with something like:

% rdkit2fps --pattern Compound_048500001_049000000.sdf.gz -o pubchem_screen.fpb

but that only gives me the identifiers and fingerprints. I want to show some of the struture as well, so I’ll do
a bit of a cheat - I’ll have an augmented identifier which is the PubChem id, followed by a space, followed
by the SMILES string.

I can do this because chemfp supports almost anything as the “identifier”, except newline, tab, and the NUL
character, and because I don’t need to support id lookup.

However, I have to write Python code to generate the augmented identifiers:

import chemfp

fptype = chemfp.get_fingerprint_type("RDKit-Pattern fpSize=1024")
T = fptype.toolkit

(continues on next page)

78 Chapter 4. Fingerprints and fingerprint search examples

http://rdkit.org/docs/source/rdkit.Chem.rdmolops.html#rdkit.Chem.rdmolops.PatternFingerprint

chemfp Documentation, Release 3.4

(continued from previous page)

with chemfp.open_fingerprint_writer("pubchem_screen.fpb", fptype.get_metadata()) as␣
↪→writer:

for id, mol in T.read_ids_and_molecules("Compound_048500001_049000000.sdf.gz"):
smiles = T.create_string(mol, "smistring") # use the isomeric SMILES string
fp = fptype.compute_fingerprint(mol)
Create an "identifier" of the form:
PubChem id + " " + canonical SMILES string
writer.write_fingerprint(id + " " + smiles, fp)

Now that I have the screen, I’ll write some code to actually do the screen. I’ll make this be an interactive
prompt, which asks for the query SMILES string (or “quit” or “exit” to quit), parses the SMILES to a
molecule, generates the fingerprint, does the screen, and displays the first 10 results:

from __future__ import print_function # Only for Python 2
import itertools
import chemfp
import chemfp.search

fptype = chemfp.get_fingerprint_type("RDKit-Pattern fpSize=1024")
T = fptype.toolkit

screen = chemfp.load_fingerprints("pubchem_screen.fpb")
print("Loaded", len(screen), "screen fingerprints")

while 1:
Ask for the query SMILES string
query = input("Query? ") # use "raw_input()" for Python 2.7
if query in ("quit", "exit"):

break

See if it's a valid SMILES
mol = T.parse_molecule(query, "smistring", errors="ignore")
if mol is None:

print("Could not parse query")
continue

Compute the fingerprint and do the substructure screeening
fp = fptype.compute_fingerprint(mol)
result = chemfp.search.contains_fp(fp, screen)

Print the results, up to 10.
n = len(result)
if n > 10:

print(len(result), "matches. First 10 displayed")
n = 10

else:
print(len(result), "matches.")

for augmented_id in itertools.islice(result.iter_ids(), 0, n):
id, smiles = augmented_id.split()
print(id, "=>", smiles)

print()

4.22. Substructure screening with RDKit 79

chemfp Documentation, Release 3.4

(In case you haven’t seen it before, the “itertools.islice()” gives me an easy way to get up to the first N items
from an iterator.)

I’ll try out the above code:

Loaded 5208 screen fingerprints
Query? c1ccccc1
12376 matches. First 10 displayed
48650571 => CCCOCC(=O)NCc1ccccc1
48672998 => CCCOCC(=O)NOCc1ccccc1
48845178 => C=C(Br)CNC(=S)Nc1ccccc1
48548090 => CCNC(=O)N/N=C/c1ccc(C)cc1
48654127 => CCCOCC(=O)NCCSc1ccccc1
48548029 => CCNC(=O)N/N=C/c1cccc(C)c1
48685277 => COCC(C)CNC(=O)c1ccccc1
48915892 => CNC(=O)NCCc1ccccc1Br
48653583 => CCCOCC(=O)N(C)c1ccccc1
48650670 => CCCOCC(=O)Nc1cccc(C)c1

Query? c1ccccc1O
4946 matches. First 10 displayed
48548137 => CCNC(=O)N/N=C/c1cccc(OC)c1
48651969 => CCCOCC(=O)NCc1cccc(OC)c1
48980706 => CCCCNC(=O)CCCc1ccc(OC)cc1
48661290 => CCCOCC(=O)Nc1cccc(OCC)c1
48653813 => CCCOCC(=O)NCCOc1cccc(C)c1
48651499 => CCCOCC(=O)NCc1ccccc1OC
48981063 => COc1ccc(CCCC(=O)NCC(C)C)cc1
48659995 => CCCOCC(=O)Nc1cccc(OCC#N)c1
48916672 => CCCCCCOc1cccc(/C=N/NC(N)=O)c1
48653272 => CCCOCC(=O)NCCc1ccccc1OC

Query? c1ccccc1I
10 matches.
48731386 => Cc1cc(CNC(=O)c2ccc(I)cc2)on1
48671550 => NC(=O)Cc1ccc(OCC(=O)Nc2ccc(I)cc2)cc1
48731482 => Cc1cc(CNC(=O)c2cccc(I)c2)on1
48731331 => Cc1cc(CNC(=O)c2ccccc2I)on1
48741344 => CN(C)C(=O)c1cccc(NC(=O)Nc2ccc(I)cc2)c1
48584231 => O=C(Nc1cccc(COCC2CC2)c1)c1ccccc1I
48688164 => CC1CN(C(=O)c2ccc(I)cc2)CC(C)(C)O1
48688205 => CC1CN(C(=O)c2cccc(I)c2)CC(C)(C)O1
48946427 => N#CC1CCN(S(=O)(=O)c2ccc(I)cc2)CC1
48522115 => CC1(C)COCCN1C(=O)c1ccc(F)cc1I

Query? Fc1c(F)c(F)c(F)c(F)c1F
3 matches.
48759600 => O=C(Nc1cccnc1)Nc1c(F)c(F)c(F)c(F)c1F
48980959 => Cc1cccc2cc(C(=O)Nc3ccc(F)cc3F)oc12
48981022 => Cc1cccc2cc(C(=O)Nc3c(F)cccc3F)oc12

Query? quit

Looks reasonable.

80 Chapter 4. Fingerprints and fingerprint search examples

https://docs.python.org/2/library/itertools.html#itertools.islice

chemfp Documentation, Release 3.4

It’s not hard to add full substructure matching, but it requires toolkit-specific code. Chemfp doesn’t try to
abstract that detail, and I’m not sure it should be part of chemfp. Instead, I’ll write some RDKit-specific
code. Chemfp uses native toolkit molecules, so there’s actually only a single line of RDKit code.

I’ll also completely rewrite the code so it takes the query string on the command-line, reports all of the
screening results, identifies the true positives, and then does a brute-force verification that the screen results
are correct. Oh, and report statistics:

This program is called 'search.py'
from __future__ import print_function # Only for Python 2
import sys
import chemfp
import chemfp.search
from chemfp import rdkit_toolkit as T # Will only work with RDKit
import time

fptype = chemfp.get_fingerprint_type("RDKit-Pattern fpSize=1024")

screen = chemfp.load_fingerprints("pubchem_screen.fpb")
if len(sys.argv) != 2:

raise SystemExit("Usage: %s <smiles>" % (sys.argv[0],))

query_smiles = sys.argv[1]

start_time = time.time()
try:
query_mol = T.parse_molecule(query_smiles, "smistring")

except ValueError as err:
raise SystemExit(str(err))

Compute the fingerprint and do the substructure screeening
fp = fptype.compute_fingerprint(query_mol)
result = chemfp.search.contains_fp(fp, screen)
search_time = time.time()

num_matches = 0

for augmented_id in result.get_ids():
id, smiles = augmented_id.split()
target_mol = T.parse_molecule(smiles, "smistring")
if target_mol.HasSubstructMatch(query_mol): # RDKit specific!

print(id, "matches", smiles)
num_matches += 1

else:
print(id, " ", smiles)

report_time = time.time()

Report the results
print()
print("= Screen search =")
print("num targets:", len(screen))
print("screen size:", len(result))
print("num matches:", num_matches)
print("screenout: %.1f%%" % (100.0 * (len(screen)-len(result)) / len(screen),))

(continues on next page)

4.22. Substructure screening with RDKit 81

chemfp Documentation, Release 3.4

(continued from previous page)

if len(result) == 0:
precision = 100.0

else:
precision = (100.0*num_matches) / len(result)

print("precision: %.1f%%" % (precision,))
print("screen time: %.2f" % (search_time - start_time,))
print("atom-by-atom-search and report time: %.2f" % (report_time - search_time,))
print("total time: %.2f" % (report_time - start_time,))

Reduce the computations without any screening
num_actual = 0
actual_start_time = time.time()
for augmented_id in screen.ids:
id, smiles = augmented_id.split()
target_mol = T.parse_molecule(smiles, "smistring")
if target_mol.HasSubstructMatch(query_mol): # RDKit specific!
num_actual += 1

actual_end_time = time.time()

print()
print("= Brute force search =")
print("num matches:", num_actual)
print("time to test all molecules: %.2f" % (actual_end_time - actual_start_time,))
print("screening speedup: %.1f" % ((actual_end_time - actual_start_time) / (report_time -
↪→ start_time),))

Here’s the output with ‘c1ccccc1O’ on the command-line:

% python search.py c1ccccc1O
48548137 matches CCNC(=O)N/N=C/c1cccc(OC)c1
48651969 matches CCCOCC(=O)NCc1cccc(OC)c1
48980706 matches CCCCNC(=O)CCCc1ccc(OC)cc1
48661290 matches CCCOCC(=O)Nc1cccc(OCC)c1
48653813 matches CCCOCC(=O)NCCOc1cccc(C)c1
... many lines omitted ...

48930672 matches CS(=O)(=O)c1ccc(Oc2nc(C3CC3)nc3sc4c(c23)CCCC4)cc1
48673774 matches COc1ccc(C)cc1-n1ccc(C(=O)N2CCc3[nH]c4ccccc4c3C2)n1
48551088 matches Cc1cc(C)c(CN2C(=O)NC3(CCOc4ccccc43)C2=O)c(C)c1
48944841 matches CC(C)(CNS(=O)(=O)CC12CCC(CC1=O)C2(C)C)c1ccc2c(c1)OCO2
48729925 matches O=C(Cn1c(-c2ccccc2)noc1=O)Nc1ccc2c(c1)OC1(CCCC1)O2

= Screen search =
num targets: 14967
screen size: 4946
num matches: 4943
screenout: 67.0%
precision: 99.9%
screen time: 0.00
atom-by-atom-search and report time: 2.99
total time: 3.00

= Brute force search =
(continues on next page)

82 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

num matches: 4943
time to test all molecules: 5.00
screening speedup: 1.7

It’s a relief to see that the versions with and without the screen give the same number of matches!

Next, ‘c1ccccc1I’ (that’s iodobenzene):

% python search.py 'c1ccccc1I'
48731386 matches Cc1cc(CNC(=O)c2ccc(I)cc2)on1
48671550 matches NC(=O)Cc1ccc(OCC(=O)Nc2ccc(I)cc2)cc1
48731482 matches Cc1cc(CNC(=O)c2cccc(I)c2)on1
48731331 matches Cc1cc(CNC(=O)c2ccccc2I)on1
48741344 matches CN(C)C(=O)c1cccc(NC(=O)Nc2ccc(I)cc2)c1
48584231 matches O=C(Nc1cccc(COCC2CC2)c1)c1ccccc1I
48688164 matches CC1CN(C(=O)c2ccc(I)cc2)CC(C)(C)O1
48688205 matches CC1CN(C(=O)c2cccc(I)c2)CC(C)(C)O1
48946427 matches N#CC1CCN(S(=O)(=O)c2ccc(I)cc2)CC1
48522115 matches CC1(C)COCCN1C(=O)c1ccc(F)cc1I

= Screen search =
num targets: 14967
screen size: 10
num matches: 10
screenout: 99.9%
precision: 100.0%
screen time: 0.01
atom-by-atom-search and report time: 0.01
total time: 0.02

= Brute force search =
num matches: 10
time to test all molecules: 5.17
screening speedup: 281.4

Now for some bad news. Try ‘[Pu]’. This doesn’t screen out many structures yet has no matched. I’ll report
the search statistics:

= Screen search =
num targets: 14967
screen size: 14967
num matches: 0
screenout: 0.0%
precision: 0.0%
screen time: 0.00
atom-by-atom-search and report time: 8.40
total time: 8.40

= Brute force search =
num matches: 0
time to test all molecules: 5.24
screening speedup: 0.6

That’s horrible! It’s slower! What happened is that ‘[Pu]’ generates a fingerprint with only two bits set:

4.22. Substructure screening with RDKit 83

chemfp Documentation, Release 3.4

% echo '[Pu] plutonium' | rdkit2fps --pattern --fpSize 1024
#FPS1
#num_bits=1024
#type=RDKit-Pattern/4 fpSize=1024
#software=RDKit/2019.09.1 chemfp/3.4
#date=2020-05-13T12:12:48
000000002000
00008000
00
0000000000000000 plutonium

You know, that’s really hard to see. I’ll use a bit of perl to replace the zeros with “.”s:

% echo '[Pu] plutonium' | python ../rdkit2fps --pattern --fpSize 1024 \
? | perl -pe 's/0/./g'
#FPS1
#num_bits=1.24
#type=RDKit-Pattern/4 fpSize=1.24
#software=RDKit/2.19..9.1 chemfp/3.4
#date=2.2.-.5-13T12:15:19
........2...
....8...
..
................ plutonium

Ha! And it converted zeros in the header lines to “.” (and it would have converted any zeros in the identifier).
I’ll just omit the header lines in the following.

Unfortunately, so many other structures also set those two bits that it isn’t an effective screen for plutonium.

4.23 Reading structure fingerprints using a toolkit

In this section you’ll learn how to use a chemistry toolkit to compute fingerprints from a given structure file.

What happens if you’re given a structure file and you want to find the two nearest matches in an FPS file?
You’ll have to generate the fingerprints for the structures in the structure file, then do the comparison.

For this section you’ll need to have a chemistry toolkit. I’ll use the “chebi_maccs.fps” file gener-
ated in Using a toolkit to process the ChEBI dataset as the targets, and the PubChem file Com-
pound_099000001_099500000.sdf.gz as the source of query structures:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> from chemfp import search
>>> targets = chemfp.load_fingerprints("chebi_maccs.fps")
>>> queries = chemfp.read_molecule_fingerprints(targets.metadata, "Compound_099000001_
↪→099500000.sdf.gz")
>>> for (query_id, hits) in chemfp.knearest_tanimoto_search(queries, targets, k=2,␣
↪→threshold=0.0):
... print(query_id, "=>", end=" ")
... for (target_id, score) in hits.get_ids_and_scores():
... print("%s %.3f" % (target_id, score), end=" ")
... print()

(continues on next page)

84 Chapter 4. Fingerprints and fingerprint search examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

(continued from previous page)

...
99000039 => CHEBI:116650 0.870 CHEBI:105034 0.812
99000230 => CHEBI:120636 0.840 CHEBI:127468 0.839
99002251 => CHEBI:92604 0.756 CHEBI:92191 0.733
99003537 => CHEBI:112376 0.745 CHEBI:32193 0.696
99003538 => CHEBI:112376 0.745 CHEBI:32193 0.696

... many, many lines omitted ...

That’s it! Pretty simple, wasn’t it? I didn’t even need to explicitly specify which toolkit I wanted to use
because the read_molecule_fingerprints() got that information from the arena’s Metadata.

The new function is chemfp.read_molecule_fingerprints(), which reads a structure file and generates
the appropriate fingerprints for each one. The first parameter of this is the metadata used to configure the
reader. In my case it’s:

>>> print(targets.metadata)
#num_bits=166
#type=OpenBabel-MACCS/2
#software=OpenBabel/3.0.0 chemfp/3.4
#source=ChEBI_lite.sdf.gz
#date=2020-05-12T10:09:35

The metadata’s “type” told chemfp which toolkit to use to read molecules, and how to generate fingerprints
from those molecules.

You can pass in your own metadata as the first parameter to read_molecule_fingerprints, and as a
shortcut, if you pass in a string then it will be used as the fingerprint type.

For examples, if you have OpenBabel installed then you can do:

>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("OpenBabel-MACCS", "Compound_099000001_
↪→099500000.sdf.gz")
>>> for i, (id, fp) in enumerate(reader):
... print(id, bitops.hex_encode(fp))
... if i == 3:
... break
...
99000039 000004000000300001c0004e9361b041dce1676e1f
99000230 000000800100649f0445a7fe2aeab1eb8f6bdfff1f
99002251 00000000001132000088004985601140dce4e3fe1f
99003537 00000000200020000156149a906994830c3159ae1f

If you have OEChem and OEGraphSim installed and licensed then you can do:

>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("OpenEye-MACCS166", "Compound_099000001_
↪→099500000.sdf.gz")
>>> for i, (id, fp) in enumerate(reader):
... print(id, bitops.hex_encode(fp))
... if i == 3:
... break
...
99000039 000004000000300001c0404e93e19053dca06b6e1b

(continues on next page)

4.23. Reading structure fingerprints using a toolkit 85

chemfp Documentation, Release 3.4

(continued from previous page)

99000230 000000880100648f0445a7fe2aeab1738f2a5b7e1b
99002251 00000000001132000088404985e01152dca46b7e1b
99003537 00000000200020000156149a90e994938c30592e1b

And if you have RDKit installed then you can do:

>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_099000001_
↪→099500000.sdf.gz")
>>> for i, (id, fp) in enumerate(reader):
... print(id, bitops.hex_encode(fp))
... if i == 3:
... break
...
99000039 000004000000300001c0004e9361b051dce1676e1f
99000230 000000800100649f0445a7fe2aeab1fb8f6bdfff1f
99002251 00000000001132000088004985601150dce4e3fe1f
99003537 00000000200020000156149a906994930c3159ae1f

4.24 Select a random fingerprint sample

In this section you’ll learn how to make a new arena where the fingerprints are randomly selected from the
old arena.

A FingerprintArena slice creates a subarena. Technically speaking, this is a “view” of the original data.
The subarena doesn’t actually copy its fingerprint data from the original arena. Instead, it uses the same
fingerprint data, but keeps track of the start and end position of the range it needs. This is why it’s not
possible to slice with a step size other than +1.

This also means that memory for a large arena won’t be freed until all of its subarenas are also removed.

You can see some evidence for this because a FingerprintArena stores the entire fingerprint data as a set
of bytes named arena:

>>> import chemfp
>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> subset = targets[10:20]
>>> targets.arena is subset.arena
True

This shows that the targets and subset share the same raw data set. At least it does to me, the person who
wrote the code.

You can ask an arena or subarena to make a copy. This allocates new memory for the new arena and copies
all of its fingerprints there.

>>> new_subset = subset.copy()
>>> len(new_subset) == len(subset)
True
>>> new_subset.arena is subset.arena
False
>>> subset[7][0]

(continues on next page)

86 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

'48637548'
>>> new_subset[7][0]
'48637548'

The copy method can do more than just copy the arena. You can give it a list of indices and it will only
copy those fingerprints:

>>> three_targets = targets.copy([3112, 0, 1234])
>>> three_targets.ids
['48942244', '48568841', '48628197']
>>> [targets.ids[3112], targets.ids[0], targets.ids[1234]]
['48628197', '48942244', '48568841']

Are you confused about why the identifiers aren’t in the same order? That’s because when you specify
indicies, the copy automatically reorders them by popcount and stores the popcount information. This
requires a bit extra overhead to sort, but makes future searches faster. Use reorder=False to leave the
order unchanged

>>> my_ordering = targets.copy([3112, 0, 1234], reorder=False)
>>> my_ordering.ids
['48628197', '48942244', '48568841']

Let’s get back to the main goal of getting a random subset of the data. I want to select m records at random,
without replacement, to make a new data set. You can see this just means making a list with m different
index values. Python’s built-in random.sample function makes this easy:

>>> import random
>>> random.sample("abcdefgh", 3)
['b', 'h', 'f']
>>> random.sample("abcdefgh", 2)
['d', 'a']
>>> random.sample([5, 6, 7, 8, 9], 2)
[7, 9]
>>> help(random.sample)
Help on method sample in module random:

sample(population, k) method of random.Random instance
Chooses k unique random elements from a population sequence or set.
...
To choose a sample in a range of integers, use range as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(range(10000000), 60)

The last line of the help points out what do next!:

>>> random.sample(range(len(targets)), 5)
[610, 2850, 705, 1402, 2635]
>>> random.sample(range(len(targets)), 5)
[1683, 2320, 1385, 2705, 1850]

(Note: on Python 2.7 you’ll need to use “xrange()” not “range()”.)

Putting it all together, and here’s how to get a new arena containing 100 randomly selected fingerprints,
without replacement, from the targets arena:

4.24. Select a random fingerprint sample 87

http://docs.python.org/2/library/random.html#random.sample

chemfp Documentation, Release 3.4

>>> sample_indices = random.sample(range(len(targets)), 100)
>>> sample = targets.copy(indices=sample_indices)
>>> len(sample)
100

4.25 Don’t reorder an arena by popcount

In this section you’ll learn about why you might want to store your fingerprints in specific order, rather than
being ordered by population count.

The previous section showed how to make an arena where the fingerprints are in a user-specified order:

>>> import chemfp
>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> [targets.ids[i] for i in [3112, 0, 1234]]
['48628197', '48942244', '48568841']
>>> targets.copy([3112, 0, 1234], reorder=False).ids
['48628197', '48942244', '48568841']
>>> targets.copy([3112, 0, 1234], reorder=True).ids
['48942244', '48568841', '48628197']

If the reorder option is not specified, the fingerprints in the new arena will be in popcount order. Similarity
search is faster when the arena is in popcount order because it lets chemfp make an index of the different
regions, based on popcount, and use that for sublinear search.

Why would someone want search to be slower?

Sometimes data organization is more important. For one client I developed a SEA implementation, where
I compared a set of query fingerprints to about 50 other sets of target fingerprint sets. The largest set had
only few thousand fingerprints, so the overall search was fast without a popcount index.

I could have stored each target data set as its own file, but that would have resulted in about 50 data files
to manage, in addition to the original fingerprint file and the configuration file containing the information
about which identifiers are in which set.

Instead, I stored all of the target data sets in a single FPB file, where the fingerprints for the first set came
first, then the fingerprints for the second set, and so on. I also made a range file to store the set name and
the start/end range of that set in the FPB file. This reduced 50 files down to two, which was much easier to
manage.

It’s a bit fiddly to go through the details of how this works, because it requires set membership information
which is a bit complicated to extract and which won’t be used for the rest of this documentation. Instead
of walking though an example here, I’ll refer you to my essay ChEMBL target sets association network.

You can use the subranges directly as an arena slice, like arena[54:91] as the target. This will work, but
as I said earlier, the search time will be slower because the sublinear algorithm requires a popcount index.

If you need that search performance then during load time make a copy of the slice, as in arena[54:91].
copy(reorder=True), and use that as the target.

A few paragraphs ago I wrote that “I stored all of the target data sets in a single FPB file.” When you load
an FPB format, the fingerprint order will be exactly as given in the file. However, if you load fingerprints
from an FPS file, the fingerprints are by default reordered. For example, given this data set:

88 Chapter 4. Fingerprints and fingerprint search examples

http://www.dalkescientific.com/writings/diary/archive/2017/03/27/chembl_target_sets_association_network.html

chemfp Documentation, Release 3.4

% cat unordered_example.fps
#FPS1
0001 Record1
ffee Record2
00f0 Record3

I’ll load it into chemfp and show that by default the records are in the order 1, 3, 2:

>>> import chemfp
>>> chemfp.load_fingerprints("unordered_example.fps").ids
['Record1', 'Record3', 'Record2']

On the other hand, if I ask it to not reorder then the records are in the input order, which is 1, 2, 3:

>>> chemfp.load_fingerprints("unordered_example.fps", reorder=False).ids
['Record1', 'Record2', 'Record3']

In short, if you want to preserve the fingerprint order as given in the input file then use the reorder=False
argument in chemfp.load_fingerprints().

4.26 Look up a fingerprint with a given id

In this section you’ll learn how to get a fingerprint record with a given id. You will need the “pub-
chem_targets.fps” file generated in Generate fingerprint files from PubChem SD tags in order to do this
yourself.

All fingerprint records have an identifier and a fingerprint. Identifiers should be unique. (Duplicates are
allowed, and if they exist then the lookup code described in this section will arbitrarily decide which record
to return. Once made, the choice will not change.)

Let’s find the fingerprint for the record in “pubchem_targets.fps” which has the identifier “14564126”. One
solution is to iterate over all of the records in a file, using the FPS reader:

>>> import chemfp
>>> for id, fp in chemfp.open("pubchem_targets.fps"):
... if id == "48500164":
... break
... else:
... raise KeyError("%r not found" % (id,))
...
>>> id, fp[:5]
('48500164', b'\x07\xde\x0c\x00\x00')

I used the somewhat obscure else clause to the for loop. If the for finishes without breaking, which would
happen if the identifier weren’t present, then it will raise an exception saying that it couldn’t find the given
identifier.

If the fingerprint records are already in a FingerprintArena then there’s a better solution. Use the
FingerprintArena.get_fingerprint_by_id() method to get the fingerprint byte string, or None if the
identifier doesn’t exist:

>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> fp = arena.get_fingerprint_by_id("48500164")

(continues on next page)

4.26. Look up a fingerprint with a given id 89

chemfp Documentation, Release 3.4

(continued from previous page)

>>> fp[:5]
b'\x07\xde\x0c\x00\x00'
>>> missing_fp = arena.get_fingerprint_by_id("does-not-exist")
>>> missing_fp
>>> missing_fp is None
True

Internally this does about what you think it would. It uses the arena’s id list to make a lookup table
mapping identifier to index, and caches the table for later use. Given the index, it’s very easy to get the
fingerprint.

In fact, you can get the index and do the record lookup yourself:

>>> arena.get_index_by_id("48500164")
8168
>>> arena[8168]
('48500164', b'\x07\xde\x0c\x00\x00 .. rest omittted ..'')

4.27 Sorting search results

In this section you’ll learn how to sort the search results.

The k-nearest searches return the hits sorted from highest score to lowest, and break ties arbitrarily. This
is usually what you want, and the extra cost to sort is small (k*log(k)) compared to the time needed to
maintain the internal heap (N*log(k)).

By comparison, the threshold searches return the hits in arbitrary order. Sorting takes up to N*log(N) time,
which is extra work for those cases where you don’t want sorted data. If you actually want it sorted, then
call SearchResult.reorder() method to sort the hits in-place:

>>> import chemfp
>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> query_fp = arena.get_fingerprint_by_id("48500164")
>>> from chemfp import search
>>> result = search.threshold_tanimoto_search_fp(query_fp, arena, threshold=0.90)
>>> len(result)
5
>>> result.get_ids_and_scores()
[('48530223', 0.9044585987261147), ('48533220', 0.9230769230769231),
('48533212', 0.9299363057324841), ('48500164', 1.0), ('48501504',
0.906832298136646)]
>>>
>>> result.reorder("decreasing-score")
>>> result.get_ids_and_scores()
[('48500164', 1.0), ('48533212', 0.9299363057324841), ('48533220',
0.9230769230769231), ('48501504', 0.906832298136646),
('48530223', 0.9044585987261147)]
>>>
>>> result.reorder("increasing-score")
>>> result.get_ids_and_scores()
[('48530223', 0.9044585987261147), ('48501504', 0.906832298136646),

(continues on next page)

90 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

('48533220', 0.9230769230769231), ('48533212', 0.9299363057324841),
('48500164', 1.0)]

There are currently six different sort methods, all specified by a name string. These are

• increasing-score - sort by increasing score

• decreasing-score - sort by decreasing score

• increasing-index - sort by increasing target index

• decreasing-index - sort by decreasing target index

• reverse - reverse the current ordering

• move-closest-first - move the hit with the highest score to the first position

The first two should be obvious from the examples. If you find something useful for the next two then let
me know. The “reverse” method reverses the current ordering, and is most useful if you want to reverse the
sorted results from a k-nearest search.

The “move-closest-first” option exists to improve the leader algorithm stage used by the Taylor-Butina
algorithm. The newly seen compound is either in the same cluster as its nearest neighbor or it is the new
centroid. I felt it best to implement this as a special reorder term, rather than one of the other possible
options.

If you have suggestions for alternate orderings which might help improve your clustering performance, let
me know.

If you want to reorder all of the search results then you could use the SearchResult.reorder() method on
each result, but it’s easier to use SearchResults.reorder_all() and change everything in a single call. It
takes the same ordering names as reorder:

>>> from __future__ import print_function # Only for Python 2
>>> similarity_matrix = search.threshold_tanimoto_search_symmetric(
... arena, threshold=0.8)
>>> for query_id, row in zip(arena.ids, similarity_matrix):
... print(query_id, "->", row.get_ids_and_scores()[:3])
...
48942244 -> []
48941399 -> []
48940284 -> []
48943050 -> []
48656359 -> [('48656867', 0.9761904761904762), ('48656360', 0.9111111111111111), (
↪→'48650490', 0.851063829787234)]
48656867 -> [('48656360', 0.8913043478260869), ('48650490', 0.8333333333333334), (
↪→'48521769', 0.8)]
48839855 -> [('48839869', 0.9148936170212766), ('48839845', 0.8775510204081632), (
↪→'48839868', 0.8269230769230769)]

... lines deleted
>>>
>>> similarity_matrix.reorder_all("increasing-score")
>>> for query_id, row in zip(arena.ids, similarity_matrix):
... print(query_id, "->", row.get_ids_and_scores()[:3])
...
48942244 -> []
48941399 -> []

(continues on next page)

4.27. Sorting search results 91

chemfp Documentation, Release 3.4

(continued from previous page)

48940284 -> []
48943050 -> []
48656359 -> [('48680086', 0.803921568627451), ('48693263', 0.803921568627451), ('48693634
↪→', 0.803921568627451)]
48656867 -> [('48521769', 0.8), ('48521768', 0.803921568627451), ('48653206', 0.
↪→803921568627451)]
48839855 -> [('48839868', 0.8269230769230769), ('48839845', 0.8775510204081632), (
↪→'48839869', 0.9148936170212766)]

... lines deleted

For display purposes, I used [:3] to display only the first three matches. In the first block the results are
in arbitrary order, while in the second the elements are sorted so the smallest score is first.

4.28 Working with raw scores and counts in a range

In this section you’ll learn how to get the hit counts and raw scores for an interval.

The length of a SearchResult is the number of hits it contains:

>>> import chemfp
>>> from chemfp import search
>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> fp = arena.get_fingerprint_by_id("48500164")
>>> result = search.threshold_tanimoto_search_fp(fp, arena, threshold=0.2)
>>> len(result)
14888

This gives you the number of hits at or above a threshold of 0.2, which you can also get by doing chemfp.
search.count_tanimoto_hits_fp():

>>> search.count_tanimoto_hits_fp(fp, arena, threshold=0.2)
14888

The advantage to the first version is the result also stores the hits. You can query the hit to get the number
of hits which are within a specified interval. Here are the counts of the number of hits at or above 0.5, 0.80,
and 0.95:

>>> result.count(0.5)
7785
>>> result.count(0.8)
42
>>> result.count(0.95)
1

The first parameter, min_score, specifies the minimum threshold. If not specified it’s -infinity. The second,
max_score, specifies the maximum, and is +infinity if not specified. Here’s how to get the number of hits
with a score of at most 0.95 and 0.5:

>>> result.count(max_score=0.95)
14887
>>> result.count(max_score=0.5)
7209

92 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

If you double-check the math, and add the number above 0.5 (7785) and the number below 0.5 (7209) you’ll
get 14994, even through there are only 14888 records. The extra 106 is because by default the count interval
uses a closed range. There are 106 hits with a score of exactly 0.5:

>>> result.count(0.5, 0.5)
106

The third parameter, interval, specifies the end conditions. The default is “[]” which means that both ends
are closed. The interval “()” means that both ends are open, and “[)” and “(]” are the two half-open/half-
closed ranges. To get the number of hits below 0.5 and the number of hits at or above 0.5 then you might
use:

>>> result.count(None, 0.5, "[)")
7103
>>> result.count(0.5, None, "[]")
7785
>>> 7103+7785
14888

This total matches the expected count. (A min or max of None means -infinity and +infinity, respectively.)

4.29 Cumulative search result counts and scores

In this section you’ll learn some more advanced ways to work with SearchResults and SearchResult instances.

I wanted to title this section “Going to SEA”, but decided to use a more descriptive name. “SEA” refers to
the “Similarity Ensemble Approach” (SEA) work of Keiser, Roth, Armbruster, Ernsberger, and Irwin. The
paper is available online from http://sea.bkslab.org/ , though I won’t actually implement it here. Why do
I mention it? Because these chemfp methods were added specifically to make it easier to support a SEA
implementation for one of the chemfp customers.

Suppose you have two sets of structures. How well do they compare to each other? I can think of various
ways to do it. One is to look at a comparison profile. Find all NxM comparisons between the two sets. How
many of the hits have a threshold of 0.2? How many at 0.5? 0.95?

If there are “many”, then the two sets are likely more similar than not. If the answer is “few”, then they are
likely rather distinct.

I’ll be more specific. I want to know if the coenzyme A-like structures in ChEBI are more similar to the
penicillin-like structures than one would expect by comparing two randomly chosen subsets. To quantify
“similar”, I’ll use Tanimoto similarity of the “chebi_maccs.fps” fingerprints, which are the 166 MACCS key-
like fingerprints from RDMACCS for the ChEBI data set. See Using a toolkit to process the ChEBI dataset
for details about why I use the --id-tag options:

Use one of the following to create chebi_maccs.fps
oe2fps --id-tag "ChEBI ID" --rdmaccs ChEBI_lite.sdf.gz -o chebi_maccs.fps
ob2fps --id-tag "ChEBI ID" --rdmaccs ChEBI_lite.sdf.gz -o chebi_maccs.fps
rdkit --id-tag "ChEBI ID" --rdmaccs ChEBI_lite.sdf.gz -o chebi_maccs.fps

I used oe2fps to create RDMACCS-OpenEye fingerprints.

The CHEBI id for coenzyme A is CHEBI:15346 and for penicillin is CHEBI:17334. I’ll define the “coenzyme
A-like” structures as the 256 structures where the fingerprint is at least 0.95 similar to coenzyme A, and
“penicillin-like” as the 24 structures at least 0.85 similar to penicillin. This gives 6144 total comparisons.

4.29. Cumulative search result counts and scores 93

http://sea.bkslab.org/
ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz

chemfp Documentation, Release 3.4

You know enough to do this, but there’s a nice optimization I haven’t told you about. You can get the total
count of all of the threshold hits using the chemfp.search.SearchResults.count_all() method instead
of looping over each SearchResult and calling chemfp.search.SearchResult.count():

from __future__ import print_function # Only for Python 2
import chemfp
from chemfp import search

def get_neighbors_as_arena(arena, id, threshold):
fp = arena.get_fingerprint_by_id(id)
neighbor_results = search.threshold_tanimoto_search_fp(fp, chebi,␣

↪→threshold=threshold)
neighbor_arena = arena.copy(neighbor_results.get_indices())
return neighbor_arena

chebi = chemfp.load_fingerprints("chebi_maccs.fps")

Find the 256 neighbors of coenzyme A
coA_arena = get_neighbors_as_arena(chebi, "CHEBI:15346", threshold=0.95)
print(len(coA_arena), "coenzyme A-like structures")

Find the 24 neighbors of penicillin
penicillin_arena = get_neighbors_as_arena(chebi, "CHEBI:17334", threshold=0.85)
print(len(penicillin_arena), "penicillin-like structures")

I'll compute a profile at different thresholds
thresholds = [0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 0.95]

Compare the two sets. (For this case the speed difference between a threshold
of 0.25 and 0.0 is not noticible, but having it makes me feel better.)
coA_against_penicillin_result = search.threshold_tanimoto_search_arena(

coA_arena, penicillin_arena, threshold=min(thresholds))

Show a similarity profile
print("Counts coA/penicillin")
for threshold in thresholds:

print(" %.2f %5d" % (threshold,
coA_against_penicillin_result.count_all(min_

↪→score=threshold)))

This gives a not very useful output:

272 coenzyme A-like structures
24 penicillin-like structures
Counts coA/penicillin
0.30 6528
0.35 6528
0.40 6523
0.45 4403
0.50 1193
0.55 0
0.60 0
0.70 0
0.80 0

(continues on next page)

94 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

0.90 0
0.95 0

It’s not useful because it’s not possible to make any decisions from this. Are the numbers high or low?
It should be low, because these are two quite different structure classes, but there’s nothing to compare it
against.

I need some sort of background reference. What I’ll do is construct two randomly chosen sets, one with 256
fingerprints and the other with 24, and generate the same similarity profile with them. That isn’t quite fair,
since randomly chosen sets will most likely be diverse. Instead, I’ll pick one fingerprint at random, then get
its 256 or 24, respectively, nearest neighbors as the set members (place the following code at the end of the
file with the previous code):

Get background statistics for random similarity groups of the same size
import random

Find a fingerprint at random, get its k neighbors, return them as a new arena
def get_random_fp_and_its_k_neighbors(arena, k):

fp = arena[random.randrange(len(arena))][1]
similar_search = search.knearest_tanimoto_search_fp(fp, arena, k)
return arena.copy(similar_search.get_indices())

I’ll construct 1000 pairs of sets this way, accumulate the threshold profile, and compare the CoA/penicillin
profile to it:

Initialize the threshold counts to 0
total_background_counts = dict.fromkeys(thresholds, 0)

REPEAT = 1000
for i in range(REPEAT):

Select background sets of the same size and accumulate the threshold count totals
set1 = get_random_fp_and_its_k_neighbors(chebi, len(coA_arena))
set2 = get_random_fp_and_its_k_neighbors(chebi, len(penicillin_arena))
background_search = search.threshold_tanimoto_search_arena(set1, set2,␣

↪→threshold=min(thresholds))
for threshold in thresholds:

total_background_counts[threshold] += background_search.count_all(min_
↪→score=threshold)

print("Counts coA/penicillin background")
for threshold in thresholds:

print(" %.2f %5d %5d" % (threshold,
coA_against_penicillin_result.count_all(min_

↪→score=threshold),
total_background_counts[threshold] /␣

↪→(REPEAT+0.0)))

Your output should now have something like this at the end:

Counts coA/penicillin background
0.30 6528 2798
0.35 6528 2273
0.40 6523 1789

(continues on next page)

4.29. Cumulative search result counts and scores 95

chemfp Documentation, Release 3.4

(continued from previous page)

0.45 4403 1301
0.50 1193 988
0.55 0 656
0.60 0 411
0.70 0 160
0.80 0 54
0.90 0 15
0.95 0 0

This is a bit hard to interpret. Clearly the coenzyme A and penicillin sets are not closely similar, but
for low Tanimoto scores the similarity is higher than expected. That difficulty is okay for now because I
mostly wanted to show an example of how to use the chemfp API. If you want to dive deeper into this sort
of analysis then read a three-part series I wrote at http://www.dalkescientific.com/writings/diary/archive/
2017/03/20/fingerprint_set_similarity.html on using chemfp to build a target set association network using
ChEMBL.

The SEA paper actually wants you to use the raw score, which is the sum of the hit scores in a given range,
and not just the number of hits. No problem! Use SearchResult.cumulative_score() for the cumulative
scores for an individual result, or SearchResults.cumulative_score_all() for the cumulative scores across
all of the results. The two functions compute almost identical values for the whole data set:

>>> sum(row.cumulative_score(min_score=0.5, max_score=0.9)
... for row in coA_against_penicillin_result)
605.5158868869943
>>> coA_against_penicillin_result.cumulative_score_all(min_score=0.5, max_score=0.9)
605.5158868869953

The cumulative methods, like the count method you learned about in the previous section, also take the
interval parameter for when you don’t want the default of “[]”.

You may wonder why these two values aren’t exactly the same. They differ because floating point addition
is not associative. The first computes the sum for each result, then the sum of sums. The second computes
the sum by adding each score to the cumulative sum.

I get a different result if I sum up the values in reverse order:

>>> sum(list(row.cumulative_score(min_score=0.5, max_score=0.9)
... for row in coA_against_penicillin_result)[::-1])
605.5158868869959

Which is the “right” score? The cumulative_score_all() method at least matches the one you might write
if you computed the sum directly:

>>> total_score = 0.0
>>> for row_scores in coA_against_penicillin_result.iter_scores():
... for score in row_scores:
... if 0.5 <= score <= 0.9:
... total_score += score
...
>>> total_score
605.5158868869953

96 Chapter 4. Fingerprints and fingerprint search examples

http://www.dalkescientific.com/writings/diary/archive/2017/03/20/fingerprint_set_similarity.html
http://www.dalkescientific.com/writings/diary/archive/2017/03/20/fingerprint_set_similarity.html

chemfp Documentation, Release 3.4

4.30 Writing fingerprints with a fingerprint writer

In this section you’ll learn how to create a fingerprint file using the chemfp fingerprint writer API.

You probably don’t need this section. In most cases you can save the contents of an FPS reader or fingerprint
arena by using the FingerprintReader.save() method, as in the following examples:

chemfp.open("pubchem_targets.fps").save("example.fps")
chemfp.open("pubchem_targets.fps").save("example.fpb")
chemfp.open("pubchem_targets.fpb").save("example.fps.gz")

The structure-based fingerprint readers also implement the save method so you could simply write:

import chemfp
reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_099000001_
↪→099500000.sdf.gz")
reader.save("example.fps") # or "example.fpb"

However, if you generate the fingerprints yourself, or want more fine-grained control over the writer param-
eters then read on!

(If you don’t have RDKit installed then use “OpenBabel-MACCS” for Open Babel’s MACCS fingerprints,
and “OpenEye-MACCS166” for OpenEye’s.)

Here’s an example of the fingerprint writer API. I open the writer, ask it to write a fingerprint id and the
fingerprint, and then close it.

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer("example.fps")
>>> writer.write_fingerprint("ABC123", b"\0\0\0\0\0\3\2\1")
>>> writer.close()

I’ll ask Python to read the file and print the contents:

>>> from __future__ import print_function # Only for Python 2
>>> print(open("example.fps").read())
#FPS1
0000000000030201 ABC123

Of course you don’t need to use chemfp to write this file. It’s simple enough that you could get the same
result in fewer lines of normal Python code. The advantage starts to be useful when you want to include
metadata.

>>> metadata = chemfp.Metadata(num_bits=64, type="Example-FP/0")
>>> writer = chemfp.open_fingerprint_writer("example.fps", metadata)
>>> writer.write_fingerprint("ABC123", b"\0\0\0\0\0\3\2\1")
>>> writer.close()
>>>
>>> print(open("example.fps").read())
#FPS1
#num_bits=64
#type=Example-FP/0
0000000000030201 ABC123

Even then, native Python code is probably easier to use if you know what the header lines will be, because
it’s a bit of a nuisance to create the chemfp.Metadata yourself.

4.30. Writing fingerprints with a fingerprint writer 97

chemfp Documentation, Release 3.4

On the other hand, if you have a chemfp fingerprint type you can just ask it for the correct metadata instance:

>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> metadata = fptype.get_metadata()
>>> metadata
Metadata(num_bits=166, num_bytes=21, type='RDKit-MACCS166/2',
aromaticity=None, sources=[], software='RDKit/2019.09.1
chemfp/3.4', date='2020-05-13T13:34:37')

Putting the two together, and switching to a 21 byte fingerprint instead of an 8 byte fingerprint, gives:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> writer = chemfp.open_fingerprint_writer("example.fps", fptype.get_metadata())
>>> writer.write_fingerprint("ABC123", b
↪→"\0\1\2\3\4\5\6\7\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10\x11\x12\x13\x14")
>>> writer.close()
>>>
>>> print(open("example.fps").read())
#FPS1
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2019.09.1 chemfp/3.4
#date=2020-05-13T13:35:23
000102030405060708090a0b0c0d0e0f1011121314 ABC123

In real life that fingerprint comes from somewhere. The high-level structure-based fingerprint reader has a
handy metadata attribute:

>>> filename = "Compound_099000001_099500000.sdf.gz"
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
>>> print(reader.metadata)
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2019.09.1chemfp/3.4
#source=Compound_099000001_099500000.sdf.gz
#date=2020-05-13T13:36:11

By the way, note that this includes the source filename, which FingerprintType.get_metadata() can’t
automatically do. (See Merging multiple structure-based fingerprint sources for an example of how to pass
that information to get_metadata().)

A structure-based fingerprint reader is just like any other reader, so you can iterate over the (id, fingerprint)
pairs:

>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
>>> for count, (id, fp) in enumerate(reader):
... print(id, "=>", bitops.hex_encode(fp))
... if count == 5:
... break
...
99000039 => 000004000000300001c0004e9361b051dce1676e1f

(continues on next page)

98 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

99000230 => 000000800100649f0445a7fe2aeab1fb8f6bdfff1f
99002251 => 00000000001132000088004985601150dce4e3fe1f
99003537 => 00000000200020000156149a906994930c3159ae1f
99003538 => 00000000200020000156149a906994930c3159ae1f
99005028 => 00000000000000008000004e84683ca49100f7fa1f

You probably already see how to combine this with FingerprintWriter.write_fingerprint() to generate
the FPS output. The key part would look like:

for id, fp in reader:
writer.write_fingerprint(id, fp)

While that would work, there’s a better way. The chemfp fingerprint writer has a FingerprintWriter.
write_fingerprints() method which takes a list or iterator of (id, fingerprint) pairs. Here’s a better way
to write the code:

import chemfp
filename = "Compound_099000001_099500000.sdf.gz"
reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
writer = chemfp.open_fingerprint_writer("example.fps", reader.metadata)
writer.write_fingerprints(reader)
writer.close()
reader.close()
Note: See the next section for an even better solution
which uses a context manager.

This produces output which starts:

#FPS1
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2019.09.1 chemfp/3.4
#source=Compound_099000001_099500000.sdf.gz
#date=2020-05-13T13:38:31
000004000000300001c0004e9361b051dce1676e1f 99000039
000000800100649f0445a7fe2aeab1fb8f6bdfff1f 99000230
00000000001132000088004985601150dce4e3fe1f 99002251
00000000200020000156149a906994930c3159ae1f 99003537

Why is write_fingerprints “better” than multiple calls to write_fingerprint? I think it more directly
describes the goal of writing all of the fingerprints, rather than the mechanics of unpacking and repacking
the (id, fingerprint) pairs. I had hoped that there would be performance improvement, because there’s less
Python function call overhead, but my timings show no differences.

However, there’s a still better way, which is to use a context manager to close the files automatically, rather
than calling close() explicitly. I’ll leave that for the next section.

4.31 Fingerprint readers and writers are context managers

In this section you’ll learn how the fingerprint readers and writers can be used as a context manager.

The previous section ended with the following code:

4.31. Fingerprint readers and writers are context managers 99

https://www.python.org/dev/peps/pep-0343/

chemfp Documentation, Release 3.4

import chemfp
filename = "Compound_099000001_099500000.sdf.gz"
reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
writer = chemfp.open_fingerprint_writer("example.fps", reader.metadata)
writer.write_fingerprints(reader)
writer.close()
reader.close()

This reads a PubChem file with RDKit, generates MACCS fingerprints, and saves the results to “exam-
ple.fps”.

The two FingerprintWriter.close() lines ensure that the reader and writer files are closed. This isn’t
required for a simple script, because Python will close the files automatically at the end of the script, or
when the garbage collector kicks in.

However, since the writer may buffer the output, you have to close the file before you or another program
can read it. It’s good practice to always close the file when you’re done with it, as otherwise there are ways
to get really confused about why you don’t have a complete file.

Even with the explicit close calls, if there’s an exception in FingerprintWriter.write_fingerprints()
then the files will be left open. In older-style Python this was handled with a try/finally block, but that’s
verbose. Instead, chemfp’s readers and writers implement modern Python’s context manager API, to make
it easier to close files automatically at just the right place. Here’s what the above looks like with a context
manager:

import chemfp
filename = "Compound_099000001_099500000.sdf.gz"
with chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename) as reader:

with chemfp.open_fingerprint_writer("example.fps", reader.metadata) as writer:
writer.write_fingerprints(reader)

Isn’t that nice and short? Just bear in mind that it’s even more succinctly written as:

import chemfp
filename = "Compound_099000001_099500000.sdf.gz"
with chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename) as reader:

reader.save("example.fps")

4.32 Write fingerprints to stdout or a file-like object

In this section you’ll learn how to write fingerprints to stdout, and how to write them to a BytesIO instance.

The previous section showed examples of passing a filename string to chemfp.open_fingerprint_writer().
If the filename argument is None then the writer will write to stdout in uncompressed FPS format:

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer(None,
... chemfp.Metadata(num_bits=16, type="Experiment/1"))
#FPS1
#num_bits=16
#type=Experiment/1
>>> writer.write_fingerprint("QWERTY", b"AA")
4141 QWERTY

(continues on next page)

100 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

>>> writer.write_fingerprint("SHRDLU", b"\0\1")
0001 SHRDLU
>>> writer.close()

The filename argument may also be a file-like object, which is defined as any object which implements the
method write(s) where s is a byte string. A io.BytesIO instance is one such file-like object. It gives access
to the output as a byte string:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> from io import BytesIO
>>> f = BytesIO()
>>> writer = chemfp.open_fingerprint_writer(f, chemfp.Metadata(num_bits=16, type=
↪→"Experiment/1"))
>>> print(f.getvalue().decode("utf8")) # convert byte string to text
#FPS1
#num_bits=16
#type=Experiment/1

>>> writer.write_fingerprint("ETAOIN", b"00")
>>> writer.close()
>>> print(f.getvalue().decode("utf8")) # convert byte string to text
#FPS1
#num_bits=16
#type=Experiment/1
3030 ETAOIN

You can see that closing the fingerprint writer does not close the underlying file-like object. (If it did then
you couldn’t get access to the string content, which gets deleted when the StringIO is closed.)

You can also write an FPB file to a file-like object, if it supports seek() and tell() and binary writes. This
means that you cannot write an FPB format to stdout, but you can write it to a BytesIO instance.

>>> import chemfp
>>> from io import BytesIO
>>> f = BytesIO()
>>> writer = chemfp.open_fingerprint_writer(f, format="fpb")
>>> writer.write_fingerprint("ID123", b"\x01\xfe")
>>> writer.close()
>>> len(f.getvalue())
2269

4.33 Writing fingerprints to an FPB file

In this section you’ll learn how to write an FPB file.

The FPS file is a text format which was designed to be easy to read and write. The FPB file is a binary
format which is designed to be fast to load. Internally it stores the fingerprints in a way which can be
mapped directly to the arena data structure. However, writing this format yourself is not easy.

Instead, let chemfp do it for you. With the chemfp.open_fingerprint_writer() function, the difference
between writing an FPS file and an FPB file is a matter of changing the extension. Here’s a simple example:

4.33. Writing fingerprints to an FPB file 101

https://docs.python.org/2/library/io.html#io.BytesIO

chemfp Documentation, Release 3.4

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer("simple.fpb")
>>> writer.write_fingerprints([("first", b"\xff\xff"), ("second", b"ZZ"), ("third", b
↪→"\1\2")])
>>> writer.close()

Almost all you need to know is to use the “.fpb” extension instead of “.fps”. The rest of this section goes into
low-level details that might be enlightening, but probably aren’t that directly useful for most people.

It’s hard to show the content of the FPB file, because it is binary. I’ll do a character dump to show the first
96 bytes:

% od -c simple.fpb
0000000 F P B 1 \r \n \0 \0 \r \0 \0 \0 \0 \0 \0 \0
0000020 M E T A # n u m _ b i t s = 1 6
0000040 \n # \0 \0 \0 \0 \0 \0 \0 A R E N 002 \0 \0
0000060 \0 \b \0 \0 \0 002 \0 \0 001 002 \0 \0 \0 \0 \0 \0
0000100 Z Z \0 \0 \0 \0 \0 \0 377 377 \0 \0 \0 \0 \0 \0
0000120 H \0 \0 \0 \0 \0 \0 \0 P O P C \0 \0 \0 \0
...

The first eight bytes are the file signature. Following that are a set of blocks, with eight bytes for the length,
a four byte block type name, and then the block content. Here you can see the “META”data block, followed
by the “AREN”a block containing the fingerprint data, followed by the start of the “POPC”ount block with
the popcount index information.

That’s probably a bit too much detail for you. I’ll use chemfp to read the file and show the contents:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> reader = chemfp.open("simple.fpb")
>>> print(reader.metadata)
#num_bits=16

>>> from chemfp import bitops
>>> for id, fp in reader:
... print(id, "=>", bitops.hex_encode(fp))
...
third => 0102
second => 5a5a
first => ffff

Unlike the FPS format, the FPB format requires a num_bits in the metadata. Since I didn’t give the writer
that information, it figured it out from the number of bytes in the first written fingerprint.

You can see that record order is different than the input order. While the FPS fingerprint writer preserves
input order, the FPB writer will reorder the records by population count, so the records with fewer ‘on’ bits
come first. It then creates a popcount index, to mark the start and end location of all of the fingerprints
with a given popcount. This is used to pre-compute the popcount for a fingerprint, and quickly reject some
of the similarity search space.

Use the reorder parameter to control if the fingerprints should be reordered. The default is True, and False
will preserve the input order:

102 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

>>> writer = chemfp.open_fingerprint_writer("simple.fpb", reorder=False)
>>> writer.write_fingerprints([("first", b"\xff\xff"), ("second", b"ZZ"), ("third", b
↪→"\1\2")])
>>> writer.close()
>>>
>>> reader = chemfp.open("simple.fpb")
>>> for id, fp in reader:
... print(id, "=>", bitops.hex_encode(fp))
...
first => ffff
second => 5a5a
third => 0102

You might think it’s a bit useless to preserve input order, because the performance won’t be as fast. It’s
actually proved useful for one project, where the targets were broken up into clusters, and cluster membership
was done using a SEA analysis. Rather than have a few dozen separate fingerprint files, I stored everything
in the same file (including duplicate fingerprints), and used a configuration file which specified the cluster
name and its range in the file. This made it a lot easier to organize the data, and since there were only a
few thousand fingerprints sublinear search performance wasn’t needed.

The FPB fingerprint writer also has an alignment option. If you look very carefully at the character dump
you can see that the fingerprints are eight byte aligned:

0000040 \n # \0 \0 \0 \0 \0 \0 \0 A R E N 002 \0 \0
0000060 \0 \b \0 \0 \0 002 \0 \0 001 002 \0 \0 \0 \0 \0 \0
0000100 Z Z \0 \0 \0 \0 \0 \0 377 377 \0 \0 \0 \0 \0 \0
0000120 H \0 \0 \0 \0 \0 \0 \0 P O P C \0 \0 \0 \0

The “AREN” is the start of the arena block, the next four bytes (“002 0 0 0 0”) are the number of bytes
in a fingerprint, in this case 2. The four bytes after that (“b 0 0 0”) are the number of bytes allocated for
each fingerprint; “b” is the escape code for backspace, or ASCII 8. Yes, 8 bytes are used even though the
fingerprints only have 2 bytes in them. This is because the FPB format expects to be able to use the 8 byte
“POPC” assembly instruction, if available, because that has the fastest performance.

After the storage size field is a byte for the spacer length. The “002” means two NUL spacer characters
follow. This is used to put the start of the first fingerprint on the eight byte boundary, so there will be no
alignment issues with using the POPC instruction. (This is not that important for recent Intel processors,
but Intel isn’t the only processor in the world.)

Finally you see the fingerprints; the first fingerprint is “001 002”, followed by six NUL characters to fill up
the 8 bytes of storage, the second is “Z Z” followed by six more NUL pad characters, etc.

If you are really working with a two byte fingerprint, then six NUL characters is likely a waste of space. You
can ask chemfp to use a two byte alignment instead:

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer("simple.fpb", alignment=2)
>>> writer.write_fingerprints([("first", b"\xff\xff"), ("second", b"ZZ"), ("third", b
↪→"\1\2")])
>>> writer.close()

giving:

% od -c simple.fpb
0000000 F P B 1 \r \n \0 \0 \r \0 \0 \0 \0 \0 \0 \0

(continues on next page)

4.33. Writing fingerprints to an FPB file 103

chemfp Documentation, Release 3.4

(continued from previous page)

0000020 M E T A # n u m _ b i t s = 1 6
0000040 \n 017 \0 \0 \0 \0 \0 \0 \0 A R E N 002 \0 \0
0000060 \0 002 \0 \0 \0 \0 001 002 Z Z 377 377 H \0 \0 \0
0000100 \0 \0 \0 \0 P O P C \0 \0 \0 \0 \0 \0 \0 \0

If you stare at it long enough you’ll see that the storage size is now two bytes, and that the fingerprints are
arranged without any padding. (Actually, since chemfp’s two byte popcount uses character pointers, you
could even use 1 byte alignment without a performance hit. But all this will do is save you at most one byte
of spacer.)

Going in the other direction, it’s possible to specify up to 256 bytes of alignment. This is far beyond any
conceivable use. Even the AVX instructions need only 256 bits, or 32 byte alignment, and that’s not a
requirement, only a performance optimization to avoid a cache line split.

(If some future instruction set needs a larger alignment then the FPB format acquire a new block type which
provides the right alignment.)

4.34 Specify the output fingerprint format

In this section you’ll learn about the format option to the fingerprint writer.

By default chemfp.open_fingerprint_writer() uses the destination filename’s extension to determine if
it should write an FPS file (“.fps”), a gzip compressed FPS file (“.fps.gz”), a zstandard compressed FPS file
(“.fps.zst”) or an FPB file (“.fpb”). If it doesn’t recognize the extension, or if the filename is None (to write
to stdout) then it will assume the FPS format.

If the destination is a file-like object then things become a bit more complicated. If the object has a name
attribute, which is the case with real file objects, then that will be examined for any known extension. That’s
why the following writes the output in fps.gz format:

>>> import chemfp
>>> f = open("example.fps.gz", "wb") # must be in binary mode!
>>> writer = chemfp.open_fingerprint_writer(f)
>>> writer.write_fingerprint("ABC", b"\0\0\0\0")
>>> writer.close()
>>> f.close()
>>> open("example.fps.gz", "rb").read() # must be in binary mode!
b"\x1f\x8b\x08\x08K\xfc\xbb^\x02\xffexample.fps\x00S ... mode deleted
>>>
>>> import gzip
>>> print(gzip.open("example.fps.gz").read())
b'#FPS1\n00000000\tABC\n'
>>> print(gzip.open("example.fps.gz").read().decode("utf8"))
#FPS1
00000000 ABC

There’s a large amount of magic behind the scenes to connect the filename in the Python open() call to the
chemfp output format.

The other solution is to just tell it which format to use, with the format parameter. For example, if you
want to send the output to stdout in gzip compressed FPS format then do:

writer = chemfp.open_fingerprint_writer(None, format="fps.gz")

104 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

If you want to save an FPB file to a BytesIO instance then do:

from io import BytesIO
f = BytesIO()
writer = chemfp.open_fingerprint_writer(f, format="fpb")

And if you really want to save to a file with an “.fpb” extension but have it as an FPS file, then do:

writer = chemfp.open_fingerprint_writer("really_an_fps_file.fpb", format="fps")

But that would be silly.

4.35 Merging multiple structure-based fingerprint sources

In this section you’ll learn how to merge multiple fingerprint scores into a single file, and include the full list
of source filenames.

The structure-based fingerprint readers include a source filename in the metadata:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> filename = "Compound_099000001_099500000.sdf.gz"
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
>>> print(reader.metadata)
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2019.09.1 chemfp/3.4
#source=Compound_099000001_099500000.sdf.gz
#date=2020-05-13T13:57:58

If you have a single input file and a single output file then you can save the reader to an FPS or FPB file
directly:

>>> reader.save("example.fpb")
>>> reader.close()

Strictly speaking, the close() is rarely necessary as the garbage collector will close the file during finalization.
Still, it’s good practice to close file, and to use a context manager to ensure that the file is always closed.
Here’s what that looks like:

>>> with chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename) as reader:
... reader.save("example.fpb")

However you create it, the output file will have the original metadata:

>>> arena = chemfp.open("example.fpb")
>>> print(arena.metadata)
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2019.09.1 chemfp/3.4
#source=Compound_099000001_099500000.sdf.gz
#date=2020-05-13T13:58:42

4.35. Merging multiple structure-based fingerprint sources 105

chemfp Documentation, Release 3.4

What happens if you want to want to merge multiple files? How does the output fingerprint file get the
correct metadata?

I’ll demonstrate the problem by computing fingerprints from two structure files. I’ll get the fingerprint type
and ask it to create a metadata instance:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> filenames = ["Compound_099000001_099500000.sdf.gz", "Compound_048500001_049000000.
↪→sdf.gz"]
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> print(fptype.get_metadata())
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2019.09.1 chemfp/3.4
#date=2020-05-13T14:00:13

The problem is that I also want to include the filenames as source fields in the metadata. The fingerprint
type doesn’t have this information. Instead, I’ll them in through the sources parameter, which takes a string
or a list of strings:

>>> metadata = fptype.get_metadata(sources=filenames)
>>> print(metadata)
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2019.09.1 chemfp/3.4
#source=Compound_099000001_099500000.sdf.gz
#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-13T14:00:34

What remains is to pass this metadata to the fingerprint writer, then loop through the structure filenames
to compute the fingerprints and send them to the writer:

>>> with chemfp.open_fingerprint_writer("example.fpb", metadata=metadata) as writer:
... for filename in filenames:
... with fptype.read_molecule_fingerprints(filename) as reader:
... writer.write_fingerprints(reader)
...

Here’s a quick check to see that the metadata was saved correctly:

>>> print(chemfp.open("example.fpb").metadata)
#num_bits=166
#type=RDKit-MACCS166/2
#software=RDKit/2019.09.1 chemfp/3.4
#source=Compound_099000001_099500000.sdf.gz
#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-13T14:00:34

If your toolkit can’t parse one of the records then it will raise an exception. You likely want it to ignore
errors, which you can do with the errors option to chemfp.read_molecule_fingerprints(). The final code
for this section looks like:

import chemfp

(continues on next page)

106 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

filenames = ["Compound_099000001_099500000.sdf.gz", "Compound_048500001_049000000.sdf.gz
↪→"]

fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
metadata = fptype.get_metadata(sources=filenames)

with chemfp.open_fingerprint_writer("example.fpb", metadata=metadata) as writer:
for filename in filenames:

with fptype.read_molecule_fingerprints(filename, errors="ignore") as reader:
writer.write_fingerprints(reader)

4.36 Merging multiple fingerprint files

In this section you’ll learn how to make a modified copy of a metadata instance.

The previous section merged multiple structure-based fingerprints, and used the fingerprint type to get the
correct metadata instance.

What if you want to merge several existing fingerprint files, and those use a fingerprint type that chemfp
doesn’t understand? In that case there is no chemfp fingerprint type, and therefore no get_metadata()
method to call. Instead, you’ll need some other way to make a chemfp.Metadata instance.

I’ll work through a solution, and start by using sdf2fps to extract the PubChem/CACTVS fingerprints from
two PubChem SD files:

% sdf2fps --pubchem Compound_099000001_099500000.sdf.gz -o Compound_099000001_099500000.
↪→fps
% sdf2fps --pubchem Compound_048500001_049000000.sdf.gz -o Compound_048500001_049000000.
↪→fps
% head -7 Compound_099000001_099500000.fps | fold
#FPS1
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_099000001_099500000.sdf.gz
#date=2020-05-13T14:03:21
07de0d000000000000000000000000000000000000003c060100a0010000008d2f00007800080000
0030148379203c034f13080015c0acee2a00410104ac4004101b851d261b10065f03ab8f29a41106
69001393e338d1017100000000204000000000000010200000000000000000 99000039
% head -7 Compound_048500001_049000000.fps | fold
#FPS1
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-13T14:03:34
07de05000000000000000000000000000080060000000c060000000000001a802f00007800080000
00b01483f920cc0b6d9309001de0e44e2e004501b48548059099051d2e1911174503998d29041016
69401313f40801007010000000000000040800000000000002000000000000 48500020

Of course you could just ignore the header data, which is what the following does:

4.36. Merging multiple fingerprint files 107

chemfp Documentation, Release 3.4

import chemfp

filenames = ["Compound_099000001_099500000.fps", "Compound_048500001_049000000.fps"]

with chemfp.open_fingerprint_writer("merged_pubchem.fps") as writer:
for filename in filenames:

with chemfp.open(filename) as reader:
writer.write_fingerprints(reader)

but then you’ll be left with no metadata in the FPS header:

% head -3 merged_pubchem.fps | fold
#FPS1
07de0d000000000000000000000000000000000000003c060100a0010000008d2f00007800080000
0030148379203c034f13080015c0acee2a00410104ac4004101b851d261b10065f03ab8f29a41106
69001393e338d1017100000000204000000000000010200000000000000000 99000039
07de1c000200000000000000000000000080040000003c0200000000000000800300007820080200
00b034870b604ce0410320421100954a090e43100824040010119971301370664c21addce99c1427
6b881995e1398a405000010000000000008000000000000000000000000000 99000230

While you could do that, the metadata keeps track of potentially useful information, so it’s better to add it.
For that matter, metadata usually isn’t useful until some time after the fingerprints are generated. People
tend to put off writing code until it’s needed, but by then it’s too late. I’ve tried to make chemfp’s API easy,
to encourage people to add the right metadata from the start.

There are a couple of ways to add the right metadata. The classic way is to make your own chemfp.Metadata
with the right values:

>>> metadata = chemfp.Metadata(num_bits=881, type="CACTVS-E_SCREEN/1.0 extended=2",
... software="CACTVS/unknown", sources=["Compound_099000001_099500000.sdf.gz",
... "Compound_048500001_049000000.sdf.gz"])
>>> print(metadata)
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_099000001_099500000.sdf.gz
#source=Compound_048500001_049000000.sdf.gz

The downside is this requires knowing all of the fields beforehand. Another option is to copy the metadata
from the first fingerprint file, and ask the copy() to use a new list of sources:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> reader = chemfp.open("Compound_099000001_099500000.fps")
>>> metadata = reader.metadata.copy()
>>> metadata.sources
['Compound_099000001_099500000.sdf.gz']
>>> metadata = reader.metadata.copy(sources=[
... u"Compound_099000001_099500000.sdf.gz",
... u"Compound_048500001_049000000.sdf.gz"])
>>> print(metadata)
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown

(continues on next page)

108 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

#source=Compound_099000001_099500000.sdf.gz
#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-13T14:03:21

Now to put the pieces together. I’ll make one pass through the fingerprint files to get the sources, and then
another pass to generate the output. If you only have a handful of files then this works nicely:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> filenames = ["Compound_099000001_099500000.fps", "Compound_048500001_049000000.fps"]
>>> sources = []
>>> for filename in filenames:
... with chemfp.open(filename) as reader:
... sources.extend(source.metadata.sources)
...
>>> sources
['Compound_048500001_049000000.sdf.gz', 'Compound_048500001_049000000.sdf.gz']
>>> metadata = reader.metadata.copy(sources=sources) # use the last reader
>>> print(metadata)
#type=CACTVS-E_SCREEN/1.0 extended=2
#software=CACTVS/unknown
#source=Compound_048500001_049000000.sdf.gz
#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-13T14:03:34

>>> with chemfp.open_fingerprint_writer("merged_pubchem.fps", metadata=metadata) as␣
↪→writer:
... for filename in filenames:
... with chemfp.open(filename) as reader:
... writer.write_fingerprints(reader)
...

This code assumes that the fingerprints are compatible, that is, that the fingerprints are the same size, and
the fingerprint types and other metadata fields are compatible. The next section shows how to detect if
there are compatibility problems.

4.37 Check for metadata compatibility problems

In this section you’ll learn how to detect compatibility mismatches between two metadata instances, and
between a metadata and a fingerprint.

In the previous section you learned how to merge multiple fingerprint files, which all happened to have the
same fingerprint type. What happens if they are different types?

There are actually a few possible problems:

• the fingerprint lengths are different (very bad)

• the fingerprint types are different (probably bad)

• the software is from different versions (probably okay)

The chemfp.check_metadata_problems() function compares two metadata objects and returns a list of
possible problems:

4.37. Check for metadata compatibility problems 109

chemfp Documentation, Release 3.4

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> rdkit_metadata = chemfp.get_fingerprint_type("RDKit-MACCS166").get_metadata()
>>> openeye_metadata = chemfp.get_fingerprint_type("OpenEye-MACCS166").get_metadata()
>>> problems = chemfp.check_metadata_problems(rdkit_metadata, openeye_metadata)
>>> len(problems)
2
>>> for problem in problems:
... print(problem)
...
WARNING: query has fingerprints of type 'RDKit-MACCS166/2' but
target has fingerprints of type 'OpenEye-MACCS166/3'
INFO: query comes from software 'RDKit/2020.03.1 chemfp/3.4' but
target comes from software 'OEGraphSim/2.4.3 (20191016) chemfp/3.4'

In this case the fingerprint types are different, but since the fingerprint lengths are the same it’s not an error,
only a warning. The software field is also not identical, but as that’s not so significant it’s listed as “info”.

The returned problem objects are chemfp.ChemFPProblem() instances, which have useful attributes:

>>> for problem in problems:
... print("Problem:")
... print(" severity:", problem.severity)
... print(" category:", problem.category)
... print(" description:", problem.description)
...
Problem:
severity: warning
category: type mismatch
description: query has fingerprints of type 'RDKit-MACCS166/2' but target has␣

↪→fingerprints of type 'OpenEye-MACCS166/3'
Problem:
severity: info
category: software mismatch
description: query comes from software 'RDKit/2020.03.1 chemfp/3.4' but target comes␣

↪→from software 'OEGraphSim/2.4.3 (20191016) chemfp/3.4'

The idea is that the category text won’t change, so your code can figure out what’s going on, while the
description is subject to change and hopefully improvement. The severity is one of “info”, “warning” and
“error”.

>>> rdkit1_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=512").get_
↪→metadata()
>>> rdkit2_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024").get_
↪→metadata()
>>> problems = chemfp.check_metadata_problems(rdkit1_metadata, rdkit2_metadata)
>>> for problem in problems:
... print(problem)
...
ERROR: query has 512 bit fingerprints but target has 1024 bit fingerprints
WARNING: query has fingerprints of type 'RDKit-Fingerprint/2 minPath=1
maxPath=7 fpSize=512 nBitsPerHash=2 useHs=1' but target has
fingerprints of type 'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024
nBitsPerHash=2 useHs=1'

110 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

A chemfp.ChemFPProblem is derived from Exception, so you can raise it directly if you want:

>>> for problem in chemfp.check_metadata_problems(rdkit1_metadata, rdkit2_metadata):
... if problem.severity == "error":
... raise problem
...
Traceback (most recent call last):
File "<stdin>", line 3, in <module>

chemfp.ChemFPProblem: ERROR: query has 512 bit fingerprints but target has 1024 bit␣
↪→fingerprints

You might have noticed that the error message uses the words “query” and “target”. Chemfp is designed
around similarity searches, so I expect the default to compare query metadata to target metadata.

On the other hand, the previous section merged multiple fingerprint files, where “query” and “target” don’t
make sense. Instead, you can give alternative names via the query_name and target_name parameters:

>>> rdkit1_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=512").get_
↪→metadata()
>>> rdkit2_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024").get_
↪→metadata()
>>> for problem in chemfp.check_metadata_problems(rdkit1_metadata, rdkit2_metadata,
... "file #1", "file #14"):
... if problem.severity == "error":
... print(problem)
...
ERROR: file #1 has 512 bit fingerprints but file #14 has 1024 bit fingerprints

I’ll use this to update the code from the previous section to raise an exception on errors, print warnings
to stderr, and do nothing about “info” problems, and add a MACCS fingerprint file to the list of files to
process, so I can show what happens if there’s a problem:

from __future__ import print_function # Only for Python 2
import sys
import chemfp

filenames = ["Compound_099000001_099500000.fps",
"Compound_048500001_049000000.fps",
"chebi_maccs.fps"]

Create the correct metadata with all of the sources from all of the files.
metadata = None
sources = []
for filename in filenames:

with chemfp.open(filename) as reader:
if metadata is None:

metadata = reader.metadata.copy()
first_filename = filename

else:
Check for compatibility problems
for problem in chemfp.check_metadata_problems(metadata, reader.metadata,

repr(first_filename),
repr(filename)):

if problem.severity == "error":
(continues on next page)

4.37. Check for metadata compatibility problems 111

chemfp Documentation, Release 3.4

(continued from previous page)

raise problem
elif problem.severity == "warning":

sys.stderr.write(str(problem) + "\n")

sources.extend(reader.metadata.sources)

if metadata is not None:
metadata = metadata.copy(sources=sources)

Merge the files using the new metadata
with chemfp.open_fingerprint_writer("merged_pubchem.fps", metadata=metadata) as writer:

for filename in filenames:
with chemfp.open(filename) as reader:

writer.write_fingerprints(reader)

When I run that code with the mismatched fingerprint types, I get the error message:

Traceback (most recent call last):
File "x.py", line 23, in <module>

raise problem
chemfp.ChemFPProblem: ERROR: 'Compound_099000001_099500000.fps' has 881 bit fingerprints␣
↪→but 'chebi_maccs.fps' has 166 bit fingerprints

I then removed the chebi_maccs.fps and manually changed the fingerprint type in Com-
pound_048500001_049000000.fps, so I could demonstrate what a warning message looks like:

WARNING: 'Compound_099000001_099500000.fps' has fingerprints of type
'CACTVS-E_SCREEN/1.0 extended=2' but 'Compound_048500001_049000000.fps'
has fingerprints of type 'CACTVS-E_SCREEN/1.0 extended=DIFFERENT_VALUE'
Traceback (most recent call last):
File "/Users/dalke/cvses/cfp-3x/docs/x.py", line 23, in <module>
raise problem

chemfp.ChemFPProblem: ERROR: 'Compound_099000001_099500000.fps' has
881 bit fingerprints but 'chebi_maccs.fps' has 166 bit fingerprints

(In case you’re wondering what the type string means, those are the actual CACTVS parameters that
PubChem uses, according to the CACTVS author, Wolf-Dietrich Ihlenfeldt.)

Lastly, sometimes the query is a simple byte string. There’s not really much to compare, but you use
chemfp.check_fingerprint_problems() to see if the fingerprint length is compatible with a metadata
instance:

>>> import chemfp
>>> metadata = chemfp.get_fingerprint_type("RDKit-MACCS166").get_metadata()
>>> chemfp.check_fingerprint_problems(b"\0\0\0\0", metadata)
[ChemFPProblem('error', 'num_bytes mismatch', 'query contains 4
bytes but target has 21 byte fingerprints')]

The simsearch command-line tool uses this function to check if the query fingerprint, which is entered as
hex as a command-line parameter, is compatible with the target fingerprints.

112 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

4.38 How to write very large FPB files

In this section you’ll learn how to write an FPB file even when fingerprint data is so large that the intermediate
data doesn’t all fit into memory at once.

By default the FPB format will reorder the fingerprints to be in popcount order. (Use reorder=False option
to preserve the input order.) This requires intermediate storage in order to sort all of the records. By default
the writer will use memory for this, but the implementation may require about two to three times as much
memory as the raw fingerprint size.

That is, if you have 50 million fingerprints, with 1024 bits per fingerprint, plus 10 bytes for the name, then
the fingerprint arena requires about 6 GiB of memory, plus 0.5 GiB for the ids, and another ~1 GiB for the
id lookup table.

That calculation gives the minimum amount of memory needed. The actual implementation may preallocate
up to twice as much memory as the current size, in order to handle growth gracefully, and there is some
additional overhead. You may be left with the case where you have 12 GiB of RAM, and where the final
FPB file is only 8 GiB in size, but where the intermediate storage requires 15 GiB of RAM.

Or you may want to build that data set on a machine with 6 GiB of RAM, and copy the result over to the
production machine with a lot more memory.

If that happens, then use the max_spool_size option to specify the maximum number of bytes to store in
memory before switching to temporary files for additional storage. This should be about 1/3 of the available
RAM because there can be two different temporary file “spools”, each of which can use up to max_spool_size
bytes of RAM.

For example, the following will use at most about 4 GiB of RAM:

writer = chemfp.open_fingerprint_writer(
"pubchem.fpb", max_spool_size = 2 * 1024 * 1024 * 1024)

Note: do not make this too small. The merge step opens all of the temporary files in order to make the final
FPB output file. If you specify a spool size of 50 MiB then you’ll end up creating several hundred files for
PubChem, which may exceed the resource limits for the number of open file descriptors for a process. When
that happens you’ll get an exception like:

IOError: [Errno 24] Too many open files

Where does the FPB writer store the temporary files? It uses Python’s tempfile module to create the
temporary files in a directory. Quoting from that documentation, “The default directory is chosen from a
platform-dependent list, but the user of the application can control the directory location by setting the
TMPDIR, TEMP or TMP environment variables.”

Environment variables give one way to specify an alternate directory. Or you can specify it directly using
the tmpdir parameter, as in:

writer = chemfp.open_fingerprint_writer(
"pubchem.fpb", max_spool_size = 2 * 1024 * 1024 * 1024,
tmpdir = "/scratch")

This can be very important on some cluster machines with a small local /tmp but a large networked scratch
disk.

4.38. How to write very large FPB files 113

https://docs.python.org/2/library/tempfile.html

chemfp Documentation, Release 3.4

4.39 FPS fingerprint writer errors

In this section you’ll learn how the FPS fingerprint writer handles errors, and how to change the error
handling behavior.

It’s hard but not impossible to have the FPS writer raise an exception:

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer(None)
#FPS1
>>> writer.write_fingerprint("Tab\tHere", b"\0")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/fps_io.py", line 550, in write_fingerprint
raise_tb(err[0], err[1])

File "chemfp/fps_io.py", line 467, in _fps_writer_gen
location)

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Unable to write an identifier containing a tab: 'Tab\tHere', file '
↪→<stdout>', line 1, record #1

The FPS file format simply doesn’t support tab characters in the indentifier, nor newline characters, for that
matter. It also doesn’t allow empty identifiers.

As you saw, the default error action is to raise an exception.

Sometimes it’s okay to ignore errors. For example, you might process a large number of structures, where
you know that a few of them have missing, or poorly formed, identifiers, and where it’s okay to omit those
records.

The errors parameter can be used to change the error handler. The value of “report” tells the parser to skip
failing record and write an error message written to stderr. The value of “ignore” simply skips the record:

>>> writer = chemfp.open_fingerprint_writer(None, errors="report")
#FPS1
>>> writer.write_fingerprint("", b"\0\0\0\0")
ERROR: Unable to write a fingerprint with an empty identifier, file '<stdout>', line 1,␣
↪→record #1. Skipping.
>>>
>>> writer = chemfp.open_fingerprint_writer(None, errors="ignore")
#FPS1
>>> writer.write_fingerprint("", b"\0")
>>> writer.write_fingerprint("Tab\tHere", b"\0")

Granted, this feature isn’t so important for FingerprintWriter.write_fingerprint() because catching
the exception isn’t hard to do. It’s a bit more useful for bulk conversions with FingerprintWriter.
write_fingerprints(), like:

import chemfp
with chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_099000001_099500000.
↪→sdf.gz") as reader:

with chemfp.open_fingerprint_writer("example.fps", reader.metadata, errors="report")␣
↪→as writer:

(continues on next page)

114 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

writer.write_fingerprints(reader)

Note that the FPB writer ignores the errors parameter and treats all errors as “strict”.

4.40 FPS fingerprint writer location

In this section you’ll learn how to get information like the number of lines and number of records written to
an FPS file.

I’ll start by saying that this feature isn’t all that useful. It exists because of parallelism to the toolkit
structure writers, and I wanted to experiment to see if it could be useful in the future.

The FPS fingerprint writer has a location attribute. This can be used to get some information about
the state of the output writer. The most basic is the output filename. If the output is None or an unnamed
file object then a fake filename will be used:

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer("example.fps")
>>> writer.location.filename
'example.fps'
>>> writer = chemfp.open_fingerprint_writer(None)
#FPS1
>>> writer.location.filename
'<stdout>'

At this point the signature line has been written, so the file is at line 1, but no record have been written:

>>> writer.location.lineno
1
>>> writer.location.recno
0
>>> writer.location.output_recno
0

Each of these values is incremented by one after adding a valid record:

>>> writer.write_fingerprint("FP001", b"\xA0\xFE")
a0fe FP001
>>> writer.location.lineno
2
>>> writer.location.recno
1
>>> writer.location.output_recno
1

If however the record is invalid then the recno will increase by one because it’s the number of records
sent to the writer, but the other values do not increase because they only change when a record is written
successfully:

>>> writer.write_fingerprint("", b"\xA0\xFE")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

(continues on next page)

4.40. FPS fingerprint writer location 115

chemfp Documentation, Release 3.4

(continued from previous page)

File "chemfp/fps_io.py", line 550, in write_fingerprint
raise_tb(err[0], err[1])

File "chemfp/fps_io.py", line 475, in _fps_writer_gen
location)

File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Unable to write a fingerprint with an empty identifier, file '<stdout>
↪→', line 2, record #2
>>> writer.location.lineno
2
>>> writer.location.recno
2
>>> writer.location.output_recno
1

This is perhaps more clearly shown if I try to write four records at one, where two contain errors, and where
I’ve asked the writer to “report” errors rather than raise an exception:

>>> metadata = chemfp.Metadata(type="Experiment/1", software="AndrewDalke/1")
>>> writer = chemfp.open_fingerprint_writer(None, metadata=metadata, errors="report")
#FPS1
#type=Experiment/1
#software=AndrewDalke/1
>>> writer.location.lineno
3
>>> writer.location.recno
0
>>> writer.location.output_recno
0
>>> writer.write_fingerprints([("A", b"\0\0"), ("\t", b"\0\1"), ("", b"\0\2"), ("B", b
↪→"\0\3")])
0000 A
ERROR: Unable to write an identifier containing a tab: '\t', file '<stdout>', line 4,␣
↪→record #2. Skipping.
ERROR: Unable to write a fingerprint with an empty identifier, file '<stdout>', line 4,␣
↪→record #3. Skipping.
0003 B
>>> writer.location.recno
4
>>> writer.location.output_recno
2
>>> writer.location.lineno
5

There are three lines in the header; the signature, the type line, and the software line. I tried to write four
fingerprints, but two were invalid. It wrote the valid fingerprint “A” to stdout, report the two invalid records
to stderr, and write the valid fingerprint “B” to stdout. Thus, two records were actually output, which is
why output_recno is 2, while four records were sent to the writer, which is why recno is 4. The three
header lines and the two lines of output give five lines of output, so the final lineno is 5.

In case you hadn’t figured it out, the location information is used to make the exception and error message.
That explains why both of the error reports say the error is on “line 4”; that’s the line that would have been

116 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

output if there were no error.

Note that the FPB writer does not have a location, and it ignores the location parameter.

4.41 MACCS dependency on hydrogens

In this section you’ll learn how the RDKit MACCS fingerprints differ if there are explicit or implicit hydro-
gens.

Note: A goal of this is to show that MACCS key generation isn’t as easy as you might think it is!

One of my long-term goals is to get a good cross-toolkit implementation of the MACCS keys. It’s very odd
how the MACCS keys are the de facto fingerprint for cheminformatics, but the toolkits don’t give the same
answers. Over the years, I’ve found bugs or incomplete definitions in all of the toolkits I’ve looked at, which
I’ve reported and have since been fixed.

If you use RDKit, Open Babel, or CDK (chemfp doesn’t yet support CDK, but this is my story so I get to
mention it) then your toolkit implements MACCS keys that were derived from the ones that Greg Landrum
developed for RDKit. The portable portion uses hand-translated SMARTS definitions for most of the
MACCS key definitions. A couple keys, like key 125 (“at least two aromatic rings”) cannot be represented
as SMARTS. RDKit had special code for these definitions, but Open Babel does not.

Even with a portable SMARTS definition, I would expect to see some differences between the toolkits, if
only because they have different aromaticity models. One toolkit might call something an aromatic ring,
while another says it’s aliphatic.

Unfortunately, the SMARTS patterns used in those programs give different results if you have explicit
hydrogens or implicit hydrogens. I’ll demonstrate with using RDKit, because that has a reader_arg to
specify if I want to remove hydrogens from the input structure or not. (Here “remove” means to make them
implicit.)

I’ll use RDKit twice to read the first molecule from a file and compute the RDKit fingerprint; the first time
I keep the hydrogens and the second time I remove them:

>>> import chemfp
>>> from chemfp import bitops
>>> filename = "Compound_099000001_099500000.sdf.gz"
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>>
>>> with_h_reader = fptype.read_molecule_fingerprints(filename,
... reader_args={"removeHs": False})
>>> with_h_id, with_h_fp = next(with_h_reader)
>>> with_h_id, bitops.hex_encode(with_h_fp)
('99000039', '000004000000300001c4004e93e1b053dce16f6e1f')
>>>
>>> without_h_reader = fptype.read_molecule_fingerprints(filename,
... reader_args={"removeHs": True})
>>> without_h_id, without_h_fp = next(without_h_reader)
>>> without_h_id, bitops.hex_encode(without_h_fp)
('99000039', '000004000000300001c0004e9361b051dce1676e1f')

If you look closely you’ll see that they have two different fingerprints! I’ll make it easier to see by reporting
the bits which are only in one or the other fingerprint:

4.41. MACCS dependency on hydrogens 117

chemfp Documentation, Release 3.4

>>> with_h_bits = set(bitops.byte_to_bitlist(with_h_fp))
>>> without_h_bits = set(bitops.byte_to_bitlist(without_h_fp))
>>> sorted(with_h_bits - without_h_bits) # only with hydrogens
[74, 111, 121, 147]
>>> sorted(without_h_bits - with_h_bits) # only without hydrogens
[]

The molecule with explicit hydrogens sets four more bits than the one with implicit hydrogens.

Why is that? The RDKit (and hence Open Babel and CDK) definitions often use “*” to match an atom, when
the corresponding MACCS definition is supposed to exclude hydrogens. A hydrogen-independent version
would use “[!#1]” instead. By default RDKit removes normal explicit hydrogens, so this isn’t usually a
problem. As far as I can tell, Open Babel always removes them from an SD file, so again this isn’t really a
problem. (Well, except for hydrogens with an explicit isotope number.)

The list [74, 111, 121, 147] are bit numbers. The corresponding keys are 75, 112, 122, and 148. I looked at
how key 122 is defined in various sources:

Definitions for key 112 (bit 111)
MACCS: AA(A)(A)A
RDKit: *~*(~*)(~*)~*
OpenBabel: *~*(~*)(~*)~*
CDK: *~*(~*)(~*)~*
chemfp's RDMACCS-*: [!#1]~*(~[!#1])(~[!#1])~[!#1]
O'Donnell: *~*(~*)(~*)~*

(“O’Donnell” here comes from Table A.4 of TJ O’Donnell’s Design and Use of Relational Databases in
Chemistry.)

If you know SMARTS you can see how an explicit H will lead to a different match than an implicit one,
except for chemfp’s own attempt at making a cross-toolkit MACCS implementation. I’ll test out RDMACCS-
RDKit, which is chemfp’s implementation of the MACCS 166 fingerprint using RDKit:

>>> chemfp_maccs = chemfp.get_fingerprint_type("RDMACCS-RDKit")
>>>
>>> with_h_reader = chemfp_maccs.read_molecule_fingerprints(filename,
... reader_args={"removeHs": False})
>>> with_h_id, with_h_fp = next(with_h_reader)
>>> with_h_id, bitops.hex_encode(with_h_fp)
('99000039', '000004000000300001c0004e9361b051dce1676e1f')
>>>
>>> without_h_reader = chemfp_maccs.read_molecule_fingerprints(filename,
... reader_args={"removeHs": True})
>>> without_h_id, without_h_fp = next(without_h_reader)
>>> without_h_id, bitops.hex_encode(without_h_fp)
('99000039', '000004000000300001c0004e9361b051dce1676e1f')
>>>
>>> with_h_fp == without_h_fp
True

What a relief that they are the same!

If you want to use the OEChem or Open Babel-based RDMACSS implemenations, the corresponding finger-
print type names are “RDMACCS-OpenEye” or “RDMACCS-OpenBabel”, respectively, and the command-
line option for oe2fps and ob2fps is --rdmaccs.

118 Chapter 4. Fingerprints and fingerprint search examples

http://www.crcpress.com/product/isbn/9781420064421
http://www.crcpress.com/product/isbn/9781420064421

chemfp Documentation, Release 3.4

WARNING: the RDMACCS fingerprints have not been fully validated! Validation is hard. A chemfp goal
is to make that easier.

To finish, I was curious about the differences in RDKit’s native MACCS166 implementation across all of
the records in the file, so I wrote some code. It’s a direct evolution of the code you already saw. (Note: for
Python 2 I use itertools.izip() as a replacement for the generator-based zip() in Python 3.)

from __future__ import print_function # Only for Python 2
import itertools
from collections import Counter
import chemfp
from chemfp import bitops

zip = getattr(itertools, "izip", zip) # Support Python2 and Python3

filename = "Compound_099000001_099500000.sdf.gz"
with_h_fingerprints = chemfp.read_molecule_fingerprints(

"RDKit-MACCS166", filename, reader_args={"removeHs": False})
without_h_fingerprints = chemfp.read_molecule_fingerprints(

"RDKit-MACCS166", filename, reader_args={"removeHs": True})

extra_with_h = Counter()
extra_without_h = Counter()
num_records = 0
for (id1, with_h_fp), (id2, without_h_fp) in zip(with_h_fingerprints,

without_h_fingerprints):
num_records += 1
assert id1 == id2, (id1, id2)
if with_h_fp != without_h_fp:

with_h_keys = set(bitno+1 for bitno in bitops.byte_to_bitlist(with_h_fp))
without_h_keys = set(bitno+1 for bitno in bitops.byte_to_bitlist(without_h_fp))
only_with_h = sorted(with_h_keys - without_h_keys)
only_without_h = sorted(without_h_keys - with_h_keys)
print(id1, "with:", only_with_h, "without:", only_without_h)
extra_with_h.update(only_with_h)
extra_without_h.update(only_without_h)

print("\nNumber of records:", num_records)
print("\nCounts that were only with hydrogens:")
for key, count in extra_with_h.most_common():

print(" %d %d" % (key, count))
print("\nCounts that were only without hydrogens:")
for key, count in extra_without_h.most_common():

print(" %d %d" % (key, count))

In case you were wondering, the report summary starts:

Number of records: 10826

Counts that were only with hydrogens:
112 6851
150 3345
144 3209
122 2807

(continues on next page)

4.41. MACCS dependency on hydrogens 119

chemfp Documentation, Release 3.4

(continued from previous page)

138 2767
66 2763
148 2372
155 2311
126 684
76 682
75 412
81 407
128 344
118 173
156 96
107 24
90 18
108 15
129 9
132 2

Now you can see why I used key 112 in my elaboration - it’s the one that causes the most problems!

4.42 Create similarity search web service

In this section you’ll learn how to write a simple WSGI-based web service which does a similarity search
given an SDF record.

I found it a bit difficult to write this section because few people will write a WSGI service directly. I think
most people use Django, but a Django example would require several different files to make it work. There
are other web frameworks I could use, like Flask, but I eventually decided to limit myself to what’s available
in the standard library, that is, the wsgiref module.

I’m going to write a WSGI server named “simple_server.py” which takes an SDF record as input and returns
the top 5 hits from a specified database. If there’s a GET request then the result is a simple form. The form
sends a POST request to the server, with the SDF record in the query parameter q.

By the way, if the target fingerprint data set is large then you should use an FPB file to get the best startup
performance.

Let’s get started. The first part is a comment about what the code does and some imports:

This is a very simple fingerprint search server.
I call it 'simple_server.py'.
#
Usage: simple_server <fingerprint_filename> [port]
#
A GET to the server (default uses port 80) returns a simple form.
The form has a single text box, to paste the SDF query or queries.
The POST query variable 'q' contains the SDF contents.
The search finds the nearest 5 queries for each query record.
The result is a simple list of query ids and its matches.

import argparse
from wsgiref.simple_server import make_server

(continues on next page)

120 Chapter 4. Fingerprints and fingerprint search examples

https://docs.python.org/2/library/wsgiref.html

chemfp Documentation, Release 3.4

(continued from previous page)

import cgi

import chemfp

The server will return an HTML form for a GET request:

Create a simple form.
def query_form(environ, start_response):

status = '200 OK' # HTTP Status
headers = [('Content-type', 'text/html')] # HTTP Headers
start_response(status, headers)

The returned object is going to be printed.
Must be a byte string for Python 3.
return [b"""<html>

<head>
<title>Simple fingerprint search</title>
</head>
<body>
<form method="POST">
Paste in SDF records(s):

<textarea name="q" type="text" rows="20" cols="80"></textarea>

<button type="submit">Search!</button>
</form>
</body>
</html>
"""]

I’ll use the argparse module to handle the command-line arguments:

Command-line parameters
parser = argparse.ArgumentParser("simple_search",

description="Simple fingerprint web server with SDF␣
↪→input")
parser.add_argument("filename",

help="chemfp fingerprint filename")

parser.add_argument("port", type=int, default=8080, nargs="?",
help="port to use (default is 8080)")

The heavy work is in the ‘main’ function. It starts with some setup to load the fingerprints and make sure
the fingerprint type is available:

def main():
args = parser.parse_args()

Load the arena, get the type, and make sure I can handle the type.
arena = chemfp.load_fingerprints(args.filename)
print("Loaded %s fingerprints from %r" % (len(arena), args.filename))

type = arena.metadata.type
if type is None:

(continues on next page)

4.42. Create similarity search web service 121

chemfp Documentation, Release 3.4

(continued from previous page)

parser.error("File %r does not contain a fingerprint type" % (args.filename,))

try:
fptype = chemfp.get_fingerprint_type(type)

except KeyError as err:
parser.error(str(err))

It then defines the WSGI app, which returns the query_form() for a GET request, or processes the form for
a POST request. I think the embedded comments explain things enough:

... continue the 'main' function ...
This is the WSGI app, defined inside of main

def fingerprint_search_app(environ, start_response):
Is this a GET or a POST? If a GET, return the query form
if environ["REQUEST_METHOD"] != "POST":

return query_form(environ, start_response)

Get the query data from the POST
post_env = environ.copy()
post = cgi.FieldStorage(

fp=environ['wsgi.input'],
environ=post_env,
keep_blank_values=True,

)
q = post.getfirst("q", "")
The underlying toolkit code may require "\n" instead of "\r\n" strings.
q = q.replace("\r\n", "\n")

For each input record, do a search, get the results, and build up the output␣
↪→lines.

Ignore any records that can't be parsed.

output = ["Search against %r using k=5 and threshold=0.0\n\n" % (args.filename,)]

The next three lines use chemfp to convert the record into a
fingerprint, do the search for the top 5 hits, get the ids
and scores for the hits, and make the output text.

for query_id, fp in fptype.read_molecule_fingerprints_from_string(q, "sdf",␣
↪→errors="ignore"):

results = arena.knearest_tanimoto_search_fp(fp, k=5, threshold=0.0)
text = " ".join("%s (%.3f)" % (id, score) for (id, score) in results.get_

↪→ids_and_scores())
output.append("%s => %s\n" % (query_id, text))

Return the results in plain text.

status = '200 OK' # HTTP Status
headers = [('Content-type', 'text/plain')] # HTTP Headers
start_response(status, headers)

(continues on next page)

122 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.4

(continued from previous page)

Python 3 requires bytes, not strings, so convert to UTF-8
return [line.encode("utf8") for line in output]

The main function ends with some code to start the WSGI server using the correct port:

... end of the 'main' function ...
Make the server and run it. (Use ^C to kill it.)
httpd = make_server('', args.port, fingerprint_search_app)
print("Serving fingerprint search on port %s..." % (args.port,))

httpd.serve_forever()

Finally, code to start things rolling:

if __name__ == "__main__":
main()

I’ll start the server using a ChEBI-derived data set:

% python simple_server.py rdkit_chebi.fps
Loaded 106965 fingerprints from 'rdkit_chebi.fps'
Serving fingerprint search on port 8080...

then direct the browser to http://127.0.0.1:8080/ . I pasted in the first three records from ChEBI itself,
pressed “Search!”, and got the result:

Search against 'rdkit_chebi.fps' using k=5 and threshold=0.0

=> CHEBI:90 (1.000) CHEBI:15600 (1.000) CHEBI:23053 (1.000) CHEBI:33992 (1.000)␣
↪→CHEBI:58994 (1.000)
=> CHEBI:165 (1.000) CHEBI:4999 (1.000) CHEBI:36612 (1.000) CHEBI:132827 (0.977)␣

↪→CHEBI:15994 (0.944)
=> CHEBI:598 (1.000) CHEBI:52595 (1.000) CHEBI:144315 (0.965) CHEBI:17389 (0.716)␣

↪→CHEBI:134138 (0.716)

I don’t think I’ll continue this WSGI example in future documentation as that API is too low-level and
seldom used by web developers. If you think otherwise, let me know.

4.42. Create similarity search web service 123

http://127.0.0.1:8080/

chemfp Documentation, Release 3.4

124 Chapter 4. Fingerprints and fingerprint search examples

CHAPTER 5

Fingerprint family and type examples

This chapter describes how to use the fingerprint family and fingerprint type API added in chemfp 2.0.

5.1 Fingerprint families and types

In this section you’ll learn the difference between a fingerprint family and a fingerprint type. You will need
Compound_099000001_099500000.sdf.gz from PubChem to work though all of the examples.

Chemfp distinguishes between a “fingerprint family” and a “fingerprint type.” A fingerprint family describes
the general approach for doing a fingerprint, like “the OpenEye path-based fingerprint method”, while a
fingerprint type describes the specific parameters used for a given approach, such as “the OpenEye path-
based fingerprint method using path lengths between 0 and 5 bonds, where the atom types are based on
the atomic number and aromaticity, and the bond type is based on the bond order, mapped to a 256 bit
fingerprint.”

(In object-oriented terms, a fingerprint family is the class and a fingerprint type is an instance of the class.)

I’ll use chemfp.get_fingerprint_family() to get the FingerprintFamily for “OpenEye-Path”. On the
laptop where I’m writing the documentation, this resolves to what chemfp calls version “2”:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> family = chemfp.get_fingerprint_family("OpenEye-Path")
>>> family
FingerprintFamily(<OpenEye-Path/2>)

The fingerprint family can be called like a function to return a FingerprintType. If you call it with no
arguments it will use the defaults parameters for that family. I’ll do that, then use get_type() to get the
fingerprint type string, which is the canonical representation of the fingerprint family name, version, and
parameters:

125

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

>>> fptype = family()
>>> fptype.get_type()
'OpenEye-Path/2 numbits=4096 minbonds=0 maxbonds=5␣
↪→atype=Arom|AtmNum|Chiral|EqHalo|FCharge|HvyDeg|Hyb btype=Order|Chiral'

A 4096 bit fingerprint is rather large. I’ll make a new OpenEye-Path fingerprint type, but this time with
only 256 bits. That’s small enough that the resulting fingerprint will fit on a line of documentation. All of
the other parameters will be unchanged:

>>> fptype = family(numbits=256)
>>> fptype
<chemfp.openeye_types.OpenEyePathFingerprintType_v2 object at 0x10b9c4e90>
>>> print(fptype.get_metadata())
#num_bits=256
#type=OpenEye-Path/2 numbits=256 minbonds=0 maxbonds=5␣
↪→atype=Arom|AtmNum|Chiral|EqHalo|FCharge|HvyDeg|Hyb btype=Order|Chiral
#software=OEGraphSim/2.4.3 (20191016) chemfp/3.4
#date=2020-06-16T14:41:07

This time I used FingerprintType.get_metadata() to give information about the fingerprint. This returns
a new Metadata instance which describes the fingerprint type, and if you print a Metadata it displays the
metadata information as an FPS header.

Once you have the fingerprint type you can create fingerprints, including directly from a SMILES string, as
in the following:

>>> from chemfp import bitops
>>> fp = fptype.parse_molecule_fingerprint("c1ccccc1O", "smistring")
>>> bitops.hex_encode(fp)
'0012250160901000080c002810000400201000900054880442000e8040201000'

and from a structure file:

>>> for id, fp in fptype.read_molecule_fingerprints("Compound_099000001_099500000.sdf.gz
↪→"):
... print(id, bitops.hex_encode(fp))
... if int(id) > 99003537: break
...
99000039 b7f1ff7cf3f377ebf37ff6ffefb5c9fffe69fffbfdfefedf77f5dffee0f7f907
99000230 ffd5f775cffbd790f97f5f797fbefdcd3fcf73efdf5fdfbf7fe6d9df60fd5303
99002251 ba5ff7e5fbfd3ce77decb9aef9a5b5eef7615cd3df5efc0e7f78effc7dfd9a07
99003537 defbbff7f4f57f6fbdfffab35ffddb77fef7dfddfafffffddff77fedeb97f107
99003538 defbbff7f4f57f6fbdfffab35ffddb77fef7dfddfafffffddff77fedeb97f107

For more examples of using get_metadata see Merging multiple structure-based fingerprint sources.

Even though I used the fingerprint family to get the type, I did that more for pedagogical reasons. Most
times you can get the fingerprint type directly using chemfp.get_fingerprint_type(). You can call it
using a fingerprint type string or by passing in the parameters in the optional second parameter::

>>> fptype = chemfp.get_fingerprint_type("OpenEye-Path numbits=256")
>>> fptype = chemfp.get_fingerprint_type("OpenEye-Path", {"numbits": 256})

See get_fingerprint_type() and get_type() for examples on how to use get_fingerprint_type.

126 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.4

5.2 Fingerprint family

In this section you’ll learn about the attributes and methods of a fingerprint family.

The get_fingerprint_family() function takes the fingerprint family name (with or without a version) and
returns a FingerprintFamily instance:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")

It will raise a ValueError if you ask for a fingerprint family or version which doesn’t exist:

>>> chemfp.get_fingerprint_family("whirl")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1996, in get_fingerprint_family

return _family_registry.get_family(family_name)
File "chemfp/types.py", line 1258, in get_family

raise err
chemfp.types.FingerprintTypeValueError: Unknown fingerprint type 'whirl'
>>> chemfp.get_fingerprint_family("RDKit-Fingerprint/1")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1996, in get_fingerprint_family

return _family_registry.get_family(family_name)
File "chemfp/types.py", line 1258, in get_family

raise err
chemfp.types.FingerprintTypeValueError: Unable to use RDKit-Fingerprint/1: This version␣
↪→of RDKit does not support the RDKit-Fingerprint/1 fingerprint

The fingerprint family has several attributes to ask for the name or parts of the name:

>>> family
FingerprintFamily(<RDKit-Fingerprint/2>)
>>> family.name
'RDKit-Fingerprint/2'
>>> (family.base_name, family.version)
('RDKit-Fingerprint', '2')

It also has a toolkit attribute, which is the underlying chemfp toolkit that can create molecules for this
fingerprint:

>>> family.toolkit
<module 'chemfp.rdkit_toolkit' from 'chemfp/rdkit_toolkit.pyc'>
>>> family.toolkit.name
'rdkit'

See the chapter Toolkit API examples for many examples of how to use a toolkit.

The get_defaults() method returns the default arguments used to create a fingerprint type, which is handy
when you’ve forgotten what all of the arguments are:

>>> family.get_defaults()
{'minPath': 1, 'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

5.2. Fingerprint family 127

chemfp Documentation, Release 3.4

If you call the family as a function, you’ll get a FingerprintType. You can check to see that the fingerprint
type’s keyword arguments match the defaults:

>>> fptype = family()
>>> fptype.fingerprint_kwargs
{'minPath': 1, 'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

Call the fingerprint family with keyword arguments to use something other than the default parameters:

>>> fptype = family(fpSize=1024, maxPath=6)
>>> fptype.fingerprint_kwargs
{'minPath': 1, 'maxPath': 6, 'fpSize': 1024, 'nBitsPerHash': 2,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

If you have the keyword arguments as a dictionary you can use the “**” syntax to apply the dictionary
as keyword arguments, but I think it’s clearer to call the FingerprintFamily.from_kwargs() method to
create the fingerprint type:

>>> kwargs = {"fpSize": 512, "maxPath": 5}
>>> fptype = family(**kwargs) # Acceptable
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=5 fpSize=512 nBitsPerHash=2 useHs=1'
>>> fptype = family.from_kwargs(kwargs) # Better
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=5 fpSize=512 nBitsPerHash=2 useHs=1'

(Currently family(**kwargs) forwards the the call to family.from_kwargs(kwargs) so there is a slight
performance advantage to using from_kwargs().)

Sometimes the fingerprint parameters come from a string, for example, from command-line arguments or a
web form. In chemfp a dictionary of text keys and values are called “text settings”. The fingerprint family
has a helper function to process them and create a kwargs dictionary with the correct data types as values:

>>> family.get_kwargs_from_text_settings({
... "fpSize": "128",
... "nBitsPerHash": "1",
... })
{'minPath': 1, 'maxPath': 7, 'fpSize': 128, 'nBitsPerHash': 1,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

Note: This method is not as advanced as the corresponding code in the toolkit Format API. It does
not understand namespaces. It will also raise an exception if called with an unsupported parameter:

>>> family.get_kwargs_from_text_settings({
... "unsupported parameter": "-12.34",
... })

Traceback (most recent call last):
...

chemfp.types.FingerprintTypeValueError: Unsupported fingerprint parameter name
↪→'unsupported parameter'

If you have text settings then you probably want to call chemfp.
get_fingerprint_type_from_text_settings() directly instead of going through the fingerprint
family:

128 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.4

>>> fptype = chemfp.get_fingerprint_type_from_text_settings("RDKit-Fingerprint",
... {"fpSize": "512", "nBitsPerHash": "3", "maxPath": "6"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=6 fpSize=512 nBitsPerHash=3 useHs=1'

See Create a fingerprint using text settings for more examples of how to use this function.

5.3 Fingerprint family discovery

In this section you’ll learn how to get the available fingerprint families, both as a set of name strings and a
list of FingerprintFamily instances.

Even though chemfp knows about the OpenEye fingerprints, those fingerprints might not be available on
your system if you don’t have OEChem and OEGraphSim installed and licensed. Chemfp has a discovery
system which will probe to see which fingerprint types are available and determine their version numbers.

If you just want the available family names, use chemfp.get_fingerprint_family_names():

>>> import chemfp
>>> chemfp.get_fingerprint_family_names()
{'RDKit-Pattern', 'OpenEye-Path', 'OpenBabel-MACCS', 'RDKit-Avalon',
'RDKit-AtomPair', 'RDKit-Fingerprint', 'OpenEye-SMARTSScreen',
'OpenBabel-ECFP2', 'RDKit-SECFP', 'RDKit-Torsion',
'OpenBabel-ECFP8', 'ChemFP-Substruct-RDKit', 'RDMACCS-OpenEye',
'OpenBabel-ECFP6', 'RDMACCS-OpenBabel', 'OpenEye-MDLScreen',
'OpenEye-MACCS166', 'RDMACCS-RDKit', 'OpenBabel-FP4',
'OpenEye-Tree', 'RDKit-Morgan', 'ChemFP-Substruct-OpenEye',
'OpenBabel-FP3', 'OpenBabel-FP2', 'OpenBabel-ECFP0',
'ChemFP-Substruct-OpenBabel', 'OpenEye-Circular',
'OpenBabel-ECFP10', 'OpenBabel-ECFP4', 'OpenEye-MoleculeScreen',
'RDKit-MACCS166'}

Bear in mind that this might take a few seconds to run, since it will try to load the Python packages for
each supported toolkit. (Once done, that list is cached so subsequent calls are fast.)

You can ask the function to return only those fingerprints generated from a given toolkit then use the
toolkit_name parameter. The following returns the Open Babel fingerprints:

>>> chemfp.get_fingerprint_family_names(toolkit_name="openbabel")
{'OpenBabel-ECFP8', 'OpenBabel-ECFP4', 'OpenBabel-ECFP0',
'RDMACCS-OpenBabel', 'OpenBabel-FP4', 'OpenBabel-MACCS',
'OpenBabel-ECFP6', 'ChemFP-Substruct-OpenBabel', 'OpenBabel-FP2',
'OpenBabel-ECFP10', 'OpenBabel-FP3', 'OpenBabel-ECFP2'}

The function returns a set of base names, which don’t contain the version information. Most likely you want
to sort it before displaying it more nicely:

>>> from __future__ import print_function # Only needed in Python 2
>>> for name in sorted(chemfp.get_fingerprint_family_names()):
... print(name)
...
ChemFP-Substruct-OpenBabel
ChemFP-Substruct-OpenEye

(continues on next page)

5.3. Fingerprint family discovery 129

chemfp Documentation, Release 3.4

(continued from previous page)

ChemFP-Substruct-RDKit
OpenBabel-ECFP0
OpenBabel-ECFP10
OpenBabel-ECFP2
OpenBabel-ECFP4
OpenBabel-ECFP6
OpenBabel-ECFP8
OpenBabel-FP2
OpenBabel-FP3
OpenBabel-FP4
OpenBabel-MACCS
OpenEye-Circular
OpenEye-MACCS166
OpenEye-MDLScreen
OpenEye-MoleculeScreen
OpenEye-Path
OpenEye-SMARTSScreen
OpenEye-Tree
RDKit-AtomPair
RDKit-Avalon
RDKit-Fingerprint
RDKit-MACCS166
RDKit-Morgan
RDKit-Pattern
RDKit-SECFP
RDKit-Torsion
RDMACCS-OpenBabel
RDMACCS-OpenEye
RDMACCS-RDKit

On my desktop, where I do all of the testing, I have many virtual environments so I can test different
combinations of Python and toolkit versions. I’ll run chemfp in one of the OpenEye-only environments and
show that it only knows about the OEChem/OEGraphSim fingerprint types:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> print("\n".join(sorted(chemfp.get_fingerprint_family_names())))
ChemFP-Substruct-OpenEye
OpenEye-Circular
OpenEye-MACCS166
OpenEye-MDLScreen
OpenEye-MoleculeScreen
OpenEye-Path
OpenEye-SMARTSScreen
OpenEye-Tree
RDMACCS-OpenEye

It’s still possible to get a list of all fingerprint family names, including those which aren’t actually available
for the given Python installation, by setting the include_unavailable parameter to True:

>>> print("\n".join(sorted(chemfp.get_fingerprint_family_names(include_
↪→unavailable=True))))

(continues on next page)

130 Chapter 5. Fingerprint family and type examples

https://docs.python.org/3/library/venv.html

chemfp Documentation, Release 3.4

(continued from previous page)

ChemFP-Substruct-OpenBabel
ChemFP-Substruct-OpenEye
ChemFP-Substruct-RDKit
OpenBabel-ECFP0
OpenBabel-ECFP10
OpenBabel-ECFP2
OpenBabel-ECFP4
OpenBabel-ECFP6
OpenBabel-ECFP8
OpenBabel-FP2
OpenBabel-FP3
OpenBabel-FP4
OpenBabel-MACCS
OpenEye-Circular
OpenEye-MACCS166
OpenEye-MDLScreen
OpenEye-MoleculeScreen
OpenEye-Path
OpenEye-SMARTSScreen
OpenEye-Tree
RDKit-AtomPair
RDKit-Avalon
RDKit-Fingerprint
RDKit-MACCS166
RDKit-Morgan
RDKit-Pattern
RDKit-SECFP
RDKit-Torsion
RDMACCS-OpenBabel
RDMACCS-OpenEye
RDMACCS-RDKit

The list of base names is pretty useful, but sometimes you want more details, like the specific version number,
and the default number of bits. The FingerprintFamily includes the attributes to get the name and version
but it doesn’t have a way to get the default number of bits. Instead, I’ll use the FingerprintFamily to make
a FingerprintType with the default parameters, then ask the new fingerprint type its number of bits.

This means I need a list of FingerprintFamily instances, which is conveniently available from chemfp.
get_fingerprint_families(). (Remember, this may take a few seconds the first time it’s called, because
it tries to load all of the available fingerprints. Once determined, this information is cached.)

As a result, you can make a list of all available fingerprint methods and their default number of bits with
the following:

>>> for family in chemfp.get_fingerprint_families():
... print(family.name, family().num_bits)
...
ChemFP-Substruct-OpenBabel/1 881
ChemFP-Substruct-OpenEye/1 881
ChemFP-Substruct-RDKit/1 881
OpenBabel-ECFP0/1 4096
OpenBabel-ECFP10/1 4096
OpenBabel-ECFP2/1 4096

(continues on next page)

5.3. Fingerprint family discovery 131

chemfp Documentation, Release 3.4

(continued from previous page)

OpenBabel-ECFP4/1 4096
OpenBabel-ECFP6/1 4096
OpenBabel-ECFP8/1 4096
OpenBabel-FP2/1 1021
OpenBabel-FP3/1 55
OpenBabel-FP4/1 307
OpenBabel-MACCS/2 166
OpenEye-Circular/2 4096
OpenEye-MACCS166/3 166
OpenEye-MDLScreen/1 896
OpenEye-MoleculeScreen/1 896
OpenEye-Path/2 4096
OpenEye-SMARTSScreen/1 896
OpenEye-Tree/2 4096
RDKit-AtomPair/2 2048
RDKit-Avalon/1 512
RDKit-Fingerprint/2 2048
RDKit-MACCS166/2 166
RDKit-Morgan/1 2048
RDKit-Pattern/4 2048
RDKit-SECFP/1 2048
RDKit-Torsion/2 2048
RDMACCS-OpenBabel/2 166
RDMACCS-OpenEye/2 166
RDMACCS-RDKit/2 166

The output here is a bit fancy. If you only want the version information then you could just look at the list,
since a family’s repr shows the versioned name:

>>> chemfp.get_fingerprint_families()
[FingerprintFamily(<ChemFP-Substruct-OpenBabel/1>), FingerprintFamily(<ChemFP-Substruct-
↪→OpenEye/1>),
FingerprintFamily(<ChemFP-Substruct-RDKit/1>), FingerprintFamily(<OpenBabel-ECFP0/1>),
FingerprintFamily(<OpenBabel-ECFP10/1>), FingerprintFamily(<OpenBabel-ECFP2/1>),
FingerprintFamily(<OpenBabel-ECFP4/1>), FingerprintFamily(<OpenBabel-ECFP6/1>),
FingerprintFamily(<OpenBabel-ECFP8/1>), FingerprintFamily(<OpenBabel-FP2/1>),
FingerprintFamily(<OpenBabel-FP3/1>), FingerprintFamily(<OpenBabel-FP4/1>),
FingerprintFamily(<OpenBabel-MACCS/2>), FingerprintFamily(<OpenEye-Circular/2>),
FingerprintFamily(<OpenEye-MACCS166/3>), FingerprintFamily(<OpenEye-MDLScreen/1>),
FingerprintFamily(<OpenEye-MoleculeScreen/1>), FingerprintFamily(<OpenEye-Path/2>),
FingerprintFamily(<OpenEye-SMARTSScreen/1>), FingerprintFamily(<OpenEye-Tree/2>),
FingerprintFamily(<RDKit-AtomPair/2>), FingerprintFamily(<RDKit-Avalon/1>),
FingerprintFamily(<RDKit-Fingerprint/2>), FingerprintFamily(<RDKit-MACCS166/2>),
FingerprintFamily(<RDKit-Morgan/1>), FingerprintFamily(<RDKit-Pattern/4>),
FingerprintFamily(<RDKit-SECFP/1>), FingerprintFamily(<RDKit-Torsion/2>),
FingerprintFamily(<RDMACCS-OpenBabel/2>), FingerprintFamily(<RDMACCS-OpenEye/2>),
FingerprintFamily(<RDMACCS-RDKit/2>)]

On the other hand, that’s a rather dense block of text.

Use the toolkit_name parameter to get only those fingerprint families for a given toolkit:

132 Chapter 5. Fingerprint family and type examples

https://docs.python.org/3/library/functions.html#repr

chemfp Documentation, Release 3.4

>>> chemfp.get_fingerprint_families(toolkit_name="rdkit")
[FingerprintFamily(<ChemFP-Substruct-RDKit/1>),
FingerprintFamily(<RDKit-AtomPair/2>), FingerprintFamily(<RDKit-Avalon/1>),
FingerprintFamily(<RDKit-Fingerprint/2>), FingerprintFamily(<RDKit-MACCS166/2>),
FingerprintFamily(<RDKit-Morgan/1>), FingerprintFamily(<RDKit-Pattern/4>),
FingerprintFamily(<RDKit-SECFP/1>), FingerprintFamily(<RDKit-Torsion/2>),
FingerprintFamily(<RDMACCS-RDKit/2>)]

Finally, use chemfp.has_fingerprint_family() to test if a fingerprint family is available:

>>> chemfp.has_fingerprint_family("OpenEye-Tree")
True
>>> chemfp.has_fingerprint_family("OpenEye-Tree/2")
True
>>> chemfp.has_fingerprint_family("OpenEye-Tree/1")
False

It understands both version and unversioned names.

5.4 get_fingerprint_type() and get_type()

In this section you’ll learn how to get a fingerprint type given its type string, and how to specify fingerprint
parameters as a dictionary.

The easiest way to get a specific FingerprintType is with chemfp.get_fingerprint_type():

>>> import chemfp
>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint")
>>> fptype
<chemfp.rdkit_types.RDKitFingerprintType_v2 object at 0x10cfedb10>

The fingerprint type has a FingerprintType.get_type() method, which returns the canonical fingerprint
type string:

>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'

This is canonical because chemfp ensures that all fingerprint type strings with the same parameter values
have the same type string.

I left out the version number in the fingerprint name when I asked for the fingerprint, so chemfp gives me
the most recent supported version. I could have included the version in the name, which is useful if you
want to prevent a version mismatch between your data sets. If the version doesn’t exist, the function will
raise a ValueError:

>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint/2")
>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint/1")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 2069, in get_fingerprint_type

return types.registry.get_fingerprint_type(type, fingerprint_kwargs)
File "chemfp/types.py", line 1296, in get_fingerprint_type

(continues on next page)

5.4. get_fingerprint_type() and get_type() 133

chemfp Documentation, Release 3.4

(continued from previous page)

raise err
chemfp.types.FingerprintTypeValueError: Unable to use RDKit-Fingerprint/1: This version␣
↪→of RDKit does not support the RDKit-Fingerprint/1 fingerprint

I can also specify some or all of the parameters myself in the type string, instead of accepting the default
values:

>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024 maxPath=6")
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=6 fpSize=1024 nBitsPerHash=2 useHs=1'

You can also pass in the parameters as a Python dictionary, though you still need at least the base name of
the fingerprint family:

>>> fp_kwargs = {
... "maxPath": 6,
... "fpSize": 512,
... }
>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint", fp_kwargs)
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=6 fpSize=512 nBitsPerHash=2 useHs=1'

If a parameter is specified in both the type string and the dictionary then the dictionary value will be used:

>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024 minPath=2",
... {"fpSize": 128})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=2 maxPath=7 fpSize=128 nBitsPerHash=2 useHs=1'

5.5 Create a fingerprint using text settings

In this section you’ll learn how to get a fingerprint type using text settings.

The fingerprint keywords arguments (“kwargs”) are a dictionary whose keys are fingerprint parameter names
and whose values are native Python objects for those parameters. Here is a fingerprint kwargs dictionary
for the RDKit-Fingerprint:

{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

Text settings are a dictionary where the dictionary keys are still parameter names but where the dictio-
nary values are string-encoded parameter values. Here is the equivalent text settings for the above kwargs
dictionary:

{'maxPath': '7', 'fpSize': '2048', 'nBitsPerHash': '2', 'minPath': '1', 'useHs': '1'}

A text settings dictionary typically comes from command-line parameters or a configuration file, where
everything is a string. The fingerprint family has a method to convert text settings to kwargs:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> kwargs = family.get_kwargs_from_text_settings({"fpSize": "4096"})

(continues on next page)

134 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.4

(continued from previous page)

>>> kwargs
{'minPath': 1, 'maxPath': 7, 'fpSize': 4096, 'nBitsPerHash': 2,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

The kwargs can then be used to get the specified fingerprint type from the family:

>>> fptype = family.from_kwargs(kwargs)
>>> fptype
<chemfp.rdkit_types.RDKitFingerprintType_v2 object at 0x100f68610>
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

It’s a bit tedious to go through all those steps to process some text settings. Instead, call chemfp.
get_fingerprint_type_from_text_settings():

>>> fptype = chemfp.get_fingerprint_type_from_text_settings(
... "RDKit-Fingerprint", {"fpSize": "4096"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

The parameters in the text settings have priority should the fingerprint type string and the text settings
both specify the same parameter name, as in this example where the fingerprint type string specifies a 1024
bit fingerprint while the text settings specifies a 4096 bit fingerprint:

>>> fptype = chemfp.get_fingerprint_type_from_text_settings("RDKit-Fingerprint␣
↪→fpSize=1024")
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'
>>>
>>> fptype = chemfp.get_fingerprint_type_from_text_settings(
... "RDKit-Fingerprint fpSize=1024", {"fpSize": "4096"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

At present there is no support for parameter namespaces, and unknown parameter names will raise an
exception:

>>> fptype = chemfp.get_fingerprint_type_from_text_settings(
... "RDKit-Fingerprint", {"fpSize": "4096", "spam": "eggs"})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 2101, in get_fingerprint_type_from_text_settings

return types.registry.get_fingerprint_type_from_text_settings(type, settings)
File "chemfp/types.py", line 1350, in get_fingerprint_type_from_text_settings

raise value_err
chemfp.types.FingerprintTypeValueError: Error with type 'RDKit-Fingerprint': Unsupported␣
↪→fingerprint parameter name 'spam'

This may change in the future; let me know what’s best for you.

For now, if you want to remove unexpected names from a dictionary then use the fingerprint family’s
get_defaults() to get the default kwargs as a dictionary, and use the keys to filter out the unknown
parameters:

5.5. Create a fingerprint using text settings 135

chemfp Documentation, Release 3.4

>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> defaults = family.get_defaults()
>>> defaults
{'minPath': 1, 'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}
>>> settings = {"maxPath": "8", "unknown": "mystery"}
>>> new_settings = dict((k, v) for (k,v) in settings.items() if k in defaults)
>>> new_settings
{'maxPath': '8'}

5.6 FingerprintType properties and methods

In this section you’ll learn about the FingerprintType properties and methods.

I’ll start by getting OpenEye’s tree fingerprint using the default parameters:

>>> fptype = chemfp.get_fingerprint_type("OpenEye-Tree")
>>> fptype
<chemfp.openeye_types.OpenEyeTreeFingerprintType_v2 object at 0x10a64be10>
>>> fptype.get_type()
'OpenEye-Tree/2 numbits=4096 minbonds=0 maxbonds=4␣
↪→atype=Arom|AtmNum|Chiral|FCharge|HvyDeg|Hyb btype=Order'

The “OpenEye-Tree/2” is the fingerprint name, which is decomposed into the base_name “OpenEye-Tree”
and the version “2”:

>>> fptype.name
'OpenEye-Tree/2'
>>> fptype.base_name, fptype.version
('OpenEye-Tree', '2')

The number of bits for the fingerprint is num_bits, and fingerprint_kwargs is a fingerprint parameters as
a dictionary of Python values:

>>> fptype.num_bits
4096
>>> fptype.fingerprint_kwargs
{'numbits': 4096, 'minbonds': 0, 'maxbonds': 4, 'atype': 63, 'btype': 1}

Each fingerprint type has a toolkit, which is the chemfp toolkit that can make molecules used as input to
the fingerprint type. (This would be None if there were no toolkit.) Given a fingerprint type it’s easy to
figure out the toolkit.name of the toolkit it’s associated with:

>>> fptype.toolkit.name
'openeye'

The software attribute gives information about the software used to generate the fingerprint. For RDKit
and Open Babel this is the same as the toolkit.software string. On the other hand, OpenEye distributes
OEChem and OEGraphSim as two different libraries. These map quite naturally to chemfp’s concepts of
fingerprint type and toolkit, so the “software” field for its fingerprint type and toolkit differ:

136 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.4

>>> fptype.software
'OEGraphSim/2.4.3 (20191016) chemfp/3.4'
>>> fptype.toolkit.software
'OEChem/20191016'

Finally, FingerprintType.get_fingerprint_family() returns the fingerprint family for a given fingerprint
type:

>>> fptype.get_fingerprint_family()
FingerprintFamily(<OpenEye-Tree/2>)

5.7 Convert a structure record to a fingerprint

In this section you’ll learn how to use a fingerprint type to convert a structure record into a fingerprint.

The FingerprintType method parse_molecule_fingerprint() parses a structure record and returns the
fingerprint as a byte string. The following uses Open Babel to get the MACCS fingerprint for phenol:

>>> import chemfp
>>> from chemfp import bitops
>>> fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")
>>> fptype
<chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v2 object at 0x10cfedc10>
>>> fp = fptype.parse_molecule_fingerprint("c1ccccc1O", "smistring")
>>> fp
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00D\x80\x10\x1e'
>>> bitops.hex_encode(fp)
'00000000000000000000000000000140004480101e'

The parameters to parse_molecule_fingerprint() are identical to the toolkit’s parse_molecule() func-
tion. For example, the following shows that the SMILES “Q” raises a chemfp.ParseError with the default
errors mode, and returns None when errors is “ignore”:

>>> fptype.parse_molecule_fingerprint("Q", "smistring")
==============================
*** Open Babel Error in ParseSimple
SMILES string contains a character 'Q' which is invalid

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/types.py", line 1021, in parse_molecule_fingerprint
mol = self.toolkit.parse_molecule(content, format, reader_args=reader_args,␣

↪→errors=errors)
.....

File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot parse the SMILES 'Q'

(While the error is ignored at the Python level, Open Babel writes a warning messages to stderr at the C++
level.)

See Parse and create SMILES for information about using parse_molecule() and the distinction between
“smistring”, “smi” and other SMILES formats. See Specify alternate error behavior for more about the errors
parameter.

5.7. Convert a structure record to a fingerprint 137

chemfp Documentation, Release 3.4

5.8 Convert a structure record to an id and fingerprint

In this section you’ll learn how to use a fingerprint type to extract the id from a structure record, convert
the structure record into a fingerprint, and return the (id, fingerprint) pair.

The previous section showed how to convert a structure record into a fingerprint. Sometimes you’ll also
want the identifier. The FingerprintType method parse_id_and_molecule_fingerprint() does both in
the same call.

>>> fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
>>> fptype.parse_id_and_molecule_fingerprint("c1ccccc1O phenol", "smi")
('phenol', b
↪→'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00\x04\x00\x10\x1a')

(If the identifier is not present then the function may return None or the empty string, depending on the
format and underlying implementation.)

The parameters to parse_id_and_molecule_fingerprint are identical to the toolkit.
parse_id_and_molecule() function. For example, the following shows the difference in using two
different delimiter types in the reader_args:

>>> record = "C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a"
>>> fptype.parse_id_and_molecule_fingerprint(record, "smi", reader_args={"delimiter":
↪→"to-eol"})
('vitamin a', b
↪→'\x00\x00\x00\x08\x00\x00\x02\x00\x02\n\x02\x80\x04\x98\x0c\x00\x00\x140\x14\x18')
>>> fptype.parse_id_and_molecule_fingerprint(record, "smi", reader_args={"delimiter":
↪→"space"})
('vitamin', b
↪→'\x00\x00\x00\x08\x00\x00\x02\x00\x02\n\x02\x80\x04\x98\x0c\x00\x00\x140\x14\x18')

The id_tag and errors parameters are also supported, though I won’t give examples. See Read ids and
molecules using an SD tag for the id to learn how to use the id_tag and Specify a SMILES delimiter through
reader_args and Multi-toolkit reader_args and writer_args for examples of using reader_args.

5.9 Make a specialized id and molecule fingerprint parser

In this section you’ll learn how to make a specialized function for computing the fingerprints given many
individual structure records.

Sometimes the structure input comes as a set of individual strings, with one record per string. For example,
the input might come from a database query, where the cursor returns each field of each row as its own term,
and you want to convert each of them into a fingerprint.

One way to do this through successive calls to FingerprintType.parse_molecule_fingerprint():

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> from chemfp import bitops
>>>
>>> smiles_list = ["C", "O=O", "C#N"]
>>>
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")

(continues on next page)

138 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.4

(continued from previous page)

>>> for smiles in smiles_list:
... fp = fptype.parse_molecule_fingerprint(smiles, "smistring")
... print(bitops.hex_encode(fp), smiles)
...
000000000000000000000000000000000000008000 C
000000000000000000000000200000080000004008 O=O
000000000001000000000000000000000000000001 C#N

There is some overhead in this because the parameters, like format (“smistring” in this case) are (re)validated
for each call, and sometimes extra work is done to ensure that the call is thread-safe. (The overhead is higher
if there are complex reader args, and if the underlying fingerprinter is very fast.)

Another solution is to use make_id_and_molecule_fingerprinter_parser() to create a specialized parser
function for a given set of parameters. The parameters are only validated once, and the returned parser
function takes only the record as input and returns the (id, fingerprint) pair:

>>> import chemfp
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> id_and_fp_parser = fptype.make_id_and_molecule_fingerprint_parser("smi")
>>> id_and_fp_parser("c1ccccc1O phenol")
('phenol', b
↪→'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00D\x80\x10\x1e')

The parameters to make_id_and_molecule_fingerprint_parser are identical to toolkit.
make_id_and_molecule_parser().

I’ll use the new function to parse the smiles_list from earlier:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> from chemfp import bitops
>>>
>>> smiles_list = ["C", "O=O", "C#N"]
>>>
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> id_and_fp_parser = fptype.make_id_and_molecule_fingerprint_parser("smistring")
>>>
>>> for smiles in smiles_list:
... id, fp = id_and_fp_parser(smiles)
... print(bitops.hex_encode(fp), smiles)
...
000000000000000000000000000000000000008000 C
000000000000000000000000200000080000004008 O=O
000000000001000000000000000000000000000001 C#N

For OpenEye-MACCS166, creating and using a specialized parser is about 10% faster than using the
parse_molecule_fingerprint() when the query is isocane (C20H42). For OpenBabel-MACCS it’s about 5%,
and for RDKit-MACCS166 it’s around 1%.

The performance differences are in part due to the performance differences of the SMILES parsers in the
underlying toolkit and in part because of differences in how the toolkits handle parsing. Chemfp does
not guarantee that the function returned by make_id_and_molecule_parser() may be called by different
threads at the same time. (Instead, make a function for each thread.) This means the OEChem version
re-use a single molecule object, which reduces some memory allocation overhead. While the RDKit and
Open Babel implementations always create a new molecule each time, adding some overhead.

5.9. Make a specialized id and molecule fingerprint parser 139

chemfp Documentation, Release 3.4

In addition, RDKit’s native MACCS implementation maps key 1 to bit 1, while the other toolkits and chemfp
map key 1 to bit 0. Chemfp normalizes RDKit-MACCS by shifting all of the bits left, and this translation
code hasn’t yet been optimized (though it appears to take only about 2% of the overall time).

You may have noticed that there’s a parse_molecule_fingerprint()
and a make_id_and_molecule_fingerprint_parser() but there isn’t a
parse_id_and_molecule_fingerprint() or make_molecule_fingerprint_parser(). This is simply
a matter of time. I haven’t needed those functions, they are quite easy to emulate given what’s available,
and I was getting bored of writing test cases.

Let me know if they would be useful for your code.

5.10 Read a structure file and compute fingerprints

In this section you’ll learn how to use a fingerprint type to read a structure file, compute fin-
gerprints for each one, and iterate over the resulting (id, fingerprint) pairs. You will need Com-
pound_099000001_099500000.sdf.gz from PubChem.

The read_molecule_fingerprints() method of a FingerprintType reads a structure file and computes
the fingerprint for each molecule. It will also extract the record identifier. It returns an iterator of the
(id, fingerprint) pairs. For example, the following uses OEChem/OEGraphSim to compute the MACCS166
fingerprint for a PubChem file, and prints the identifier, the number of keys set in the fingerprint, and the
hex-encoded fingerprint:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import bitops

Uncomment the fingerprint type you want to use.
fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
#fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
#fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")
for id, fp in fptype.read_molecule_fingerprints("Compound_099000001_099500000.sdf.gz"):

print("%s %3d %s" % (id, bitops.byte_popcount(fp), bitops.hex_encode(fp)))

The first few lines of chemfp output are:

99000039 46 000004000000300001c0404e93e19053dca06b6e1b
99000230 67 000000880100648f0445a7fe2aeab1738f2a5b7e1b
99002251 45 00000000001132000088404985e01152dca46b7e1b
99003537 44 00000000200020000156149a90e994938c30592e1b
99003538 44 00000000200020000156149a90e994938c30592e1b

However, in most cases you should use the top-level helper function chemfp.
read_molecule_fingerprints(), which does the fingerprint type lookup and the call to
read_molecule_fingerprints:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import bitops

for id, fp in chemfp.read_molecule_fingerprints("OpenEye-MACCS166",
"Compound_099000001_099500000.sdf.gz"):

print("%s %3d %s" % (id, bitops.byte_popcount(fp), bitops.hex_encode(fp)))

140 Chapter 5. Fingerprint family and type examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

The helper function accepts both a type string, as shown here, and a Metadata object. On the other
hand, the helper function does not support fingerprint kwargs, so in that case you have to go through the
FingerprintType.

The read_molecule_fingerprints method takes the same parameters as the toolkit.
read_ids_and_molecules(), including id_tag, errors, and location. I won’t cover those details again here.
Instead, see Read ids and molecules from an SD file at the same time.

5.11 Structure-based fingerprint reader location

In this section you’ll learn more about the location attribute of the structure-based fingerprint iterator
returned by read_molecule_fingerprints and read_molecule_fingerprints_from_string.

Four related functions implement structure-based fingerprint readers:

• chemfp.read_molecule_fingerprints()

• chemfp.read_molecule_fingerprints_from_string()

• FingerprintType.read_molecule_fingerprints()

• FingerprintType.read_molecule_fingerprints_from_string()

They all return a FingerprintIterator. Just like with the BaseMoleculeReader classes, the Fingerprint-
Iterator has a location attribute that can be used to get more information about the internal reader state.
The toolkit section has more details about how to get the current record number (see Location informa-
tion: filename, record_format, recno and output_recno) and, if supported by the parser implementation for
a format, the line number and byte ranges for the record (see Location information: record position and
content).

It’s also possible to get the current molecule object using the location’s “mol” attribute. This isn’t so
important for the toolkit API since all of the molecule readers return the molecule object. It’s more useful
in the fingerprint iterator, which doesn’t.

NOTE: accessing the molecule this way is somewhat slow, because it requires several Python function
calls. It should mostly be used for error reporting; the following is meant as an example of use, and not a
recommended best practice.

The following uses the location’s mol to report the SMILES string for every molecule whose MACCS finger-
print sets at most 6 keys:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import bitops

from openeye.oechem import OECreateSmiString, OEThrow, OEErrorLevel_Fatal
OEThrow.SetLevel(OEErrorLevel_Fatal) # Disable warnings

fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
with fptype.read_molecule_fingerprints("Compound_099000001_099500000.sdf.gz") as reader:

location = reader.location
for id, fp in reader:

popcount = bitops.byte_popcount(fp)
if popcount > 6:

continue
smiles = OECreateSmiString(location.mol)
print("%s %3d %s" % (id, popcount, smiles))

5.11. Structure-based fingerprint reader location 141

chemfp Documentation, Release 3.4

The output from the above is:

99116624 6 C(C(Cl)(Cl)Cl)(F)Cl
99116625 6 C(C(Cl)(Cl)Cl)(F)Cl
99118955 6 C(C(C(Cl)(Cl)Cl)(F)Cl)(C(F)(F)F)(F)F
99118956 6 C(C(C(Cl)(Cl)Cl)(F)Cl)(C(F)(F)F)(F)F

The above code imports the OEChem toolkit to disable warnings about “Stereochemistry corrected on atom
number”, and to call OECreateSmiString directly.

While chemfp has no cross-platform method to silence warnings, it does have a cross-toolkit solution to
generate the SMILES string, which is only slightly more complicated than using the native API.

I need to use the fingerprint type object to get the underlying “toolkit”, which is a portability layer on top
of the actual cheminformatics toolkit with functions to parse a string into a molecule and vice versa:

>>> import chemfp
>>> fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
>>> fptype.toolkit
<module 'chemfp.openeye_toolkit' from 'chemfp/openeye_toolkit.py'>
>>> T = fptype.toolkit
>>> mol = T.parse_molecule("OC", "smistring")
>>> T.create_string(mol, "smistring")
'CO'

I’ll use the toolkit’s create_string() method to make the SMILES string for each molecule which passes
the filter:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import bitops

fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
T = fptype.toolkit

with fptype.read_molecule_fingerprints("Compound_099000001_099500000.sdf.gz") as reader:
location = reader.location
for id, fp in reader:

popcount = bitops.byte_popcount(fp)
if popcount > 6:

continue
smiles = T.create_string(location.mol, "smistring")
print("%s %3d %s" % (id, popcount, smiles))

When should you use a toolkit-specific API and when to use the portable one?

That depends on you. There’s definitely a portability vs. performance tradeoff because the new
create_string function will always require an extra function call over the native API. If you work with
a given toolkit a lot then you’re going to be more familiar with it than this brand new chemfp API. Plus,
calling a function to create another function is somewhat unusual.

On the other hand, it’s trivial to change the above code to work with any of the fingerprint types that chemfp
supports.

142 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.4

5.12 Read fingerprints from a string containing structures

In this section you’ll learn how to use a fingerprint type to read a string containing a set of structure records,
compute fingerprints for each one, and iterate over the resulting (id, fingerprint) pairs.

The read_molecule_fingerprints_from_string() method of the FingerprintType takes as input a string
containing structure records and returns an iterator over the (id, fingerprint) pairs.

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> from chemfp import bitops
>>> fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")
>>> content = "C methane\n" + "CC ethane\n"
>>> print(content, end="")
C methane
CC ethane
>>> reader = fptype.read_molecule_fingerprints_from_string(content, "smi")
>>> for (id, fp) in reader:
... print(id, bitops.hex_encode(fp))
...
methane 000000000000000000000000000000000000008000
ethane 000000000000000000000000000000000000108000
>>>

In most cases you should use the top-level helper function chemfp.
read_molecule_fingerprints_from_string(), which is slightly easier to call:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import bitops
content = ("C methane\n"

"CC ethane\n")
reader = chemfp.read_molecule_fingerprints_from_string("OpenBabel-MACCS",

content, "smi")
for (id, fp) in reader:

print(id, bitops.hex_encode(fp))

The helper function accepts both a type string, as shown here, and a Metadata object. The helper function
does not support fingerprint kwargs so in that case you must go through the fingerprint type.

The method takes the same parameters as toolkit.read_ids_and_molecules_from_string(), including
the id_tag, errors, location, and reader_args. See Read from a string instead of a file for more about that
function.

5.13 Structure-based fingerprint reader errors

In this section you’ll learn how to use the errors option for the “read molecule fingerprints” functions,
including how to use the experimental support for a callback error handler.

The four structure reader functions (chemfp.read_molecule_fingerprints(), chemfp.
read_molecule_fingerprints_from_string(), FingerprintType.read_molecule_fingerprints(),
and FingerprintType.read_molecule_fingerprints_from_string()) take the standard errors option.
By default it is “strict”, which means that it raises an exception when there are errors, and stops processing.

5.12. Read fingerprints from a string containing structures 143

chemfp Documentation, Release 3.4

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> from chemfp import bitops
>>> content = ("C methane\n" +
... "Q Q-ane\n" +
... "O=O molecular oxygen\n")
>>> with chemfp.read_molecule_fingerprints_from_string(
... "RDKit-MACCS166", content, "smi") as reader:
... for (id, fp) in reader:
... print(id, bitops.hex_encode(fp))
...
methane 000000000000000000000000000000000000008000
[11:10:34] SMILES Parse Error: syntax error while parsing: Q
[11:10:34] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
Traceback (most recent call last):
File "<stdin>", line 3, in <module>

... traceback lines omitted ...
File "<string>", line 1, in raise_tb

chemfp.ParseError: RDKit cannot parse the SMILES 'Q', file '<string>', line 2, record
↪→#2: first line is 'Q Q-ane'

The default is “strict” because you should be the one to decide if you really want to ignore errors, not me.
Specify errors="ignore" to ignore errors, or use “report” to have chemfp write its own error messages to
stderr:

>>> with chemfp.read_molecule_fingerprints_from_string(
... "RDKit-MACCS166", content, "smi", errors="ignore") as reader:
... for (id, fp) in reader:
... print(id, bitops.hex_encode(fp))
...
methane 000000000000000000000000000000000000008000
[11:11:50] SMILES Parse Error: syntax error while parsing: Q
[11:11:50] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
molecular oxygen 000000000000000000000000200000080000004008

Of course, this depends on the underlying toolkit implementation. Some toolkit/format combinations don’t
let chemfp know there was an error, such as most of the OEChem-based formats.

5.14 Experimental error handler

In this section you’ll learn about the experimental API for writing your own error handler.

In the previous section you learned about the “strict”, “report”, and “ignore” error handlers. What if you
want something different? Chemfp has an experimental feature where the errors can be any object with the
method “error(message, location)”. You might send the results to a log file, or display it in a GUI, … or send
it to a speech synthesizer and hear all of the error messages go by.

NOTE: This error handler API is experimental and may change in the future.

The following creates an error handler which counts the number of errors, and for each one reports the error
number, the filename (which is “<string>” if the input is from a string), and the error message:

144 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.4

>>> class ErrorCounter(object):
... def __init__(self):
... self.num_errors = 0
... def error(self, message, location):
... self.num_errors += 1
... print("Failure #%d from file %r: %s" % (
... self.num_errors, location.filename, message))
...
>>> error_handler = ErrorCounter()
>>> # ... use 'content' from the previous section
>>> with chemfp.read_molecule_fingerprints_from_string(
... "RDKit-MACCS166", content, "smi", errors=error_handler) as reader:
... for (id, fp) in reader:
... print(id, bitops.hex_encode(fp))
...
methane 000000000000000000000000000000000000008000
[11:13:56] SMILES Parse Error: syntax error while parsing: Q
[11:13:56] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
Failure #1 from file '<string>': RDKit cannot parse the SMILES 'Q'
molecular oxygen 000000000000000000000000200000080000004008

Let me know if you use the API and have ideas for improvements.

The toolkit documentation includes another example of how to write an error handler.

5.15 Compute a fingerprint for a native toolkit molecule

In this section you’ll learn how to compute a fingerprint given a toolkit molecule.

All of the previous sections assumed the inputs were structure record(s), either as a string or from a file.
What if you already have a native toolkit molecule and want to compute its fingerprint? In that case, use
the FingerprintType.compute_fingerprint() method:

>>> import chemfp
>>> fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")
>>> mol = fptype.toolkit.parse_molecule("c1ccccc1O", "smistring")
>>> mol
<openbabel.openbabel.OBMol; proxy of <Swig Object of type 'OpenBabel::OBMol *' at␣
↪→0x10b134db0> >
>>> fptype.compute_fingerprint(mol)
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00D\x80\x10\x1e'

This can be useful when you want to compute multiple fingerprint types for the same molecule. For example,
I’ll compare Open Babel’s MACCS implementation with chemfp’s own MACCS implementation for Open
Babel:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import openbabel_toolkit as T
from chemfp import bitops

fptype1 = chemfp.get_fingerprint_type("OpenBabel-MACCS")
(continues on next page)

5.15. Compute a fingerprint for a native toolkit molecule 145

chemfp Documentation, Release 3.4

(continued from previous page)

fptype2 = chemfp.get_fingerprint_type("RDMACCS-OpenBabel")

with T.read_ids_and_molecules("Compound_099000001_099500000.sdf.gz") as reader:
for id, mol in reader:

fp1 = fptype1.compute_fingerprint(mol)
fp2 = fptype2.compute_fingerprint(mol)
if fp1 != fp2:

bits1 = set(bitops.byte_to_bitlist(fp1))
bits2 = set(bitops.byte_to_bitlist(fp2))
print(id, "in OB:", sorted(bits1-bits2), "in RDMACCS:", sorted(bits2-bits1))

else:
print(id, "equal")

Almost half (7929 of 10826) of the output were lines of the form:

99000039 in OB: [] in RDMACCS: [124]

I was curious, so I investigated the differences. Key 125 (the MACCS keys start at 1 while chemfp bit
indexing starts at 0) is defined as “Aromatic Ring > 1”. Open Babel doesn’t support this bit because it only
allows key definitions based on SMARTS, and this query cannot be represented as SMARTS.

Note: compute_fingerprint() is thread-safe. If an underlying chemistry toolkit object is not thread-safe
then chemfp will duplicate that object before computing the fingerprint.

5.16 Fingerprint many native toolkit molecules

In this section you’ll learn how to generate a fingerprint given many native toolkit molecules.

Sometimes you have a list of molecules and you want to compute fingerprints for each one. In the following
I’ll load 10826 molecules from an SD file using OEChem:

>>> import chemfp
>>>
>>> fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
>>> T = fptype.toolkit
>>>
>>> with T.read_molecules("Compound_099000001_099500000.sdf.gz") as reader:
... mols = [T.copy_molecule(mol) for mol in reader]
...

... various OEChem warnings omitted ...
>>> len(mols)
10826

NOTE: for performance reasons, some of the toolkit implementations will reuse a molecule object. I call
toolkit.copy_molecule() to force a copy of each one. A future version of chemfp will likely support a new
reader_args parameter to ask the reader implementation to always return a new molecule.

You know from the previous section how to compute the fingerprint one molecule at a time using
FingerprintType.compute_fingerprint():

>>> fps = [fptype.compute_fingerprint(mol) for mol in mols]

You can also process all of them at once using FingerprintType.compute_fingerprints():

146 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.4

>>> fps = list(fptype.compute_fingerprints(mols))

The plural in the name compute_fingerprints() is the hint that it can take multiple molecules. It returns
a generator, so I used Python’s list() to convert it to an actual list.

Why call compute_fingerprints instead of compute_fingerprint? The main reason is that it expresses
your intent more clearly than setting up a for-loop. But to be honest, the original reason was that I expected
it would be faster than calling the compute_fingerprint many times, because the underlying code could
skip some overhead.

By design, compute_fingerprint is thread-safe, which means chemfp sometimes makes extra objects to keep
that promise. On the other hand, compute_fingerprints, which processes a sequential series of molecules,
can reuse internal objects across the series instead of creating new ones. In principle this should be a bit
faster. In practice, nearly all of the time is spent in generating the fingerprints. The overhead adds less than
1%.

5.17 Make a specialized molecule fingerprinter

In this section you’ll learn how to make a specialized function to compute a fingerprint for a molecule.
However, there is very little reason for you to use this function.

The FingerprintType.compute_fingerprint() method is thread-safe. Some of the underlying toolkit
implementations can use code which isn’t thread-safe. For example, OEGraphSim writes its fingerprint
information to an OEFingerPrint instance, and replaces its previous value. A thread-safe implementation
would make a new OEFingerPrint for each call, which a non-thread-safe implementation could reuse it, and
save a small bit of allocation overhead.

The FingerprintType.make_fingerprinter() method returns a non-thread-safe fingerprinter function,
which is potentially faster beause it doesn’t need to keep the thread-safe promise.

Here’s an example of the two APIs. First, a bit of preamble to get things set up with a couple of molecules:

>>> import chemfp
>>> from chemfp import bitops
>>>
>>> fptype = chemfp.get_fingerprint_type("OpenBabel-FP2")
>>> mol1 = fptype.toolkit.parse_molecule("c1ccccc1O", "smistring")
>>> mol2 = fptype.toolkit.parse_molecule("O=O", "smistring")

The thread-safe API calls the compute_fingerprint() method:

>>> bitops.byte_popcount(fptype.compute_fingerprint(mol1))
12
>>> bitops.byte_popcount(fptype.compute_fingerprint(mol2))
1

The non-thread-safe version uses make_fingerprinter to create a new fingerprinter function, which I’ve
assigned to calc_fingerprint, and then call directly:

>>> calc_fingerprint = fptype.make_fingerprinter()
>>> bitops.byte_popcount(calc_fingerprint(mol1))
12
>>> bitops.byte_popcount(calc_fingerprint(mol2))
1

5.17. Make a specialized molecule fingerprinter 147

chemfp Documentation, Release 3.4

The keen-eyed will note that I could have written the first code as:

>>> compute_fingerprint = fptype.compute_fingerprint
>>> bitops.byte_popcount(compute_fingerprint(mol1))
12
>>> bitops.byte_popcount(compute_fingerprint(mol2))
1

and gotten the same answer, which means there is little API need for a special “make_fingerprinter()”
function, except for performance.

I timed the performance differences using the following:

import chemfp
import time

def main():
fptype = chemfp.get_fingerprint_type("OpenBabel-FP2")
T = fptype.toolkit

with T.read_molecules("Compound_099000001_099500000.sdf.gz") as reader:
mols = list(reader)

compute_fingerprint = fptype.compute_fingerprint
calc_fingerprint = fptype.make_fingerprinter()

t1 = time.time()
fps1 = [compute_fingerprint(mol) for mol in mols]
t2 = time.time()
fps2 = [calc_fingerprint(mol) for mol in mols]
t3 = time.time()
assert fps1 == fps2
print("compute_fingerprint():", t2-t1)
print("make_fingerprinter():", t3-t2)
print("ratio:", (t2-t1)/(t3-t2))
print("1/ratio:", (t3-t2)/(t2-t1))

main()

With the Open Babel 3.0.0 fingerprints, the performance improvement was roughly 10%.

148 Chapter 5. Fingerprint family and type examples

CHAPTER 6

Toolkit API examples

This chapter gives many examples of how to use the toolkit API. For an overview of the toolkit API func-
tions, see chemfp.toolkit. For details about actual toolkit implementations, see chemfp.openeye_toolkit,
chemfp.openbabel_toolkit, chemfp.rdkit_toolkit, and chemfp.text_toolkit.

Fingerprint search usually starts with a structure record, and not a fingerprint. The functions chemfp.
read_molecule_fingerprints() and chemfp.read_molecule_fingerprints_from_string() give a quick
way to read a file or string containing structure records as the corresponding fingerprints.

Sometimes you want more control over the process. You might want to generate multiple fingerprints for the
same structure and not want to reparse the structure record multiple times. Or you might want to return
the search results as extra fields to the query SDF record instead of a simple list of values.

Chemfp uses a third-party chemistry toolkit to parse the records into a molecule, or compute the fingerprint
for a given molecule. It’s not hard to write your own Open Babel, OEChem/OEGraphSim, or RDKit code
to handle any of these or similar tasks. The problem comes in when you want to mix multiple fingerprint
types, like to compare the default RDKit fingerprint to Open Babel’s FP2 fingerprint. You end up writing
very different code for essentially the same fingerprint task.

There’s an old saying in computer science; all problems can be solved with another layer of indirection. The
chemfp toolkit API follows that tradition. It’s a common API for molecule I/O which works across the three
supported toolkits. It’s also my best effort at implementing a next generation API.

Bear in mind that it is only an I/O API. Chemfp is a fingerprint toolkit and it will not gain a common
molecule API. For that, look toward Cinfony.

6.1 Get a chemfp toolkit

In this section you’ll learn how to load a “toolkit” – a portable API layer above the actual chemistry toolkit
– and how to check if a toolkit is available and has a valid license.

Each toolkit I/O adapter is implemented as a chemfp submodule. If you know the underlying chemistry
toolkit is installed you can import the adapter directly:

149

http://code.google.com/p/cinfony/

chemfp Documentation, Release 3.4

>>> from chemfp import openbabel_toolkit
>>> from chemfp import openeye_toolkit
>>> from chemfp import rdkit_toolkit

Use chemfp.get_toolkit_names() to get the available toolkit names:

>>> chemfp.get_toolkit_names()
set(['openeye', 'rdkit', 'openbabel'])

This will try to import each module, which means it may take a second or more depending on the shared
library load time for your system. (This overhead only occurs once.) The function returns a list of the
modules that could be loaded and have a valid license.

You can use chemfp.get_toolkit() to get the correct toolkit module given a name; it raises a ValueError
if the underlying toolkit isn’t installed or the toolkit name is unknown:

>>> chemfp.get_toolkit("rdkit")
<module 'chemfp.rdkit_toolkit' from 'chemfp/rdkit_toolkit.pyc'>
>>> chemfp.get_toolkit("openeye")
<module 'chemfp.openeye_toolkit' from 'chemfp/openeye_toolkit.pyc'>
>>> chemfp.get_toolkit("openbabel")
<module 'chemfp.openbabel_toolkit' from 'chemfp/openbabel_toolkit.pyc'>

Existence isn’t enough to know if you can use a toolkit. OEChem requires a license. Each I/O adapter
implements chemfp.toolkit.is_licensed(). It returns True for Open Babel and RDKit and the value of
OEChemIsLicensed() for OEChem:

>>> from __future__ import print_function # Only needed in Python 2
>>> for name in chemfp.get_toolkit_names():
... T = chemfp.get_toolkit(name)
... print("Toolkit %r (%s) is licensed? %s" % (T.name, T.software, T.is_licensed()))
...
Toolkit 'openeye' (OEChem/20191016) is licensed? True
Toolkit 'openbabel' (OpenBabel/3.0.0) is licensed? True
Toolkit 'rdkit' (RDKit/2020.03.1) is licensed? True

(Thanks OpenEye for an no-cost developer license to their toolkit!) There is currently no way to check if
OEGraphSim is licensed; you’ll need to use native OpenEye code instead.

For fun I also showed the software attribute, which gives more detailed information about the toolkit version
in a standardized format.

Finally, use chemfp.has_toolkit() to check if a toolkit is available. In the following, I used one of my
local testing environments which has OEChem installed but not the other toolkits. (I use venv to create and
manage these virtual environments; it’s a very useful tool.):

>>> chemfp.has_toolkit("openeye")
True
>>> chemfp.has_toolkit("openbabel")
False
>>> chemfp.has_toolkit("rdkit")
False

The other option is to catch the ValueError raised when trying to get an unavailable toolkit:

150 Chapter 6. Toolkit API examples

https://docs.python.org/3/library/venv.html

chemfp Documentation, Release 3.4

>>> chemfp.get_toolkit("openeye")
<module 'chemfp.openeye_toolkit' from 'chemfp/openeye_toolkit.py'>
>>> chemfp.get_toolkit("rdkit")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1907, in get_toolkit

raise ValueError("Unable to get toolkit %r: %s" % (toolkit_name, err))
ValueError: Unable to get toolkit 'rdkit': No module named rdkit
>>> chemfp.get_toolkit("cdk")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1929, in get_toolkit

raise ValueError("Toolkit %r is not supported" % (toolkit_name,))
ValueError: Toolkit 'cdk' is not supported

This is a bit more complicated to do, but does have the advantage of giving access to an error message.

6.2 Parse and create SMILES

In this section you’ll learn how to parse a SMILES into a molecule, convert a molecule into a SMILES, and
the difference between a SMILES record and a SMILES string. You will need a chemistry toolkit for this
and most of the examples in this chapter.

The chemfp toolkit I/O API is the same across the different toolkits, and examples with one will gener-
ally work with the other, except for essential differences like the specific formats available, the chemistry
differences in how to interpret a record, the error messages, and reader and writer arguments.

For most examples I’ll use T as the toolkit module name, rather than specify a specific toolkit. My examples
will be based on RDKit, but you can use any of the following, if available on your system:

Choose one of these
from chemfp import openeye_toolkit as T
from chemfp import openbabel_toolkit as T
from chemfp import rdkit_toolkit as T

I’ll parse the SMILES string for phenol as a toolkit molecule, then convert the toolkit molecule into its
canonical isomeric SMILES string using chemfp.toolkit.create_string():

>>> mol = T.parse_molecule("c1ccccc1O", "smistring")
>>> mol
<rdkit.Chem.rdchem.Mol object at 0x103559980>
>>> T.create_string(mol, "smistring")
'Oc1ccccc1'

The “smistring” format name means that the input is a SMILES string. Chemfp follows the rule from the
original SMILES paper that the SMILES string ends at the first whitespace. The following is valid across
the chemfp toolkits API even if the underlying toolkit doesn’t accept the “junk” as part of a SMILES:

>>> mol = T.parse_molecule("c1ccccc1O junk", "smistring")

On the other hand, if you have a SMILES record, which is a SMILES string followed by an id and possibly
other fields, then use the “smi” format name. That will parse the first characters as a SMILES string and
parse the rest of the input, up to the end of the line, as the record id:

6.2. Parse and create SMILES 151

chemfp Documentation, Release 3.4

>>> mol = T.parse_molecule("c1ccccc1O junk", "smistring")
>>> T.get_id(mol) is None
True
>>> mol = T.parse_molecule("c1ccccc1O junk", "smi")
>>> T.get_id(mol)
'junk'
>>> mol = T.parse_molecule("c1ccccc1O flotsam and jetsam\nand more\n", "smi")
>>> T.get_id(mol)
'flotsam and jetsam'

I used the chemfp.toolkit.get_id() helper function. While chemfp doesn’t have a common molecule
object, I found I do need a few standard functions to manipulate toolkit molecules. Also, toolkit.
parse_molecule() will only read the first record and ignore trailing data, which is why the “and more”
didn’t affect anything.

Now that the molecule has an id, it’s easy to see the difference between the “smistring” and “smi” in the
output string:

>>> T.create_string(mol, "smistring")
'Oc1ccccc1'
>>> T.create_string(mol, "smi")
'Oc1ccccc1 flotsam and jetsam\n'

Finally, you can pass an alternate id to the toolkit.create_string() function. One example of when this
is useful is when your identifier comes from one field of a database and the SMILES string from another,
and you want to combine the results to get an SDF record:

>>> T.create_string(mol, "smi", id="nothing to see here")
'Oc1ccccc1 nothing to see here\n'

WARNING: Chemfp’s toolkit wrapper implementation may temporarily change then restore the toolkit
molecule’s own identifier in order to get the correct output. This is not thread-safe.

6.3 Canonical, non-isomeric, and arbitrary SMILES

In this section you’ll learn the difference between the “smistring”, “canstring”, and “usmstring” SMILES
string formats and the “smi”, “can”, and “usm” SMILES record formats. As with all examples which use
the generic T toolkit name, you’ll need one of the supported chemistry toolkits, and I’ll use RDKit as my
underlying toolkit.

The SMILES format supports many different ways to represent the same molecule. “CO”, “OC”,
“[OH][CH3]”, and “C3.O3” are four different SMILES strings for methanol. A canonicalization algorithm
uses additional rules to create a unique SMILES representation for a given molecular graph. The different
chemistry toolkit have different canonicalization algorithms, so each toolkit will likely generate a different
canonical SMILES string for the same molecular graph.

There are multiple classes of canonical SMILES strings even in the same toolkit. The original SMILES
format did not handle isotopes, chirality, or stereochemistry. The later extension to support these was called
“isomeric SMILES”, to distinguish it from the original SMILES.

Because of the history, when people asked a toolkit for “SMILES” output they got non-isomeric non-canonical
SMILES, while “canonical SMILES” gave them “non-isomeric canonical”. This caused subtle usability errors.
Many people, including people like me who should have the experience to know better, expect canonical

152 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

isomeric SMILES by default. But for over 20 years nearly all of the toolkits followed Daylight’s lead in how
they did things.

I learned about the problem when OEChem 2.0 broke with tradition and fixed the mistake. It defined the
default SMILES as canonical isomeric SMILES. If you make the effort to ask for a canonical SMILES you
get canonical non-isomeric SMILES, and if you really want non-canonical, non-isomeric SMILES you can
ask for the “usm” format.

Year later I learned that that Open Babel did the right thing well before OpenEye. Open Babel’s “canonical”
is isomeric SMILES, you must specify the “i” option to not include isotopic or chiral markings, and they
don’t even refer to “isomeric SMILES”.

Chemfp follows OpenEye’s naming convention. The “smistring” format generates a canonical isomeric
SMILES string, the “canstring” format generates a canonical non-isomeric SMILES string, and the “usm-
string” format generates a non-canonical non-isomeric SMILES string:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>
>>> mol = T.parse_molecule("[235P].[238U]", "smistring")
>>> T.create_string(mol, "smistring")
'[235P].[238U]'
>>> T.create_string(mol, "canstring")
'[P].[U]'
>>> T.create_string(mol, "usmstring")
'[P].[U]'

Here’s evidence that the “usmstring” format is non-canonical:

>>> mol = T.parse_molecule("[238U].[235P]", "smistring")
>>> T.create_string(mol, "usmstring")
'[U].[P]'
>>> T.create_string(mol, "smistring")
'[235P].[238U]'

These conventions also apply when creating “smi”, “can”, and “usm” strings:

>>> T.set_id(mol, "radioactive")
>>> T.create_string(mol, "smi")
'[235P].[238U] radioactive\n'
>>> T.create_string(mol, "can")
'[P].[U] radioactive\n'
>>> T.create_string(mol, "usm")
'[U].[P] radioactive\n'

By the way, chemfp.toolkit.parse_molecule() doesn’t distinguish between “smi”, “can” and “usm” as
input SMILES records, nor between “smistring”, “canstring” and “usmstring”. The format only makes a
difference for output. Later on you’ll see how to specify writer_args to have more fine-grained control over
the output SMILES format. (See RDKit-specific SMILES reader_args and writer_args, OpenEye-specific
SMILES reader_args and writer_args, and Open Babel-specific SMILES reader_args and writer_args for
toolkit-specific examples.)

6.4 Use format to create a record in SDF format

In this section you’ll learn how to convert a toolkit molecule into an SDF record. This example will use
the RDKit toolkit but the results will be substantially the same for any of the three supported chemistry

6.4. Use format to create a record in SDF format 153

chemfp Documentation, Release 3.4

toolkits.

To create an SDF record as a Unicode string, pass “sdf” as the format to chemfp.toolkit.create_string():

>>> from __future__ import print_function # Only needed in Python 2
>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("CO", "smistring")
>>> print(T.create_string(mol, "sdf"))

RDKit

2 1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 1 0
M END
$$$$

Starting with chemfp 3.0, the create_string() function returns a Unicode string, under both Python 2.7
and Python 3.5+:

>>> T.create_string(mol, "sdf")[:13]
'\n RDKit '

In earlier versions of chemfp, create_string() returned a byte string. This was the usual practice under
Python 2.5 to 2.7. It was fine for ASCII data, but caused problems with other characters, like Greek letters
in a compound name or a data item listing prices in with the GBP or EUR symbol.

Python 3 makes a strong distinction between a byte string and a Unicode string. Chemfp 3.x follows that
lead by having create_string() return a Unicode string, and added the new function chemfp.toolkit.
create_bytes() to return a byte string:

>>> T.create_bytes(mol, "sdf")[:13]
b'\n RDKit '

Here I’ll set the molecule’s name to the lower-case Greek letter ‘alpha’, and show you the interactive output
from Python 2.7:

>>> T.set_id(mol, u"\N{GREEK SMALL LETTER ALPHA}")
>>> T.create_string(mol, "sdf")[:13]
u'\u03b1\n RDKit '
>>> T.create_bytes(mol, "sdf")[:13]
'\xce\xb1\n RDKit'
>>> print(T.create_string(mol, "sdf")[:13])
α

RDKit

Here’s the same output under Python 3.8:

>>> T.set_id(mol, u"\N{GREEK SMALL LETTER ALPHA}")
>>> T.create_string(mol, "sdf")[:13]
'α\n RDKit '
>>> T.create_bytes(mol, "sdf")[:13]
b'\xce\xb1\n RDKit'
>>> print(T.create_string(mol, "sdf")[:13])

(continues on next page)

154 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

(continued from previous page)

α
RDKit

6.5 Use zlib record compression

In this section you’ll learn about the “zlib” compression option for single record parsers and byte string
creation.

A record in SDF format can be large, but most of the content is repetetive. Often it’s better to store a
zlib compressed record in a database instead of the full record. When I use zlib to compress each record of
Compound_099000001_099500000.sdf.gz I get a 4.5-fold compression. That is, the uncompressed records
take 73,024,092 bytes, the individually compressed records take 16,262,567 bytes, and the gzip compressed
file takes 6,847,342 bytes. (Gzip is twice as good as individually compressed records because it can collect
compression statistics across multiple records and build a better prediction model.)

Chemfp supports a zlib compression option for the record-oriented functions, though not the file-oriented
functions. To enable it, add “.zlib” to the format string for chemfp.toolkit.create_bytes(). Here you
can see how adding that suffix reduces the record size:

>>> from __future__ import print_function # Only needed in Python 2
>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("CO", "smistring")
>>> print("uncompressed:", len(T.create_bytes(mol, "sdf")))
uncompressed: 228
>>> print("compressed:", len(T.create_bytes(mol, "sdf.zlib")))
compressed: 77

I’ll complete a round-trip conversion by parsing the compressed SD record to a molecule then converting it
to a SMILES string:

>>> compressed = T.create_bytes(mol, "sdf.zlib")
>>> new_mol = T.parse_molecule(compressed, "sdf.zlib")
>>> T.create_string(new_mol, "smistring")
'CO'

The zlib option only works with create_bytes; it does not work with create_string because the latter
only returns Unicode strings, and it’s possible for zlib to return something which isn’t valid Unicode. Here’s
what happens if you try to use it anyway:

>>> T.create_string(mol, "sdf.zlib")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/rdkit_toolkit.py", line 419, in create_string

return _toolkit.create_string(mol, format, id, writer_args, errors)
File "chemfp/base_toolkit.py", line 1382, in create_string

raise ValueError("create_string() does not support compression. Use create_bytes()")
ValueError: create_string() does not support compression. Use create_bytes()

On the other hand, chemfp.toolkit.parse_molecule() takes both Unicode strings and byte strings as
input. It treats byte strings as being UTF-8 encoded.

6.5. Use zlib record compression 155

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

6.6 Use zst record compression

In this section you’ll learn about the “zst” compression option for single record parsers and byte string
creation.

Chemfp 3.4 added support for ZStandard compression in most places, including in the record-oriented func-
tions, via the suffix “.zst” in the format name or filename. The following compares zlib and zst compression
to the uncompressed size:

import chemfp
for toolkit_name in ("text", "rdkit", "openbabel", "openeye"):
T = chemfp.get_toolkit(toolkit_name)
with T.read_molecules("Compound_099000001_099500000.sdf.gz",

reader_args={"rdkit.sdf.removeHs": False}) as reader:
uncompressed_size = zlib_size = zst_size = 0
for mol in reader:
uncompressed_size += len(T.create_bytes(mol, "sdf"))
zlib_size += len(T.create_bytes(mol, "sdf.zlib"))
zst_size += len(T.create_bytes(mol, "sdf.zst"))

print("%r toolkit: uncompressed: %d zlib: %d (%.2f) zstd: %d (%.2f)" % (
toolkit_name, uncompressed_size, zlib_size, uncompressed_size/zlib_size,
zst_size, uncompressed_size/zst_size))

The output of the above is:

'text' toolkit: uncompressed: 73024092 zlib: 16262567 (4.49) zstd: 16976598 (4.30)
'rdkit' toolkit: uncompressed: 68180103 zlib: 15843096 (4.30) zstd: 16714426 (4.08)
'openbabel' toolkit: uncompressed: 73392094 zlib: 16295123 (4.50) zstd: 16985140 (4.32)
'openeye' toolkit: uncompressed: 73024092 zlib: 16269883 (4.49) zstd: 16977089 (4.30)

By default OEChem and Open Babel will keep hydrogens while RDKit removes them, which makes the
output SD files considerably smaller. The reader_args specifies rdkit.sdf.removeHs so RDKit will keep
the hydrogens, which makes the size comparisons more direct. The total RDKit size is still smaller than the
other toolkits because RDKit only writes 4 columns for each bond, while the others use 7 columns.

Remember, compression effectiveness is a balance between compression time, compressed size, and decom-
pression time. The zlib, gzip, and zst compression methods all support different compression levels. For zlib
and gzip, 1 results in faster compression time but generally larger compressed sizes, and 9 gives the best
compression at the cost of decreased performance. Zstandard also uses 1 for faster compression but uses 19
to get the maximum compression.

The compression level can be specified using the level argument of the chemfp functions which support com-
pressed output, like chemfp.toolkit.create_bytes(), chemfp.toolkit.open_molecule_writer(), and
save(). It can be the numeric compression level, or the words “min” for minimum compression, “default”
for default (for zlib and gzip, 3 for zstd), and “max” for maximum compression at the expense of time.

6.7 Get a list of available formats and distinguish between input and
output formats

In this section you’ll learn how to get the list of available formats for each object, and determine if a format
can be used to get a toolkit molecule from a string record, or convert a toolkit molecule into a string record.

The toolkit’s chemfp.toolkit.get_formats() function returns a list of the available formats. On my

156 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

computer RDKit supports 20 formats, OEChem 31, and Open Babel (showing off its heritage) supports a
whopping 196:

>>> from chemfp import rdkit_toolkit
>>> len(rdkit_toolkit.get_formats())
20
>>> rdkit_toolkit.get_formats()
[Format('rdkit/smi'), Format('rdkit/can'), Format('rdkit/usm'),
Format('rdkit/sdf'), Format('rdkit/smistring'),
Format('rdkit/canstring'), Format('rdkit/usmstring'),
Format('rdkit/molfile'), Format('rdkit/rdbinmol'),
Format('rdkit/fasta'), Format('rdkit/sequence'), Format('rdkit/helm'),
Format('rdkit/mol2'), Format('rdkit/pdb'), Format('rdkit/xyz'),
Format('rdkit/mae'), Format('rdkit/inchi'), Format('rdkit/inchikey'),
Format('rdkit/inchistring'), Format('rdkit/inchikeystring')]
>>>
>>> from chemfp import openeye_toolkit
>>> len(openeye_toolkit.get_formats())
31
>>> openeye_toolkit.get_formats()
[Format('openeye/smi'), Format('openeye/usm'),
Format('openeye/can'), Format('openeye/sdf'),
Format('openeye/molfile'), Format('openeye/skc'),
Format('openeye/mol2'), Format('openeye/mol2h'),
Format('openeye/sln'), Format('openeye/mmod'),
Format('openeye/pdb'), Format('openeye/xyz'), Format('openeye/cdx'),
Format('openeye/mopac'), Format('openeye/mf'),
Format('openeye/oeb'), Format('openeye/inchi'),
Format('openeye/inchikey'), Format('openeye/oez'),
Format('openeye/cif'), Format('openeye/mmcif'),
Format('openeye/fasta'), Format('openeye/sequence'),
Format('openeye/csv'), Format('openeye/json'),
Format('openeye/smistring'), Format('openeye/canstring'),
Format('openeye/usmstring'), Format('openeye/slnstring'),
Format('openeye/inchistring'), Format('openeye/inchikeystring')]
>>>
>>> from chemfp import openbabel_toolkit
>>> len(openbabel_toolkit.get_formats())
196
>>> openbabel_toolkit.get_formats()
[Format('openbabel/smi'), Format('openbabel/can'),
Format('openbabel/usm'), Format('openbabel/smistring'),
Format('openbabel/canstring'), Format('openbabel/usmstring'),
Format('openbabel/sdf'), Format('openbabel/inchi'),
Format('openbabel/inchikey'), Format('openbabel/inchistring'),
Format('openbabel/inchikeystring'), Format('openbabel/ins'),
Format('openbabel/moo'), Format('openbabel/cmlr'),
... many formats omitted ...

Format('openbabel/pdb')]
>>>

I’ll use chemfp.toolkit.get_format(), which returns a chemfp.base_toolkit.Format, to get the “sdf”
format for OpenEye (if you don’t have access to OEChem, use one of the other toolkits instead):

6.7. Get a list of available formats and distinguish between input and output formats 157

chemfp Documentation, Release 3.4

>>> sdf_format = openeye_toolkit.get_format("sdf")
>>> sdf_format.name
'sdf'
>>> sdf_format.toolkit_name
'openeye'

The “sdf” format can be used for both input and output in all toolkits:

>>> sdf_format.is_input_format, sdf_format.is_output_format
(True, True)

However, some formats are output only, like the InChIKey format (assuming it’s available for your toolkit):

>>> inchi_fmt = openeye_toolkit.get_format("inchikey")
>>> inchi_fmt.is_input_format, inchi_fmt.is_output_format
(False, True)

On the other hand, some formats are input only, like Open Babel’s support for MOPAC’s output format:

>>> mopout_fmt = openbabel_toolkit.get_format("mopout")
>>> mopout_fmt.is_input_format, mopout_fmt.is_output_format
(True, False)

Instead of asking for all available formats, you can ask for only the input formats, or only the output formats,
using chemfp.toolkit.get_input_formats or chemfp.toolkit.get_output_formats:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> for toolkit_name in ("openbabel", "openeye", "rdkit"):
... T = chemfp.get_toolkit(toolkit_name)
... print(toolkit_name, "has", len(T.get_input_formats()), "input formats")
... print(toolkit_name, "has", len(T.get_output_formats()), "output formats")
...
openbabel has 153 input formats
openbabel has 142 output formats
openeye has 25 input formats
openeye has 30 output formats
rdkit has 17 input formats
rdkit has 18 output formats

6.8 Determine the format for a given filename

It’s sometimes useful to know what format will be used for a given filename. A filename can be used as a
source for a reader or destination for a writer, and a toolkit might understand a given format when used as
input but not as ouput, or vice-versa.

The function chemfp.toolkit.get_input_format_from_source() returns a chemfp.base_toolkit.
Format for the given filename:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> T.get_input_format_from_source("abc.smi.gz")
Format('rdkit/smi.gz')

158 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

This is the same Format object you saw in the previous section. I didn’t mention the compression attribute
in that discussion. It’s “gz” for gzip-ed files, “zst” for zstandard compressed files, and the empty string “”
for uncompressed files.

>>> fmt = T.get_input_format_from_source("abc.smi.gz")
>>> fmt.name
'smi'
>>> fmt.compression
'gz'
>>>
>>> fmt = T.get_input_format_from_source("abc.smi")
>>> fmt.name
'smi'
>>> fmt.compression
''

Asking for a supported format which isn’t an input format raises a ValueError exception:

>>> from chemfp import openbabel_toolkit
>>> openbabel_toolkit.get_input_format_from_source("example.inchikey")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/openbabel_toolkit.py", line 168, in get_input_format_from_source

return _format_registry.get_input_format_from_source(source, format)
File "chemfp/base_toolkit.py", line 875, in get_input_format_from_source
format_config = self.get_input_format_config(register_name)

File "chemfp/base_toolkit.py", line 798, in get_input_format_config
raise ValueError("%s does not support %r as an input format"

ValueError: Open Babel does not support 'inchikey' as an input format

even though “inchikey” is supported as an output format:

>>> openbabel_toolkit.get_output_format_from_destination("example.inchikey")
Format('openbabel/inchikey')

Yes, there’s a different function to get the format name for a source filename than for a destination filename.
Maybe in the future I’ll support a generic get_format_from_filename(); let me know if that would be
useful.

If you ask for a format which doesn’t exist then the functions raise a different ValueError exception:

>>> openbabel_toolkit.get_input_format_from_source("example.does-not-exist")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

.....
File "chemfp/base_toolkit.py", line 788, in get_format_config

raise ValueError("%s does not support the %r format"
ValueError: Open Babel does not support the 'does-not-exist' format

I’ve found it useful to have a way to override the default guess. It’s amazing how many people use “.dat” for
SMILES or SDF files, and “.txt” files for SMILES. The format lookup functions support a second, optional
parameter, which is the format name to use.

>>> openbabel_toolkit.get_input_format_from_source("example.does-not-exist", "smi.gz")
Format('openbabel/smi.gz')

6.8. Determine the format for a given filename 159

chemfp Documentation, Release 3.4

This exists so that code like:

if format is not None:
fmt = T.get_format(format)

else:
fmt = T.get_format_from_source(filename)

can be replaced with:

fmt = T.get_format_from_source(filename, format)

Working with a format object is useful when combined with format’s reader_args and writer_arg functions
discussed in Specify a SMILES delimiter through reader_args

>>> fmt = openbabel_toolkit.get_input_format_from_source("input.smi")
>>> fmt.get_default_writer_args()
{'options': None, 'isomeric': True, 'canonicalization': 'default',
'explicit_hydrogens': False, 'delimiter': None}
>>> fmt.get_writer_args_from_text_settings({
... "explicit_hydrogens": "true",
... "isomeric": "false",
... "delimiter": "tab"})
{'isomeric': False, 'explicit_hydrogens': True, 'delimiter': 'tab'}

6.9 Parse the id and the molecule at the same time

In this section you’ll learn how to parse a structure record, as a string, to extract both the identifier and the
native molecule object.

Usually you want both the molecule and its id. You could parse the molecule then use T.get_id(mol) to
get the id, but that’s extra work, it leads to awkward looking code, and is slower than having chemfp do the
work for you when it parses the molecule.

Instead, use chemfp.toolkit.parse_id_and_molecule():

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>
>>> T.parse_id_and_molecule("C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a", "smi")
('vitamin a', <rdkit.Chem.rdchem.Mol object at 0x1035f14b0>)

Note that the identifier is a Unicode string. This was changed in chemfp 3.0. Earlier versions returned byte
string instead.

If there is no id/title field then the id will either be None or the empty string, depending on the toolkit and
format:

>>> T.parse_id_and_molecule("C", "smi")
(None, <rdkit.Chem.rdchem.Mol object at 0x1035f14b0>)

Instead of testing for the empty string or None, your code you should use “if not id:” to test for a missing
id:

160 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

>>> id, mol = T.parse_id_and_molecule("C", "smi")
>>> if not id:
... print("Missing id!")
...
Missing id!

6.10 Specify alternate error behavior

In this section you’ll learn how to use the errors parameter to have chemfp.toolkit.parse_molecule()
return None rather than raise an exception, and to have it print a report about the failing molecule.

The string “Q” is not a valid SMILES string. All of the toolkits will fail to parse it, and the chemfp toolkit
I/O adapter by default raises an exception when that happens:

>>> from chemfp import openbabel_toolkit
>>> openbabel_toolkit.parse_molecule("Q", "smistring")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

...
File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot parse the SMILES 'Q'
>>>
>>> rdkit_toolkit.parse_molecule("Q", "smistring")
[16:02:55] SMILES Parse Error: syntax error while parsing: Q
[16:02:55] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

...
File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot parse the SMILES string 'Q'
>>>
>>> from chemfp import openeye_toolkit
>>> openeye_toolkit.parse_molecule("Q", "smistring")
Warning: Problem parsing SMILES:
Warning: Q
Warning: ^

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
...
File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: OEChem cannot parse the smistring record: 'Q'

On the other hand, “[NH8]” is a valid SMILES, but RDKit by default will reject it as chemically unreasonable,
while OEChem and Open Babel are less strict and treat it as a molecular graph rather than a chemical
molecule.

6.10. Specify alternate error behavior 161

chemfp Documentation, Release 3.4

I’ll write a program which checks which toolkits will parse “[NH8]”

I call this "check_NH8.py"
from __future__ import print_function # Only needed in Python 2
import chemfp
allowed = []; rejected = []
for name in chemfp.get_toolkit_names():
T = chemfp.get_toolkit(name)
try:
T.parse_molecule("[NH8]", "smistring")

except ValueError:
rejected.append(name)

else:
allowed.append(name)

print("Allowed:", allowed, "Rejected:", rejected)

% python check_NH8.py
[16:04:39] Explicit valence for atom # 0 N, 8, is greater than permitted
Allowed: ['openeye', 'openbabel'] Rejected: ['rdkit']

I think the try/except/else is sometimes harder to understand than returning an error value, because it’s
harder to see the control flow. I can ask chemfp.toolkit.parse_molecule() to ignore errors, which causes
it to return a None object rather than raise an exception. turns the above loop into the following:

for name in chemfp.get_toolkit_names():
T = chemfp.get_toolkit(name)
mol = T.parse_molecule("[NH8]", "smistring", errors="ignore")
if mol is None:
rejected.append(name)

else:
allowed.append(name)

The errors option is more useful in later sections, when parsing multiple records.

The errors parameter can also take the value report. Like ignore, this will return a None when there is
an error rather than raise an exception. It will also write a consistent, cross-toolkit error message to stderr,
including the SMILES string that failed if the input is a SMILES:

>>> for name in chemfp.get_toolkit_names():
... print("Using toolkit", repr(name))
... T = chemfp.get_toolkit(name)
... mol = T.parse_molecule("Q", "smistring", errors="report")
... mol = T.parse_molecule("[NH8]", "smistring", errors="report")
...

The chemfp.toolkit.parse_id_and_molecule() function also takes the errors parameter. If the structure
could not be parsed then the second component of the tuple (the molecule) will be None. The first component
(the id) may or or may not be None, depending on the underlying implementation:

>>> from chemfp import rdkit_toolkit
>>> rdkit_toolkit.parse_id_and_molecule("Q q-ane", "smi", errors="ignore")
[13:03:10] SMILES Parse Error: syntax error while parsing: Q
[13:03:10] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
(None, None)

(continues on next page)

162 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

(continued from previous page)

>>>
>>> from chemfp import openeye_toolkit
>>> openeye_toolkit.parse_id_and_molecule("Q q-ane", "smi", errors="ignore")
Warning: Problem parsing SMILES:
Warning: Q q-ane
Warning: ^

(None, None)
>>>
>>> from chemfp import openbabel_toolkit
>>> openbabel_toolkit.parse_id_and_molecule("Q q-ane", "smi", errors="ignore")
==============================
*** Open Babel Error in ParseSimple
SMILES string contains a character 'Q' which is invalid

('q-ane', None)

Future versions of chemfp may work to normalize this behavior, or let the caller choose a specific behavior.

6.11 Specify a SMILES delimiter through reader_args

In this section you’ll learn how to parse a SMILES record as a set of delimited fields instead of the default
of a SMILES string followed by a title, and some of the limitations of chemfp’s attempt at a consistent
cross-toolkit SMILES record parser.

You might think that the SMILES file format is well defined, but it sadly isn’t. Different toolkits have
slightly different interpretations for a SMILES record format. Consider the SMILES record:

C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a

The original Daylight definition is that a SMILES record is single line, which starts with the SMILES string.
The SMILES string ends with the first whitespace character or the end of the line, and if there was a
whitespace character than the rest of the line is the title. OpenEye follows this definition, as does chemfp.
That’s why the previous example extracted “vitamin A” as the record id.

However, RDKit treats a SMILES file record as a space or tab separated set of fields, where the first field
is the SMILES, the second field is the id/title and additional columns may store other properties. RDKit
would use “vitamin” as the record id for this record. (RDKit can also be configured to interpret the first line
as column names. Chemfp does not currently support this option, though I plan to have a cross-platform
implementation in a future release.)

Chemfp normalizes the SMILES record parser API so that all toolkits by default expect the Daylight format.

Warning: Future versions of chemfp may change the default to “tab” instead of “to-eol” because
CXSMILES is becoming more common.

Use the optional reader_args dictionary to specify an alternate interpretation:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>
>>> smiles = "C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a"

(continues on next page)

6.11. Specify a SMILES delimiter through reader_args 163

chemfp Documentation, Release 3.4

(continued from previous page)

>>> T.parse_id_and_molecule(smiles, "smi", reader_args={"delimiter": "whitespace"})
('vitamin', <rdkit.Chem.rdchem.Mol object at 0x10f5ccfa0>)

In this case I asked it to parse the record as a set of whitespace delimited fields. If you have tab-separated
fields, where a space inside of a field is not part of the delimiter, then use the “tab” delimiter:

>>> T.parse_id_and_molecule("O=O\tmolecular oxygen\t31.9988\n", "smi",
... reader_args={"delimiter": "tab"})
('molecular oxygen', <rdkit.Chem.rdchem.Mol object at 0x10fbe9590>)

The supported delimiters are:

• to-eol - (default) everything past the first whitespace is interpreted as the id/title;

• tab or “\t” - the fields are tab-separated; the first field is the SMILES and the second the id;

• space or ” ” - the fields are space-separated;

• whitespace - the fields are whitespace-separated;

• native - use the native interpretation for the given toolkit;

While chemfp strives for cross-toolkit portability, it is not perfect. Leading and trailing whitespace might
not be supported, so the first character of the SMILES record must also be the first character of the SMILES
string. Also, the toolkit is free to interpret the first whitespace as the delimiter despite the reader_args
setting. In practice, as of early 2020, Open Babel, RDKit, and OEChem will stop at the first whitespace,
though I suspect they will increasingly support the CXSMILES extensions.

Neither the SMILES parser nor the other parsers validate the full contents of the reader_args dictionary.
Extra items are ignored. This is deliberate because it lets you combine, say, SMILES and SDF parameters
in the same dictionary without needing to check the specific format first.

To a lesser extent, it also makes it easier to specify parameters which work across multiple toolkit versions.
For example, the most recent version of OEChem’s SMILES parsers added a quiet option, which chemfp will
support in the future. Your code can have a {“quiet”: True} without first checking to see if this version of
chemfp is new enough to support the parameter.

WARNING: As a result, it’s very easy to specify a key with a typo, which is ignored, and not notice that it
nothing happens.

WARNING #2: Really, I’ve been bitten by this a few times. Be extra cautious to check that you are using
the right keys.

6.12 Specify an output SMILES delimiter through writer_args

In this section you’ll learn how to create a SMILES record with a tab character separating the SMILES from
the title using the writer_args parameter of chemfp.toolkit.create_string().

By default create_string uses a space character to separate the SMILES from the rest of the id:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>
>>> mol = T.parse_molecule("O=O molecular oxygen\n", "smi")
>>> T.create_string(mol, "smi")
'O=O molecular oxygen\n'

To use a tab character instead, pass in a writer_args dictionary with a “delimiter” of “tab”:

164 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

>>> T.create_string(mol, "smi", writer_args={"delimiter": "tab"})
'O=O\tmolecular oxygen\n'

The writer_args delimiter also accepts “whitespace”, “space”, “to-eol” and the other values from reader_args.
Only “tab” and “\t” will use a tab character as the delimiter; all of the the others will use a space character.

Warning: Future versions of chemfp may change the default to “tab” to better support the use of
CXSMILES extensions.

Neither the SMILES writer nor the other writers validate the full contents of the writer_args dictionary.
Extra items are ignored. This is deliberate because it lets you combine, say, SMILES and SDF parameters
in the same dictionary without needing to check the specific format first. It also makes it easier to specify
parameters which work across multiple toolkit versions.

WARNING: As a result, it’s very easy to specify a key with a typo, which is ignored, and not notice that it
nothing happens.

WARNING #2: Really, I’ve been bitten by this a few times. Be extra cautious to check that you are using
the right keys.

6.13 RDKit-specific SMILES reader_args and writer_args

In this section you’ll learn how to pass toolkit-specific parameters to the RDKit toolkit functions to parse
and create a SMILES string. You will need the RDKit toolkit.

Earlier I showed that RDKit by default does a sanitization check to verify that the input is correct.

>>> from chemfp import rdkit_toolkit
>>> mol = rdkit_toolkit.parse_molecule("[NH8]", "smistring", errors="ignore")
[16:31:55] Explicit valence for atom # 0 N, 8, is greater than permitted
>>> mol is None
True

The underlying RDKit code to parse a SMILES string, MolFromSmiles, takes a sanitize parameter. The
default, True, tells it to do the sanitization step, while False disables it.

Use the reader_args dictionary to pass the sanitize parameter to the underlying toolkit function:

>>> mol = rdkit_toolkit.parse_molecule("[NH8]", "smistring", reader_args={"sanitize":␣
↪→False})
>>> mol
<rdkit.Chem.rdchem.Mol object at 0x107590a60>
>>> from rdkit import Chem
>>> Chem.MolToSmiles(mol)
'[NH8]'

Use the writer_args dictionary to pass toolkit-specific parameters to RDKit’s MolToSmiles:

>>> mol = rdkit_toolkit.parse_molecule("c1ccccc1[16OH]", "smistring")
>>> rdkit_toolkit.create_string(mol, "smistring")
'[16OH]c1ccccc1'
>>> rdkit_toolkit.create_string(mol, "smistring",

(continues on next page)

6.13. RDKit-specific SMILES reader_args and writer_args 165

http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolfiles-module.html#MolFromSmiles

chemfp Documentation, Release 3.4

(continued from previous page)

... writer_args={"isomericSmiles": False})
'Oc1ccccc1'
>>> rdkit_toolkit.create_string(mol, "smistring",
... writer_args={"kekuleSmiles": True, "allBondsExplicit": True})
'[16OH]-C1:C:C:C:C:C:1'

See Get the default reader_args or writer_args for a format for a description of how to get the de-
fault reader and writer arguments for a given format, and use help(rdkit_toolkit.read_molecules) and
help(rdkit_toolkit.open_molecule_writer) to get a more human-readable description.

6.14 OpenEye-specific SMILES reader_args and writer_args

In this section you’ll learn how to pass toolkit-specific parameters to the OEChem toolkit functions to parse
and create a SMILES string. You will need the OEChem toolkit. See the next section for specific details
about aromaticity.

By default the OEChem SMILES parser is tolerant of bad SMILES. I believe it’s too tolerant, because will
gladly parse what I think are invalid SMILES, like “C-=C”:

>>> from chemfp import openeye_toolkit
>>> mol = openeye_toolkit.parse_molecule("C-=C", "smistring")
>>> openeye_toolkit.create_string(mol, "smistring")
'C=C'

The developers at OpenEye recognize that pedantic folk like me exist. The OEChem SMILES parser has a
“strict” mode, which I can enable in chemfp through the “flavor” parameter of the reader_args dictionary:

>>> mol = openeye_toolkit.parse_molecule("C-=C", "smistring",
... reader_args={"flavor": "Strict"})
Warning: Problem parsing SMILES:
Warning: Bond without end atom.
Warning: C-=C
Warning: ^

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

.... lines omitted
File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: OEChem cannot parse the smistring record: 'C-=C'

The underlying OEParseSmiles() function takes the optional strict and canon parameters. Why does chemfp
use the term “flavor”? Why the capitalization for “Strict”?

Historically the low-level OEChem functions took individual parameters, like the positional arguments canon
and strict:

>>> mol = OEGraphMol()
>>> OEParseSmiles(mol, "C-=C", False, True)
Warning: Problem parsing SMILES:
Warning: Bond without end atom.

(continues on next page)

166 Chapter 6. Toolkit API examples

http://docs.eyesopen.com/toolkits/python/oechemtk/OEChemFunctions.html#OEChem::OEParseSmiles

chemfp Documentation, Release 3.4

(continued from previous page)

Warning: C-=C
Warning: ^

False

(I wrote “historically” because more recent versions have format-specific options classes, like OEParseSmile-
sOptions for SMILES. These collect all of the configuration options into a single parameter, which is easier
to pass around.)

On the other hand, the high-level molecule parsers take a single “flavor” integer value to specify the options
for a given format. This flavor is usually expressed as the union of a set of bitmasks. I’ll show how OEChem’s
Python API uses the flavor parameter.

The following OEChem code reads a SMILES file in the default non-strict mode (with no specified flavor):

% cat example.smi
C=-C bad
CCC good
% python

...
>>> from __future__ import print_function # Only needed in Python 2
>>> from openeye.oechem import *
>>> ifs = oemolistream("example.smi")
>>> for mol in ifs.GetOEGraphMols():
... print(mol.GetTitle(), mol.NumAtoms())
...
bad 2
good 3

while the following sets the SMILES flavor to use “strict” mode:

>>> ifs = oemolistream("example.smi")
>>> ifs.SetFlavor(OEFormat_SMI, OEIFlavor_SMI_Strict)
True
>>> for mol in ifs.GetOEGraphMols():
... print(mol.GetTitle(), mol.NumAtoms())
...
Warning: Problem parsing SMILES:
Warning: Bond without end atom.
Warning: C=-C bad
Warning: ^

Warning: Error reading molecule "" in Canonical stereo SMILES format.
good 3

(You can see some terminology differences between me and OpenEye in the warning message. The “Canoni-
cal” and “stereo” are only meaningful as a description of the output format, not the input format, and I use
the traditional term “isomeric” while they highlight the more important stereochemistry aspect. I also got
confused because I thought at first the “Canonical” had something to do with OEIFlavor_SMI_Canon.)

I decided to base the chemfp openeye_toolkit API on the high-level “flavor” API of OEChem, which is
better documented and requires less work on my part to implement than low-level functions. But I also
decided to extend it to support a string value, and not just an integer.

To explain how that works, I’ll switch from describing reader_args to writer_args, because raising an excep-

6.14. OpenEye-specific SMILES reader_args and writer_args 167

http://docs.eyesopen.com/toolkits/python/oechemtk/OEChemClasses/OEParseSmilesOptions.html
http://docs.eyesopen.com/toolkits/python/oechemtk/OEChemClasses/OEParseSmilesOptions.html
http://docs.eyesopen.com/toolkits/python/oechemtk/molreadwrite.html#flavored-input-and-output

chemfp Documentation, Release 3.4

tion with the “Strict” option gets boring, fast.

The OEChem SMILES output flavors are: OEOFlavor_SMI_AtomMaps, OEOFlavor_SMI_AtomStereo, ….
and you know what? The OEOFlavor_SMI_ prefix is part of what makes the flavors hard to use
in Python, so I’ll omit the prefix in chemfp. The OEChem SMILES output flavors are: AllBonds,
AtomMaps, AtomStero, BondStereo, Canonical, ExtBonds, Hydrogens, ImpHCount, Isotopes, Kekule,
RGroups, SmiMask, and SuperAtoms. There are also Default and DEFAULT which are the bitwise union
RGroups|Isotopes|AtomStereo|BondStereo|AtomMaps|Canonical.

In chemfp you can specify the fields as a “|” or “,” separated list of flavor flags, without the prefix. Here are
several different ways to specify the default settings for isomeric canonical SMILES string output:

>>> mol = openeye_toolkit.parse_molecule("[16O][*:1]", "smistring")
>>> openeye_toolkit.create_string(mol, "smistring")
'[R1][16O]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": ""})
'[R1][16O]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "Default"})
'[R1][16O]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "RGroups|Isotopes|AtomStereo|BondStereo|AtomMaps|Canonical
↪→"})
'[R1][16O]'

These settings override any options which might be implied by the format name. Thus, even though
“smistring” is supposed to generate an isomeric canonical SMILES, I can use the writer_args to remove
the isomeric component from the flavor:

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "RGroups|AtomStereo|BondStereo|AtomMaps|Canonical"})
'[R1][O]'

While I used “|” as the separator, I can equally use “,”, as in:

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "Isotopes,Canonical"})
'*[16O]'

OEChem uses the bar as a bitwise-or operator which merges the different flags. I added the comma as an
alternative to the vertical bar because chemfp has additional syntax for removing options. The following
removes the “RGroups” option from the isomeric and non-isomerical formats defaults, but otherwise leaves
the defaults alone:

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "Default,-RGroups"})
'[*:1][16O]'
>>>
>>> openeye_toolkit.create_string(mol, "canstring",
... writer_args={"flavor": "Default,-RGroups"})
'[*:1][O]'

(The terms are evaluated from left to right, so you can delete a term then add it back if you want.)

I added a comma because writing this as Default|-RGroups caused the C programmer mind in me to gasp

168 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

in bewilderment. (“The bitwise-or with the negative of the RGroups bitflags?!!”)

You don’t need to specify the OEChem flavor using a flavor string. You can also specify it as an integer:

>>> from openeye.oechem import *
>>> (OEOFlavor_SMI_Isotopes|OEOFlavor_SMI_AtomStereo|OEOFlavor_SMI_BondStereo|
... OEOFlavor_SMI_AtomMaps|OEOFlavor_SMI_Canonical)
121
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": 121})
'[*:1][16O]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": 0})
'[O]*'

or (and this might be a bit excessive) as a string-encoded integer:

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "121"})
'[*:1][16O]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "0"})
'[O]*'

Chemfp tries to be helpful. It will include the list of available flavor names in the exception if it doesn’t
understand what you gave it:

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "chocolate"})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/openeye_toolkit.py", line 446, in create_string

return _toolkit.create_string(mol, format, id, writer_args, errors)
... lines removed ...,

File "chemfp/_openeye_toolkit.py", line 1174, in parse_flavor
raise err

ValueError: OEChem smi format does not support the 'chocolate'
flavor option. Available flavors are: AllBonds, AtomMaps,
AtomStereo, BondStereo, Canonical, ExtBonds, Hydrogens,
ImpHCount, Isotopes, Kekule, RGroups, SuperAtoms

See Get the default reader_args or writer_args for a format for a description of how to get the default
reader and writer arguments for a given format, and use help(openeye_toolkit.read_molecules) and
help(openeye_toolkit.open_molecule_writer) to get a more human-readable description.

6.15 OpenEye-specific aromaticity

In this section you’ll learn how chemfp handles OpenEye’s aromaticity parameter. You will need the OEChem
toolkit, and you should read the previous section to understand some of the terminology.

Note: the OEGraphSim fingerprints are not affected by the aromaticity of the reader because the fingerprint
generators ensure that the molecules are always perceived using “openeye” aromaticity before generating the
fingerprint.

6.15. OpenEye-specific aromaticity 169

chemfp Documentation, Release 3.4

The OpenEye toolkit supports the “openeye”, “daylight”, “tripos”, “mdl”, and “mmff” aromaticity models.
In the high-level API, which is meant for reading and writing files or file-like objects, the aromaticity is an
aspect of the flavor integer. If unspecified, OEChem uses the appropriate default aromaticity model for that
format. As a result, aromaticity perception is required for both reading and writing files.

The low-level API handles file processing and aromaticity perception as distinct steps. This API can also
process a single record directly, while the high-level API requires wrapping the record in a file-like object
and then reading the first molecule from it.

The chemfp toolkit API is a high-level API for both files and records, which means I had to implement
record conversion routines on top of OEChem’s low-level API. Consequently, some of the details are different
between the file I/O and record I/O APIs; the most significant being that the record I/O routines also
support a “none” aromaticity.

The following shows the default aromaticity proceessing in action:

>>> from chemfp import openeye_toolkit
>>> mol = openeye_toolkit.parse_molecule("C1=CC=CC=C1", "smistring")
>>> [bond.IsAromatic() for bond in mol.GetBonds()]
[True, True, True, True, True, True]

Automatic aromaticity perception is normally the right thing to do, because different toolkits and even
different versions of the same toolkit may have different ideas of what is aromatic, and it’s best to ensure
that they are consistently interpreted.

Aromaticity perception isn’t needed when you know that the input aromaticity is correct and unambiguous.
My timings show that aromaticity perception takes about half of the time needed to parse a SMILES string.
If the string comes from a good data source, like a database record where OEChem created the SMILES,
then you can nearly double the performance by omitting the perception step.

What does “ambiguous” mean? Consider azulene, which can be described by the SMILES “c1ccc2cccc2cc1”.
The fusion bond is not aromatic, while the peripheral bonds form a 10 pi electron system. In SMILES, an
unspecified bond means “single or aromatic”. If one of the terminal atoms is aliphatic then the bond must be
a single bond. But as the fusion bond in azulene shows, it’s possible for an unspecified bond with terminal
aromatic atoms to still be non-aromatic. The above SMILES is ambiguous, and OEChem needs to do a full
aromaticity analysis to determine that the fusion bond is not aromatic.

An unambiguous SMILES for azulene is “c1ccc-2cccc2cc1”, where the fusion bond is marked explicitly as a
single bond. The SMILES parser can use the simpler rule that an unspecified ring bond is aromatic whenever
both terminal atoms are aromatic, and not require the lengthy aromatic perception step to determine that.
OEChem generates unambiguous SMILES, so if you know OEChem generated the SMILES then you can
recover the original aromaticity directly.

(As a side note, Daylight first introduced this in 4.71, and used fluorene (“C1c2ccccc2-c3ccccc13”) as the
prototypical case. Daylight’s rule is to include the “-” for a single bond between two aromatic atoms, while
OEChem’s rule is to include the “-” for a single bond between two aromatic atoms and which is in a ring.
Ring identification is much easier than aromaticity perception.)

So where was I … ah, right, specifing the aromaticity model. I decided to separate aromaticity from the rest
of the flavor flags, and specify it with its own reader_args and writer_args field. It’s easiest to see using
beneze in Kekule form:

>>> mol = openeye_toolkit.parse_molecule("C1=CC=CC=C1", "smistring",
... reader_args={"aromaticity": "none"})
>>>
>>> [bond.IsAromatic() for bond in mol.GetBonds()]
[False, False, False, False, False, False]

(continues on next page)

170 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

(continued from previous page)

>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"aromaticity": "none"})
'C1=CC=CC=C1'

NOTE: the aromaticity flags are volatile. If you don’t specify the “none” aromaticity model then chemfp.
toolkit.create_string() will reperceive aromaticity using the “openeye” aromaticity model and possibly
reassign the aromaticity flags.

>>> openeye_toolkit.create_string(mol, "smistring")
'c1ccccc1'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"aromaticity": "none"})
'c1ccccc1'

This is consistent with how OEChem’s high-level operations also modify the input molecule when creating
output. I’m not fully happy with it. OEChem also has a “ConstMolecule” version, so this detail may change
in the future.

6.16 Open Babel-specific SMILES reader_args and writer_args

In this section you’ll learn how to pass toolkit-specific parameters to the Open Babel toolkit functions to
create a SMILES string. You will need the Open Babel toolkit.

As far as I can tell, Open Babel does not have configuration options to change the default SMILES parser,
so chemfp has no toolkit-specific reader_args for that toolkit. Open Babel does have configuration options
to change the default SMILES output routines. These can be set in chemfp with the writer_args dictionary.

Open Babel uses an options string to change the configuration. The string “i U smilesonly” generates non-
isomeric SMILES output, where the atom ordering is determined by the InChI’s canonicalization algorithm
(“Universal SMILES”), and where the identifier is excluded from the SMILES output.

Did you know all of that? I didn’t. Some of these options are only documented in the code. It’s also difficult
for chemfp to handle since some of the options conflict with how chemfp thinks of things. For example,
chemfp is in charge of including the identifier, so it will always enable “smilesonly”, and it’s difficult for
the “cansmiles” output, which is non-isomeric, to know if an options string wants to override the default”i”
option that it requires.

I ended up making my own writer_args API to have more explicit control over the individual parameters:

• explicit_hydrogens - boolean

• isomeric - boolean

• canonicalization - a string like “default”, “none”, “universal”, “anticanonical”, or “inchified”

• options - the Open Babel options string (if you must use it; using it may break things if you are not
very careful.)

Here’s an example of how to disable isomeric support for the “smistring” output, which would normally
generate an isomeric SMILES:

>>> from chemfp import openbabel_toolkit
>>> mol = openbabel_toolkit.parse_molecule("[16O]=O", "smistring")
>>> openbabel_toolkit.create_string(mol, "smistring")
'[16O]=O'

(continues on next page)

6.16. Open Babel-specific SMILES reader_args and writer_args 171

chemfp Documentation, Release 3.4

(continued from previous page)

>>> openbabel_toolkit.create_string(mol, "smistring",
... writer_args={"isomeric": False})
'O=O'

I can also enable isomeric SMILES for the “canstring” format, which is normally non-isomeric:

>>> openbabel_toolkit.create_string(mol, "canstring")
'O=O'
>>> openbabel_toolkit.create_string(mol, "canstring",
... writer_args={"isomeric": True})
'[16O]=O'

Open Babel supports several different canonicalization algorithms. Perhaps the most unusual one is “anti-
canonical”, which uses random numbers for the atom ordering algorithm. The same molecule can generate
different SMILES strings across multiple calls, so it’s the antithesis of “canonical”:

>>> for i in range(5):
... print(openbabel_toolkit.create_string(mol, "smistring",
... writer_args={"canonicalization": "anticanonical"}))
...
[16O]=O
[16O]=O
O=[16O]
[16O]=O
[16O]=O

See Get the default reader_args or writer_args for a format for a description of how to get the default
reader and writer arguments for a given format, and use help(openbabel_toolkit.read_molecules) and
help(openbabel_toolkit.open_molecule_writer) to get a more human-readable description.

6.17 Get the default reader_args or writer_args for a format

In this section you’ll learn how to get the default reader_args and writer_args for a given format.

As you’ve seen, each toolkit format can have its own reader_args and writer_args parameters, and chemfp
layers its own format types (like “smistring”) on top of the native formats. It’s easy to forget the specific
parameters for a given format, much less the default values.

The get_default_reader_args() and get_default_writer_args() methods of the Format object return
the respective default arguments:

>>> from chemfp import rdkit_toolkit
>>> fmt = rdkit_toolkit.get_format("smi")
>>> fmt.get_default_reader_args()
{'sanitize': True, 'has_header': False, 'delimiter': None}
>>> fmt.get_default_writer_args()
{'isomericSmiles': True, 'kekuleSmiles': False, 'canonical': True,
'allBondsExplicit': False, 'allHsExplicit': False, 'cxsmiles': False,
'delimiter': None}

You can sometimes use this information to see how chemfp maps its format types to the toolkit parameters.
In RDKit, the difference between chemfp’s “smi” and “can” formats is that isomericSmiles is True for the
first and False for the second:

172 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

>>> rdkit_toolkit.get_format("can").get_default_writer_args()
{'isomericSmiles': False, 'kekuleSmiles': False, 'canonical': True,
'allBondsExplicit': False, 'allHsExplicit': False, 'cxsmiles': False,
'delimiter': None}

While writing this documentation I realized that the OEChem toolkit shows neither the default flavor nor
the default aromaticity for a given format type. I will likely improve that in a future version of chemfp.

6.18 Convert text settings into reader and writer arguments

In this section you’ll learn how to convert text-based configuration settings into the appropriate reader_args
or writer_args dictionary.

The reader_args and writer_args take native Python values, including integers and booleans.
In practice these will often be defined in a configuration file, through command-line op-
tions, or as CGI parameters. The Format methods get_reader_args_from_text_settings() and
get_writer_args_from_text_settings() convert a text-based settings dictionary into the appropriate ar-
guments dictionary with native Python objects as values. (These are methods of the Format object, because
the parameter details are format-specific.)

The following shows an example using the RDKit toolkit’s “sdf” format to get reader_args from a dictionary
of text settings:

>>> from chemfp import rdkit_toolkit
>>>
>>> sdf_format = rdkit_toolkit.get_format("sdf")
>>> sdf_format.get_default_reader_args()
{'sanitize': True, 'removeHs': True, 'strictParsing': True, 'includeTags': True}
>>>
>>> sdf_format.get_reader_args_from_text_settings({
... "strictParsing": "true",
... "removeHs": "False",
... "sanitize": "0"})
{'sanitize': False, 'removeHs': False, 'strictParsing': True}

The boolean setting parser converts “true”, “True”, and “1” to Python’s True, and “false”, “False”, and “0”
to Python’s False. Otherwise it raises a ValueError.

The following shows an equivalent example for RDKit’s SDF writer_args:

>>> sdf_format.get_default_writer_args()
{'includeStereo': False, 'kekulize': True, 'v3k': False}
>>> sdf_format.get_writer_args_from_text_settings({
... "kekulize": "false", "v3k": "true",
... "includeStereo": "True"})
{'includeStereo': True, 'kekulize': False, 'v3k': True}

WARNING: these functions will ignore unknown keys. This was done to allow the text settings dictionary
to contain settings for other toolkits and formats. As a result, typos are harder to detect, because they will
be ignored.

See argparse text settings to reader and writer args for an example of converting text settings from the
command-line into reader and writer arguments.

6.18. Convert text settings into reader and writer arguments 173

chemfp Documentation, Release 3.4

6.19 Multi-toolkit reader_args and writer_args

In this section you’ll learn how to configure reader_args and writer_args so the same dictionary can be used
to configure multiple toolkits and formats.

Sometimes you don’t know which toolkit will be used for parsing, but you do know that you want Open
Babel, OEChem, and RDKit to act in non-standard ways. For example, the choice of toolkit may depend
on the user-defined fingerprint type, or simply (as in the following example) depend on user input.

The reader_args and writer_args will ignore unknown parameters, which lets you combine arguments for
different toolkits into a single dictionary. As the toolkits use completely different parameter names (except a
couple, like “delimiter”, which are supposed to act the same for all toolkits), there’s no conflict in the names
for a given format.

The following defines a reader_args dictionary and a writer_args dictionary with parameters for each sup-
ported toolkit, then enters a loop. The loop asks the user for a SMILES string, or the name of the toolkit
to use, or “q” to quit the loop. It will parse each SMILES into a molecule, then generate a SMILES output,
although with decidedly strange parameters:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import rdkit_toolkit as T # use your default toolkit of choice

try:
raw_input # Python 2 name

except NameError:
raw_input = input # Python 3

reader_args = {
"sanitize": False, # RDKit,
"flavor": "Default|Strict", # OEChem
"aromaticity": "none", # OEChem

}

writer_args = {
"kekuleSmiles": True, # RDKit
"canonicalization": "anticanonical", # Open Babel
"aromaticity": "daylight", # OEChem

}

print("Using", T.name, "toolkit")
while 1:
query = raw_input("SMILES, toolkit name, or 'q' to quit? ")
if not query or query == "q":

break

if query in ("rdkit", "openeye" ,"openbabel"):
try:

T = chemfp.get_toolkit(query)
except ValueError:

print("Toolkit %r not available" % (query,))
print("Using", T.name, "toolkit")
continue

(continues on next page)

174 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

(continued from previous page)

mol = T.parse_molecule(query, "smistring", reader_args=reader_args, errors="ignore")
if mol is None:
print("Toolkit", T.name, "could not parse query as SMILES")
continue

smiles = T.create_string(mol, "smistring", writer_args=writer_args, errors="ignore")
if not smiles:
print("Toolkit", T.name, "could not convert the molecule to SMILES")
continue

print(" -->", smiles)

I saved the above to a script and then ran it. It starts using RDKit, where I’ve set the reader’s “sanitize”
to False so RDKit won’t perceive aromaticity on input, and set the writer’s “kekuleSmiles” to show explicit
aromatic bond types:

Using rdkit toolkit
SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C1O
--> OC1=CC=CC=C1
SMILES, toolkit name, or 'q' to quit? c1ccccc1O
--> OC1:C:C:C:C:C:1

I then switch to the OpenEye toolkit, show that it is operating with “strict” added to the default reader flavor,
and convert a couple of SMILES to canonical SMILES to show the output uses the Daylight aromaticity
model instead of the default:

SMILES, toolkit name, or 'q' to quit? openeye
SMILES, toolkit name, or 'q' to quit? C==C
Warning: Problem parsing SMILES:
Warning: Bond without end atom.
Warning: C==C
Warning: ^

Toolkit openeye could not parse query as SMILES
Using openeye toolkit
SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C1O
--> c1ccc(cc1)O
SMILES, toolkit name, or 'q' to quit? c1ccccc1O
--> c1ccc(cc1)O

Finally, I switched to the Open Babel toolkit and showed that it generates “anti-canonical” SMILES, where
the spanning tree priority order for SMILES output is randomly assigned:

SMILES, toolkit name, or 'q' to quit? openbabel
Using openbabel toolkit
SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C1O
--> Oc1ccccc1
SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C1O
--> Oc1ccccc1
SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C1O
--> c1ccc(cc1)O
SMILES, toolkit name, or 'q' to quit? c1ccccc1O
--> Oc1ccccc1

(continues on next page)

6.19. Multi-toolkit reader_args and writer_args 175

chemfp Documentation, Release 3.4

(continued from previous page)

SMILES, toolkit name, or 'q' to quit? c1ccccc1O
--> c1c(O)cccc1
SMILES, toolkit name, or 'q' to quit? q

See argparse text settings to reader and writer args for an example of using multi-toolkit reader_args and
writer_args.

6.20 Qualified reader and writer parameters names

In this section you’ll learn how to use qualified parameter names. These give fine-grained control over the
configuration options for each toolkit and format.

The previous section pointed out that the three toolkits use different parameter names, so for a given format
you can combine the toolkit-specific reader_args into one unified dictionary and writer_args into another
unified dictionary. However, within a toolkit the same parameter name can be reused for different formats,
with different meanings.

This best example is for the chemfp.openeye_toolkit, where the reader_args and writer_args for all
formats support the “flavor” and “aromaticity” parameters. The following shows examples where I might use
a different flavor for the SMILES and InChI outputs, to get something other than the default representation:

>>> from chemfp import openeye_toolkit
>>> mol = openeye_toolkit.parse_molecule("CC([O-])=O", "smistring")
>>>
>>> openeye_toolkit.create_string(mol, "smistring")
'CC(=O)[O-]'
>>> openeye_toolkit.create_string(mol, "smistring",
... writer_args={"flavor": "Default|ImpHCount"})
'[CH3]C(=O)[O-]'
>>>
>>> openeye_toolkit.create_string(mol, "inchistring")
'InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)/p-1'
>>> openeye_toolkit.create_string(mol, "inchistring",
... writer_args={"flavor": "Default|FixedHLayer"})
'InChI=1/C2H4O2/c1-2(3)4/h1H3,(H,3,4)/p-1/fC2H3O2/q-1'

Chemfp uses “qualified” parameter names to handle this situation. For example, the qualified name
“smistring.flavor” is the flavor parameter for the smistring format:

>>> writer_args = {
... "smistring.flavor": "Default|ImpHCount",
... "inchistring.flavor": "Default|FixedHLayer",
... }
>>> mol = openeye_toolkit.parse_molecule("CC([O-])=O", "smistring")
>>> openeye_toolkit.create_string(mol, "smistring", writer_args=writer_args)
'[CH3]C(=O)[O-]'
>>> openeye_toolkit.create_string(mol, "inchistring", writer_args=writer_args)
'InChI=1/C2H4O2/c1-2(3)4/h1H3,(H,3,4)/p-1/fC2H3O2/q-1'

WARNING: there are six SMILES-related formats (“smi”, “can”, “usm”, “smistring”, “canstring”, and
“usmstring”) so to be complete you’ll need to specify values for all of them. There are also two InChI-related
formats (“inchi” and “inchistring”).

176 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

A “fully qualified” name looks like “openeye.smistring.flavor”. The first term is the toolkit, the second the
format name, and the last the parameter name. At present there little need for fully qualified names because
most parameter names are either unique to a toolkit and format type, or (like ‘delimiter’) supposed to be
identical across all toolkits. The major exception is ‘flavor’, used by all of the OpenEye formats as well as
the RDKit “fasta”, “sequence”, and “pdb” formats.

The following demonstration, which is more a parlor trick than something useful, shows how to have each
toolkit use a different SMILES delimiter:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>>
>>> reader_args = {
... "rdkit.smi.delimiter": "tab",
... "openbabel.smi.delimiter": "whitespace",
... "openeye.smi.delimiter": "to-eol",
... }
>>>
>>> for toolkit_name in ("rdkit", "openbabel", "openeye"):
... T = chemfp.get_toolkit(toolkit_name)
... id, mol = T.parse_id_and_molecule("C\tabc def\tghi", "smi",
... reader_args=reader_args)
... print(toolkit_name, "sees the id", repr(id))
...
rdkit sees the id 'abc def'
openbabel sees the id 'abc'
openeye sees the id 'abc def\tghi'

(As a reminder, the ‘delimiter’ implementation is not perfect. A toolkit may accept the first whitespace
after the SMILES term as a valid delimiter even if it doesn’t match the actual parameter, and a toolkit may
decide to stop parsing the SMILES term at the first whitespace.)

The final type of qualified parameter looks like “openeye.*.aromaticity”, where the first term is the toolkit
name, the second term is “*”, and the third term is the parameter name. This is most useful if you want
OEChem to enforce the same aromaticity across all formats, or have the RDKit parsers ignore sanitization,
with configuration entries like:

{"openeye.*.aromaticity": "daylight",
"rdkit.*.sanitize": False}

However, as only OEChem supports “aromaticity” and only RDKit supports “sanitize”, you could also write
this as simply:

{"aromaticity": "daylight",
"sanitize": False}

6.21 Qualified parameter priorities

In this section you’ll learn the priority order when multiple terms try to specify the same parameter.

In the previous section you learned how “delimiter”, “smi.delimiter”, “rdkit.*.delimiter” and “rd-
kit.smi.delimiter” can all be used to set the delimiter style for RDKit’s “smi” format. If more then one
term is specified, which one wins?

Chemfp checks for the parameters in the following order:

6.21. Qualified parameter priorities 177

chemfp Documentation, Release 3.4

1. rdkit.smi.delimiter

2. rdkit.*.delimiter

3. smi.delimiter

4. delimiter

The parameter with the highest ranking determines the setting, as the following shows:

>>> from chemfp import rdkit_toolkit as T
>>> id, mol = T.parse_id_and_molecule("C methane 16.04246", "smi",
... reader_args={"delimiter": "to-eol",
... "smi.delimiter": "whitespace"})
>>> id
'methane'
>>> id, mol = T.parse_id_and_molecule("C methane 16.04246", "smi",
... reader_args={"rdkit.*.delimiter": "to-eol",
... "smi.delimiter": "whitespace"})
>>> id
'methane 16.04246'
>>> id, mol = T.parse_id_and_molecule("C methane 16.04246", "smi",
... reader_args={"rdkit.*.delimiter": "to-eol",
... "rdkit.smi.delimiter": "whitespace"})
>>> id
'methane'

One way to remember it is the longest name has priority.

It can be confusing to have a large dictionary with multiple format and toolkit qualifiers. The
get_unqualified_reader_args() and get_unqualified_writer_args() methods of Format object will
return the fully unqualified reader_args and writer_args for that format:

>>> fmt = T.get_format("smi")
>>> fmt.get_unqualified_reader_args({
... "delimiter": "to-eol",
... "smi.delimiter": "whitespace",
... })
{'sanitize': True, 'has_header': False, 'delimiter': 'whitespace'}
>>> fmt.get_unqualified_writer_args({
... "delimiter": "space",
... "smi.delimiter": "tab",
... })
{'isomericSmiles': True, 'kekuleSmiles': False, 'canonical': True,
'allBondsExplicit': False, 'allHsExplicit': False,
'cxsmiles': False, 'delimiter': 'tab'}

This can also be helpful if you think you made a typo; get the unqualified reader_args and see if the result
has the arguments you think it should have.

6.22 Qualified names and text settings

In this section you’ll learn how the qualified names also apply to text settings.

Earlier you learned that text settings are string-based keys and values, which might come from the command-
line, a configuration file, or some other text-based source. These need to be converted into Python values

178 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

before they can be used as reader_args or writer_args.

A Format object can convert a dictionary of text settings into the correct argument dictionary. To get a
Format object, ask the toolkit for the format of the given name:

>>> from chemfp import rdkit_toolkit as T
>>> fmt = T.get_format("sdf")
>>> fmt.get_default_reader_args()
{'sanitize': True, 'removeHs': True, 'strictParsing': True, 'includeTags': True}

The section Convert text settings into reader and writer arguments showed how to convert the text settings
with unqualified names into a reader_args dictionary:

>>> fmt.get_reader_args_from_text_settings({
... "strictParsing": "false",
... "removeHs": "false",
... })
{'removeHs': False, 'strictParsing': False}

The text settings dictionary also supports qualified parameter names, including handling the priority reso-
lution described in Qualified parameter priorities:

>>> fmt.get_reader_args_from_text_settings({
... "strictParsing": "false",
... "sdf.strictParsing": "true",
... "removeHs": "false",
... "rdkit.*.removeHs": "true",
... "rdkit.sdf.sanitize": "false",
... })
{'sanitize': False, 'removeHs': True, 'strictParsing': True}

If you stare at it for a bit you’ll see that “sdf.strictParsing” has a higher priority than “strictParsing” and
“rdkit.*.removeHs” is higher than “removeHs”, which is how it’s supposed to work.

6.23 Read molecules from an SD file or stdin

In this section you’ll learn how to read an SD file and iterate through its records as toolkit molecules. You
will need Compound_099000001_099500000.sdf.gz from PubChem.

Time to get back to molecules! The chemfp.toolkit.read_molecules() function reads molecules from a
structure file:

from __future__ import print_function # Only needed in Python 2
from chemfp import rdkit_toolkit as T # use your toolkit of choice
for mol in T.read_molecules("Compound_099000001_099500000.sdf.gz"):

print(T.create_string(mol, "smistring"))

By default it uses the filename extension to figure out the format and compression type. You can specify it
yourself, if you wish, using the format option:

from __future__ import print_function # Only needed in Python 2
from chemfp import rdkit_toolkit as T # use your toolkit of choice
for mol in T.read_molecules("Compound_099000001_099500000.sdf.gz",

(continues on next page)

6.23. Read molecules from an SD file or stdin 179

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

(continued from previous page)

format="sdf.gz"):
print(T.create_string(mol, "smistring"))

Examples of valid format values are “smi”, “can”, and “usm” (but not the *string variants like “smistring”,
because those aren’t record-based formats), and “sdf”, as well as gzip-compressed versions like “smi.gz” and
“sdf.gz”.

(For Open Babel the “.gz” extension does nothing as Open Babel will auto-detect and handle gzip compressed
input. Chemfp’s RDKit interface also support zstandard-compressed files with the extension “.zst” if the
Python package “zstandard” is installed.)

If the first parameter (the source parameter) is the Python None value then the toolkit will read from stdin.
As there’s no filename, chemfp can’t look at the extension to figure out the format, so it assumes the input
is in “smi” format, that is, an uncompressed SMILES file.

Therefore, to read an SD file from stdin you must specify the format. The following program reads a gzip
compressed SD file from stdin, convert it to SMILES, and find the 10 most common characters used in the
SMILES strings:

This file is named 'count_smiles_characters.py'
from __future__ import print_function # Only needed in Python 2
from collections import Counter
from chemfp import rdkit_toolkit as T # use your toolkit of choice

symbol_counts = Counter()
for mol in T.read_molecules(None, "sdf.gz"):
smiles = T.create_string(mol, "smistring")
symbol_counts.update(smiles)

for symbol, count in symbol_counts.most_common(10):
print("%7d: %r" % (count, symbol))

Now to try it on a data set:

% python count_smiles_characters.py < Compound_099000001_099500000.sdf.gz
114190: 'c'
96119: 'C'
50541: '('
50541: ')'
33054: '1'
29000: 'O'
22227: '='
19716: '2'
19276: '@'
18420: 'N'

6.24 Read ids and molecules from an SD file at the same time

In this section you’ll learn how to read an SD file and iterate through its records as the two-element tuple of
(id, molecule). You will need the Compound_099000001_099500000.sdf.gz from PubChem, which was used
in the previous section.

In an earlier section, Parse the id and the molecule at the same time, you learned how to parse a structure

180 Chapter 6. Toolkit API examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

record to get both the identifier and the molecule at the same time. The toolkit function chemfp.toolkit.
read_ids_and_molecules() is the equivalent for reading from a structure file.

In the following example I’ll use the RDKit toolkit to create a tab-separated file with the id in the first
column, the number of carbon atoms in the second, and the SMILES in the third. For brevity, I’ll display
only the first 10 records, which also gives a nice example of when to use itertools.islice:

from __future__ import print_function # Only needed in Python 2
from itertools import islice
from chemfp import rdkit_toolkit
filename = "Compound_099000001_099500000.sdf.gz"
reader = rdkit_toolkit.read_ids_and_molecules(filename)

for id, mol in islice(reader, 0, 10):
num_carbons = sum(1 for atom in mol.GetAtoms() if atom.GetAtomicNum() == 6)
smiles = rdkit_toolkit.create_string(mol, "smistring")
print(id, num_carbons, smiles, sep="\t")

(See the next section for a description of how the line with the sum() works.)

Here’s the output, and a spot check shows the carbon counts are correct:

99000039 21 O=C(CC[C@H]1NC(=O)c2ccccc2NC1=O)Nc1cccc2ncccc12
99000230 21 COc1ccc(S(=O)(=O)N2CCC(C(=O)N[C@H](C)C(=O)NCc3ccco3)CC2)cc1
99002251 19 Cc1ccc(N/C=C(/C#N)C(=O)NC(=O)Cc2ccccc2)c(O)c1
99003537 23 CC(C)C[C@H](NC(=O)Cc1cn(C)c2ccccc12)c1nc2ccccc2[nH]1
99003538 23 CC(C)C[C@@H](NC(=O)Cc1cn(C)c2ccccc12)c1nc2ccccc2[nH]1
99005028 19 C[C@H](OC(=O)/C=C/c1ccccc1)C(=O)N[C@@H]1CCCC[C@@H]1C
99005031 19 C[C@H](OC(=O)/C=C/c1ccccc1)C(=O)N[C@H]1CCCC[C@@H]1C
99006292 20 Cc1ccc(C)c(S(=O)(=O)N2CCC[C@H](C(=O)NC3CCCCC3)C2)c1
99006293 20 Cc1ccc(C)c(S(=O)(=O)N2CCC[C@@H](C(=O)NC3CCCCC3)C2)c1
99006597 25 CS/C(N=CN(C)C)=C(\C#N)[P+](c1ccccc1)(c1ccccc1)c1ccccc1

What’s fun is that RDKit and OEChem both implement mol.GetAtoms() and atom.GetAtomicNum() so
it’s trivial to port the above from RDKit to OEChem; replace rdkit_toolkit with openeye_toolkit!

The Open Babel port isn’t quite as easy because Open Babel has a different way to get the atoms in a
molecule. To make it easy to copy and paste, here’s the equivalent code for Open Babel:

from __future__ import print_function # Only needed in Python 2
from itertools import islice
from chemfp import openbabel_toolkit
filename = "Compound_099000001_099500000.sdf.gz"
reader = openbabel_toolkit.read_ids_and_molecules(filename)

for id, mol in islice(reader, 0, 10):
num_carbons = sum(1 for atom_idx in range(mol.NumAtoms())

if mol.GetAtom(atom_idx+1).GetAtomicNum() == 6)
smiles = openbabel_toolkit.create_string(mol, "smistring")
print(id, num_carbons, smiles, sep="\t")

6.24. Read ids and molecules from an SD file at the same time 181

https://docs.python.org/2/library/itertools.html#itertools.islice

chemfp Documentation, Release 3.4

6.25 Read ids and molecules using an SD tag for the id

In this section you’ll learn how to use the id_tag to get the id from one of the SD tags, rather than from the
record’s title. You will need the Compound_099000001_099500000.sdf.gz from PubChem, which was used
in the previous section. I’ll also explain an idiom for how to count the number of records in an iterator.

Sometimes you would rather use a tag value as the id rather than the title line of the SDF record. This is
critical for ChEBI data set and older ChEMBL data sets, which leave the title line (mostly) blank. In this
case, use the id_tag to specify the tag to use.

The following example modifies the RDKit code from previous code to use PUB-
CHEM_IUPAC_SYSTEMATIC_NAME as the id, rather than the title line:

from __future__ import print_function # Only needed in Python 2
from itertools import islice
from chemfp import rdkit_toolkit
filename = "Compound_099000001_099500000.sdf.gz"
reader = rdkit_toolkit.read_ids_and_molecules(filename, id_tag="PUBCHEM_IUPAC_SYSTEMATIC_
↪→NAME")

for id, mol in islice(reader, 0, 10):
num_carbons = sum(1 for atom in mol.GetAtoms() if atom.GetAtomicNum() == 6)
smiles = rdkit_toolkit.create_string(mol, "smistring")
print(id, num_carbons, smiles, sep="\t")

The output is:

3-[(3R)-2,5-bis(oxidanylidene)-3,4-dihydro-1H-1,4-benzodiazepin-3-yl]-N-quinolin-5-yl-
propanamide 21 O=C(CC[C@H]1NC(=O)c2ccccc2NC1=O)Nc1cccc2ncccc12 N-[(2R)-1-
(furan-2-ylmethylamino)-1-oxidanylidene-propan-2-yl]-1-(4-methoxyphenyl)sulfonyl-piperidine-
4-carboxamide 21 COc1ccc(S(=O)(=O)N2CCC(C(=O)N[C@H](C)C(=O)NCc3ccco3)CC2)cc1
(Z)-2-cyano-3-[(4-methyl-2-oxidanyl-phenyl)amino]-N-(2-phenylethanoyl)prop-2-enamide 19
Cc1ccc(N/C=C(/C#N)C(=O)NC(=O)Cc2ccccc2)c(O)c1 N-[(1S)-1-(1H-benzimidazol-2-yl)-3-methyl-
butyl]-2-(1-methylindol-3-yl)ethanamide 23 CC(C)C[C@H](NC(=O)Cc1cn(C)c2ccccc12)c1nc2ccccc2[nH]1
N-[(1R)-1-(1H-benzimidazol-2-yl)-3-methyl-butyl]-2-(1-methylindol-3-yl)ethanamide
23 CC(C)C[C@@H](NC(=O)Cc1cn(C)c2ccccc12)c1nc2ccccc2[nH]1 [(2S)-1-[[(1R,2S)-
2-methylcyclohexyl]amino]-1-oxidanylidene-propan-2-yl] (E)-3-phenylprop-2-enoate
19 C[C@H](OC(=O)/C=C/c1ccccc1)C(=O)N[C@@H]1CCCC[C@@H]1C [(2S)-1-
[[(1S,2S)-2-methylcyclohexyl]amino]-1-oxidanylidene-propan-2-yl] (E)-3-phenylprop-
2-enoate 19 C[C@H](OC(=O)/C=C/c1ccccc1)C(=O)N[C@H]1CCCC[C@@H]1C
(3S)-N-cyclohexyl-1-(2,5-dimethylphenyl)sulfonyl-piperidine-3-carboxamide 20
Cc1ccc(C)c(S(=O)(=O)N2CCC[C@H](C(=O)NC3CCCCC3)C2)c1 (3R)-N-cyclohexyl-1-(2,5-
dimethylphenyl)sulfonyl-piperidine-3-carboxamide 20 Cc1ccc(C)c(S(=O)(=O)N2CCC[C@@H](C(=O)NC3CCCCC3)C2)c1
[(E)-1-cyano-2-(dimethylaminomethylideneamino)-2-methylsulfanyl-ethenyl]-triphenyl-phosphanium 25
CS/C(N=CN(C)C)=C(C#N)[P+](c1ccccc1)(c1ccccc1)c1ccccc1

You might have found the “sum(1 for atom in)” a bit odd. I agree with you. It is, however, the
standard way in Python to count the number of elements in the iterator which match a given condition. I’ll
break it down so you can understand how it works.

A list comprehension iterates through each element in an iterator (in the following it iterates over the
characters in a string) and returns a list:

182 Chapter 6. Toolkit API examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

>>> [c for c in "Hello"]
['H', 'e', 'l', 'l', 'o']

Add an “if” to it to operate on only a subset of the characters:

>>> [c for c in "Hello" if c != "l"]
['H', 'e', 'o']

I could use len() of this to get the number of non-“l” characters, but that would require making a list only
to throw it away. There’s another route to the same answer. To get there, use the value 1 for each character
rather than the character itself:

>>> [1 for c in "Hello" if c != "l"]
[1, 1, 1]

Then use sum() to sum the values, which in this case is also the number of elements in the list:

>>> sum([1 for c in "Hello" if c != "l"])
3

Unlike len(), sum() only needs an iterator, not a list. I can replace the list comprehension with a generator
comprehension, to get:

>>> sum(1 for c in "Hello" if c != "l")
3

Going back to the RDKit/OEChem expression:

num_carbons = sum(1 for atom in mol.GetAtoms() if atom.GetAtomicNum() == 6)

I hope you can see how this counts the number of atoms in the molecule whose atomic number is 6. Or, if
you want another way to think of it, the expression is the same as:

num_carbons = 0
for atom in mol.GetAtoms():

if atom.GetAtomicNum() == 6:
num_carbons += 1

6.26 Read from a string instead of a file

In this section you’ll learn how to read molecules from a string containing multiple SMILES records.

In the section Read molecules from an SD file or stdin you learned how to read molecules from a structure
file or stdin. Sometimes the input structures come from a string. For example, if a web page has a form
with a text box, where users can paste in a set of SMILES or SDF records and submit the form, then the
web application on the server will likely receive those records as a single string.

When the records are in a string instead of a file, use chemfp.toolkit.read_molecules_from_string().
It’s very similar to chemfp.toolkit.read_molecules(), except that the first parameter, content, is the
string instead of the source filename, and the second parameter, format, is required. (chemfp doesn’t try to
auto-detect the format from the content.)

6.26. Read from a string instead of a file 183

chemfp Documentation, Release 3.4

The following reads the records from a string containing two simple SMILES records and prints the number
of non-implicit atoms for each one. I’ve included implementations for all three toolkits; use the one(s) that
are available to you:

from __future__ import print_function # Only needed in Python 2
content = ("C methane 16.04246\n"

"O=O water 31.9988\n")

from chemfp import rdkit_toolkit
for mol in rdkit_toolkit.read_molecules_from_string(content, "smi"):

print("RDKit:", mol.GetNumAtoms())

from chemfp import openeye_toolkit
for mol in openeye_toolkit.read_molecules_from_string(content, "smi"):

print("OEChem:", mol.NumAtoms())

from chemfp import openbabel_toolkit
for mol in openbabel_toolkit.read_molecules_from_string(content, "smi"):

print("Open Babel:", mol.NumAtoms())

When I run the above (on a computer where all three supported toolkits are installed), the above reports:

RDKit: 1
RDKit: 2
OEChem: 1
OEChem: 2
Open Babel: 1
Open Babel: 2

I would like to improve the output a bit to also include the record id in the output. The
toolkit function chemfp.toolkit.read_ids_and_molecules_from_string() is similar to chemfp.toolkit.
read_molecules_from_string() except that it iterates through the (id, toolkit molecule) tuple rather than
just the molecule:

>>> from __future__ import print_function # Only needed in Python 2
>>> from chemfp import rdkit_toolkit
>>> content = ("C methane 16.04246\n"
... "O=O water 31.9988\n")
>>> for (id, mol) in rdkit_toolkit.read_ids_and_molecules_from_string(content, "smi"):
... print("RDKit:", repr(id), mol.GetNumAtoms())
...
RDKit: 'methane 16.04246' 1
RDKit: 'water 31.9988' 2

You can see that the default SMILES reader assumes the rest of the line is the id. The file and string record
readers take a reader_args parameter just like chemfp.toolkit.parse_id_and_molecule(). I’ll specify the
“whitespace” delimiter so the parser uses only the second word as the id:

>>> for (id, mol) in rdkit_toolkit.read_ids_and_molecules_from_string(content, "smi",
... reader_args={"delimiter": "whitespace"}):
... print("RDKit:", repr(id), mol.GetNumAtoms())
...
RDKit: 'methane' 1
RDKit: 'water' 2

184 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

See Specify a SMILES delimiter through reader_args for more details about setting the “delimiter”
reader_args.

The string readers, like the file readers, also support the id_tag option to get the id from an SD tag instead
of the title line. See Read ids and molecules using an SD tag for the id for more details about using the
id_tag.

6.27 The reader may reuse molecule objects!

In this section you’ll learn that the OEChem and Open Babel toolkits reuse the same molecule object, which
means you can’t save a molecule for later.

Suppose you want to read all of the molecules from a file into a list. It’s very tempting to write it as:

>>> import chemfp
>>> from chemfp import openeye_toolkit as T
>>> mols = list(T.read_molecules_from_string("C methane\nO water\n", "smi"))

This does not work for the openeye_toolkit or the openbabel_toolkit:

>>> mols
[<openeye.oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at␣
↪→0x10326ba40> >,
<openeye.oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at␣

↪→0x10326ba40> >]
>>> T.create_string(mols[0], "smistring")
''
>>> [T.create_string(mol, "smistring") for mol in mols]
['', '']

This is because the underlying reader for those two toolkits reuse the same molecule object. You can see
that in the above, which returns the same OEGraphMol object (with id 0x10326ba40) for each record. The
reason why OpenEye decided to reuse the object is to get better performance. Clearing the molecule object
is faster than deleting it and reallocating a new one.

In addition, the OEChem reader code does a “clear molecule” followed by “read next record or stop”. At
the end of the file there is no record, so the reader ends with a clear molecule. That explains why the
OEGraphMol produces an empty SMILES string for the last couple of lines in the above code.

The only portable way to load a list of molecules is to use chemfp.toolkit.copy_molecule(), as in:

>>> from chemfp import openeye_toolkit as T
>>> mols = [T.copy_molecule(mol) for mol in T.read_molecules_from_string("C methane\nO␣
↪→water\n", "smi")]
>>> mols
[<openeye.oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at␣
↪→0x10328a810> >,
<openeye.oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at␣

↪→0x100c78320> >]
>>> T.create_string(mols[0], "smistring")
'C'
>>> T.create_string(mols[1], "smistring")
'O'

6.27. The reader may reuse molecule objects! 185

chemfp Documentation, Release 3.4

I don’t really like this solution because the RDKit reader doesn’t need a copy, so the extra copy is pure
overhead.

Future versions of chemfp will likely have a reader_arg to specify if it’s okay to reuse a molecule object or
if a new one must be used each time.

6.28 Write molecules to a SMILES file

In this section you will learn how to write toolkit molecules into a structure file. You will need Com-
pound_099000001_099500000.sdf.gz from PubChem.

Chemfp can write toolkit molecules to a file in a given format. I’ll start by making an RDKit molecule,
though the same API works with Open Babel and OEChem:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("c1ccccc1O phenol", "smi")

Use chemfp.toolkit.open_molecule_writer() to create a writer object. By default it will look at the
output filename extension to figure out the format and compression type, and if that doesn’t work it defaults
to SMILES output:

>>> writer = T.open_molecule_writer("example.smi")

The fingerprint writer has several methods to write a molecule to the file. If you write a molecule by itself
it will use the molecule’s own id (in this case, “phenol”):

>>> writer.write_molecule(mol)

Or, use write_id_and_molecule() if you want to specify an alternate id:

>>> writer.write_id_and_molecule("something else", mol)

WARNING: The toolkit implementation may temporarily change the toolkit molecule’s own identifier in
order to get the correct output. You should not alter the molecule’s id in another thread while calling this
function.

Let’s see if it worked, by closing the writer (otherwise some of the output may be in an internal buffer) and
reading the file:

>>> writer.close()
>>> print(open("example.smi").read())
Oc1ccccc1 phenol
Oc1ccccc1 something else

The write_molecules() method is optimized for passing in a list or iterator of molecule objects, and
write_ids_and_molecules() is the equivalent if you have (id, molecule) pairs. For example, the following
converts an SD file into a compressed SMILES file:

from chemfp import rdkit_toolkit as T # use your toolkit of choice
reader = T.read_molecules("Compound_099000001_099500000.sdf.gz")
writer = T.open_molecule_writer("example.smi.gz")
writer.write_molecules(reader)

These are optional, but recommended. Even better would be
(continues on next page)

186 Chapter 6. Toolkit API examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

(continued from previous page)

to use the context manager described in the next section.
writer.close()
reader.close()

If you have a list (or iterator) of molecules, then use the write_molecules() method.

The open function also supports the format parameter, so you can specify “smi” or “sdf.gz” some other
combination of structure format and compression type:

writer = T.open_molecule("wrong_extension.smi", format="sdf.gz")

If the zstandard package is available then use the .zst suffiz for ZStandard compression.

6.29 Reader and writer context managers

In this section you’ll learn how to use chemfp’s readers and writers to close the file, rather than depend
on Python’s garbage collector or manual “close()”. You will need Compound_099000001_099500000.sdf.gz
from PubChem.

In the previous section, Write molecules to a SMILES file, you learned how to convert an SD file into
a SMILES file. At the end was a small program with optional “close()” statements. These are optional
because Python’s garbage collector and chemfp work together. When a chemfp reader or writer is no longer
needed, the garbage collector asks chemfp to clean up, and chemfp closes the native toolkit’s file object.

This is fine for a simple script or function, but sometimes you want more control over when the file is closed.
You can call the writer’s close() method yourself, but it’s really easy to forget to do that.

Python supports “context managers”, which carry out certain actions when a block of code finishes. See
PEP 343 if you want the full details. For chemfp you only need to know that the reader and writer context
managers will always close the file at the end of the block.

A normal Python file context manager works like this:

>>> with open("example.txt", "w") as outfile:
... outfile.write("I am here.\n")
...
>>> print(repr(open("example.txt").read()))
'I am here.\n'

If instead I use one file object to write the data and another to read the file, without a flush() or close() by
the writer, then there’s a syncronization problem:

>>> outfile = open("example.txt", "w")
>>> outfile.write("I am here.\n")
>>> print(repr(open("example.txt").read()))
''

Why does this print the empty string? The output text is still in an internal buffer, which isn’t written to
the disk until the close call:

>>> outfile.close()
>>> print(repr(open("example.txt").read())
'I am here.\n'

6.29. Reader and writer context managers 187

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
https://www.python.org/dev/peps/pep-0343

chemfp Documentation, Release 3.4

The same problem occurs with molecule output:

>>> from chemfp import rdkit_toolkit as T # can also use openbabel_toolkit
>>> mol = T.parse_molecule("C=O carbon monoxide", "smi")
>>> writer = T.open_molecule_writer("example.smi")
>>> writer.write_molecule(mol)
>>> open("example.smi").read()
''
>>> writer.close()
>>> open("example.smi").read()
'C=O carbon monoxide\n'

Note: this problem does not occur with the openeye_toolkit. Most likely that toolkit always flushes its
output buffers after each molecule.

The chemfp readers and writers support a context manager, so you can use the same solution you would for
regular files:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("C=O carbon monoxide", "smi")
>>> with T.open_molecule_writer("example.smi") as writer:
... writer.write_molecule(mol)
...
>>> open("example.smi").read()
'C=O carbon monoxide\n'

With the context manager concept firmly in mind, the following is the way I prefer to write the conversion
script from the previous section:

from chemfp import rdkit_toolkit as T # use your toolkit of choice

with T.read_molecules("Compound_099000001_099500000.sdf.gz") as reader:
with T.open_molecule_writer("example.smi.gz") as writer:
writer.write_molecules(reader)

That said, if you really want to depend on the garbage collector, you can also write it with one (or two)
fewer lines:

from chemfp import rdkit_toolkit as T # use your toolkit of choice
T.open_molecule_writer("example.smi.gz").write_molecules(

T.read_molecules("Compound_099000001_099500000.sdf.gz"))

6.30 Write molecules to stdout in a specified format

In this section you’ll learn how to specify the structure writer’s output format, and to write to stdout instead
of to a file.

The function chemfp.toolkit.open_molecule_writer() supports a format parameter, in case you don’t
want chemfp to determine the output format and compression based on the filename extension.

For example, if the destination is None (instead of a filename) then chemfp will write the output to stdout.
Since Python’s None object doesn’t have an extension, it will write the molecules as uncompressed SMILES.
If you want to write to stdout in SDF format you will have to specify the output format, like the following:

188 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("O=O molecular oxygen", "smi")
>>> with T.open_molecule_writer(None, "sdf") as writer:
... writer.write_molecule(mol)
...
molecular oxygen

RDKit

2 1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0
M END
$$$$
>>> with T.open_molecule_writer(None, "inchikey") as writer:
... writer.write_molecule(mol)
...
MYMOFIZGZYHOMD-UHFFFAOYSA-N molecular oxygen

6.31 Write molecules to a string (and a bit of InChI)

In this section you’ll learn how to write toolkit molecules into memory, and when finished to get the result
as a string.

The previous sections showed examples of writing molecules to a file or to stdout. Sometimes you want
to save the records as a string; perhaps to send a response for a web request or display the contents
in a text pane of a GUI. The function chemfp.toolkit.open_molecule_writer_to_string() creates a
MoleculeStringWriter which stores the output records into memory. Once the writer is closed, the mem-
ory contents can be retrieved as a string with MoleculeStringWriter.getvalue().

For a bit of variation, the following example uses the “inchi” output format, and the openbabel_toolkit:

>>> from chemfp import openbabel_toolkit as T # use your toolkit of choice
>>> alanine = T.parse_molecule("O=C(O)[C@@H](N)C alanine", "smi")
>>> glycine = T.parse_molecule("C(C(=O)O)N glycine", "smi")
>>> writer = T.open_molecule_writer_to_string("inchi")
>>> writer.write_molecules([alanine, glycine])
>>> writer.close()
>>> print(writer.getvalue())
InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1 alanine
InChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5) glycine

You should know that there’s no well-defined “inchi” file format, only an InChI string. I decided to follow
Open Babel’s lead and say that the “inchi” format has one record per line, where each line contains the
InChI string followed by a delimiter, followed by the id (if available) on the rest of the line.

The InChI output writer_args supports an “include_id” parameter. The default, True, includes the id,
while the following example sets it to False to have only the InChI string on the line:

>>> with T.open_molecule_writer_to_string("inchi",
... writer_args={"include_id": False}) as writer:
... writer.write_molecule(alanine)

(continues on next page)

6.31. Write molecules to a string (and a bit of InChI) 189

chemfp Documentation, Release 3.4

(continued from previous page)

... writer.write_molecule(glycine)

...
>>> print(writer.getvalue())
InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1
InChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5)

I also used the context manager so the code would be a bit shorter and, I think, clearer. It’s up to you to
decide if write_molecules() with a 2-element list is clear than two write_molecule() lines.

6.32 Handling errors when reading molecules from a string

In this section you’ll learn how to ignore errors and improve error reporting when reading from a string,
rather then accept the default of raising an exception and stopping. The examples will use a string containing
SMILES records, but the same principles apply to any format.

If you’ve used the chemfp readers on real-world data sets you might have noticed that the RDKit and Open
Babel ones sometimes raise an exception, saying that a given record could not be parsed. I’ll demonstrate
with a string containing four SMILES records:

>>> content = ("C methane\n" +
... "CN(C)(C)(C)C pentavalent nitrogen\n" +
... "Q Q-ane\n" +
... "[U] uranium\n")
>>>

RDKit doesn’t like the pentavalent nitrogen, and chemfp’s rdkit_toolkit stops processing at that record:

>>> from chemfp import rdkit_toolkit
>>> with rdkit_toolkit.read_ids_and_molecules_from_string(content, "smi") as reader:
... for id, mol in reader:
... print(id)
...
methane
[16:11:12] Explicit valence for atom # 1 N, 5, is greater than permitted
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "chemfp/_rdkit_toolkit.py", line 342, in _iter_read_smiles_ids_and_molecules
error_handler.error("RDKit cannot parse the SMILES %s" % (_compat.myrepr(smiles),),␣

↪→location)
File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot parse the SMILES 'CN(C)(C)(C)C',
file '<string>', line 2, record #2: first line is 'CN(C)(C)(C)C pentavalent nitrogen'

Open Babel doesn’t care about the too-high valence on the nitrogen, but doesn’t like the non-SMILES in
the third record:

>>> from chemfp import openbabel_toolkit
>>> with openbabel_toolkit.read_ids_and_molecules_from_string(content, "smi") as reader:
... for id, mol in reader:

(continues on next page)

190 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

(continued from previous page)

... print(id)

...
methane
pentavalent nitrogen
==============================
*** Open Babel Error in ParseSimple
SMILES string contains a character 'Q' which is invalid

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "chemfp/_openbabel_toolkit.py", line 927, in _iter_column_records
error_handler.error("Open Babel cannot parse the %s %s"

File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot parse the SMILES 'Q',
file '<string>', line 3, record #3: first line is 'Q Q-ane'

To round things out, OEChem accepts pentavalent nitrogen and skips the bad SMILES at a lower level than
what chemfp uses, so there’s no exception:

>>> from chemfp import openeye_toolkit
>>> with openeye_toolkit.read_ids_and_molecules_from_string(content, "smi") as reader:
... for id, mol in reader:
... print(id)
...
methane
pentavalent nitrogen
Warning: Problem parsing SMILES:
Warning: Q Q-ane
Warning: ^

Warning: Error reading molecule "" in Canonical stereo SMILES format.
uranium

I’ll emphasize that point. The openeye_toolkit uses OEChem’s high-level reader, which provides no informa-
tion about if OEChem skipped a record with a failure. Chemfp therefore cannot provide more information
about the failures, whether as an exception or an improved error message.

I’m certain that nearly everyone wants the reader to ignore the few records that can’t be parsed by the
underlying toolkit. The readers and writers support the errors option. The default value of “strict” tells
chemfp to raise an exception when it detects a parse failure, and “ignore” tells it to ignore the error and go
on to the next record:

>>> with rdkit_toolkit.read_ids_and_molecules_from_string(
... content, "smi", errors="ignore") as reader:
... for id, mol in reader:
... print(id)
...
methane
[16:13:45] Explicit valence for atom # 1 N, 5, is greater than permitted
[16:13:45] SMILES Parse Error: syntax error for input: 'Q'
uranium
>>> with openbabel_toolkit.read_ids_and_molecules_from_string(

(continues on next page)

6.32. Handling errors when reading molecules from a string 191

chemfp Documentation, Release 3.4

(continued from previous page)

... content, "smi", errors="ignore") as reader:

... for id, mol in reader:

... print(id)

...
methane
pentavalent nitrogen
uranium

The “strict” default comes from my long-held belief that it’s better to be strict first, and detect problems
early, than to let them intrude. My resolve is weakening, because it’s been rare to find that I can make use
of that information. The biggest counter-example is when I specify one format but the file is actually in
another format, in which case the reader skips a lot of garbage. For example, a SMILES reader, pointed to
a SD file or a compressed SMILES file, will try hard to make sense of the data and end up ignoring almost
everything. I haven’t decided if I will change the default policy.

I’ve also found that the toolkits aren’t that helpful at identifying which record failed. Take a look at the
RDKit warning:

[16:13:45] Explicit valence for atom # 1 N, 5, is greater than permitted

It says that I did this in the late afternoon, and the reason for the failure, but says very little about the
record with the problem.

To help improve this, and to send still more garbage, err, I mean helpful messages to stderr, chemfp supports
a “report” errors value. It’s the same as “ignore” except that it also displays more details about the failure
location:

>>> with rdkit_toolkit.read_ids_and_molecules_from_string(
... content, "smi", errors="report") as reader:
... for id, mol in reader:
... print(id)
...
methane
[16:14:52] Explicit valence for atom # 1 N, 5, is greater than permitted
ERROR: RDKit cannot parse the SMILES 'CN(C)(C)(C)C', file '<string>', line 2, record #2:␣
↪→first line is 'CN(C)(C)(C)C pentavalent nitrogen'. Skipping.
[16:14:52] SMILES Parse Error: syntax error for input: 'Q'
ERROR: RDKit cannot parse the SMILES 'Q', file '<string>', line 3, record #3: first line␣
↪→is 'Q Q-ane'. Skipping.
uranium
>>> with openbabel_toolkit.read_ids_and_molecules_from_string(
... content, "smi", errors="report") as reader:
... for id, mol in reader:
... print(id)
...
methane
pentavalent nitrogen
ERROR: Open Babel cannot parse the SMILES 'Q', file '<string>', line 3, record #3: first␣
↪→line is 'Q Q-ane'. Skipping.
uranium

The quality of the error message depends on the toolkit and the format. The best messages are for the
Open Babel and RDKit SMILES readers and InChI readers, because I decided to have chemfp identify the
records for those formats itself, instead of using the underlying toolkits to read the file. Chemfp still uses

192 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

the underlying toolkit to convert the individual record into a native toolkit molecule.

I did this because I found the the SMILES and InChI reader performance was the same, and by writing my
own parsers I had the ability to report line numbers and improve the error messages.

The examples so far used the read_ids_and_molecules_from_string function. The
read_molecules_from_string function also supports the errors option, with the same meaning.

>>> sizes = []
>>> with openbabel_toolkit.read_molecules_from_string(
... content, "smi", errors="report") as reader:
... for mol in reader:
... sizes.append(mol.NumAtoms())
...
ERROR: Open Babel cannot parse the SMILES 'Q', file '<string>', line 3, record #3: first␣
↪→line is 'Q Q-ane'. Skipping.
>>> sizes
[1, 6, 1]

6.33 Handling errors when reading molecules from a file

In this section you’ll learn how to how to ignore errors and improve error reporting when reading from SD
file, rather then accept the default of raising an exception and stopping. The examples will use an SD file,
but the same principles apply to any format.

In the previous section you learned that when the readers encounter a error, the default behavior is to raise
a Python exception and how to use the error parameter to ignore those errors or to provide a more detailed
error report.

The file-based readers, chemfp.toolkit.read_molecules() and chemfp.toolkit.
read_ids_and_molecules(), can be configured the same way, that is:

When there is an error, raise an exception and stop (this is the default)
T.read_molecules(filename)
T.read_molecules(filename, errors="strict")
T.read_ids_and_molecules(filename)
T.read_ids_and_molecules(filename, errors="strict")

When there is an error, go on to the next record
T.read_molecules(filename, errors="ignore")
T.read_ids_and_molecules(filename, errors="ignore")

When there is an error, print an error message to stderr then
go on to the next record
T.read_molecules(filename, errors="report")
T.read_ids_and_molecules(filename, errors="report")

To show it in action, I’ll construct an SD file with three records. The first will contain a trivalent oxygen,
the second a corrupt record, and the third will be atomic nitrogen. I’ll use OEChem to help me make the
file.

from chemfp import openeye_toolkit as T
mol1 = T.parse_molecule("O#C trivalent", "smi") # RDKit won't like this

(continues on next page)

6.33. Handling errors when reading molecules from a file 193

chemfp Documentation, Release 3.4

(continued from previous page)

mol2 = T.parse_molecule("[U] Q-record", "smi") # I'll corrupt this record
mol3 = T.parse_molecule("[N] nitrogen", "smi") # This one is fine
with T.open_molecule_writer_to_string("sdf") as writer:
writer.write_molecules([mol1, mol2, mol3])

content = writer.getvalue()
replace the "U" with the nonsense "Qq"
content = content.replace("U ", "Qq")
Save
open("bad_data.sdf", "w").write(content)

Here’s what the output file bad_data.sdf it looks like, so you can copy&paste if you wish:

trivalent
-OEChem-04251716112D

2 1 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
1.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 0 0 0 0
M END
$$$$
Q-record
-OEChem-04251716112D

1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 Qq 0 0 0 0 0 0 0 0 0 0 0 0

M END
$$$$
nitrogen
-OEChem-04251716112D

1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 N 0 0 0 0 0 15 0 0 0 0 0 0

M END
$$$$

I’ll try to read that file using the native RDKit reader, which skips records it can’t parse:

>>> from rdkit import Chem
>>> reader = Chem.ForwardSDMolSupplier("bad_data.sdf")
>>> ids = [mol.GetProp("_Name") for mol in reader if mol is not None]
[16:40:57] Explicit valence for atom # 0 O, 3, is greater than permitted
[16:40:57] ERROR: Could not sanitize molecule ending on line 8
[16:40:57] ERROR: Explicit valence for atom # 0 O, 3, is greater than permitted
[16:40:57]

Post-condition Violation
Element 'Qq' not found
Violation occurred on line 91 in file /Users/dalke/ftps/rdkit-Release_2020_03_1/Code/
↪→GraphMol/PeriodicTable.h
Failed Expression: anum > -1

(continues on next page)

194 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

(continued from previous page)

[16:40:57] ERROR: Element 'Qq' not found
[16:40:57] ERROR: moving to the beginning of the next molecule
>>> ids
['nitrogen']

As expected, RDKit could only extract one record of the three. It helpfully points out the line number of
the records it couldn’t parse (lines 8 and 14)

Now I’ll do the same using chemfp’s rdkit_toolkit interface and the default error handler, which is strict:

>>> from chemfp import rdkit_toolkit
>>> ids = []
>>> for id, mol in rdkit_toolkit.read_ids_and_molecules("bad_data.sdf"):
... ids.append(id)
...
[16:41:47] Explicit valence for atom # 0 O, 3, is greater than permitted
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/dalke/cvses/cfp-3x/docs/chemfp/_rdkit_toolkit.py", line 1340, in _iter_

↪→read_sdf_structures
error_handler.error("Could not parse molecule block", location)

File "/Users/dalke/cvses/cfp-3x/docs/chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Could not parse molecule block, file 'bad_data.sdf', line 1, record
↪→#1: first line is 'trivalent'

It stops at the first error and raise an exception. The exception contains some information about the error
location, including the filename, line number, record number, and the contents of the first line of the file.

How does chemfp get that information? Under the covers chemfp uses its own parser, from the text_toolkit
to read each record, then passes that record to RDKit to turn the record into a molecule. This gives
chemfp a bit more control over error reporting. Originally this was also faster than using RDKit’s own
ForwardSDMolSupplier, but now chemfp is about 10% slower. A future implementation may offer a run-
time choice of which implementation to use, in case you want better performance at the expense of less
detailed error information.

Pass in either “ignore” or “report” as the errors option if you want chemfp to skip records with an error
keep on processing. I’ll use “report” to show what the error reporting looks like:

>>> from chemfp import rdkit_toolkit
>>> ids = []
>>> for id, mol in rdkit_toolkit.read_ids_and_molecules(
... "bad_data.sdf", errors="report"):
... ids.append(id)
...
[16:42:23] Explicit valence for atom # 0 O, 3, is greater than permitted
ERROR: Could not parse molecule block, file 'bad_data.sdf', line 1, record #1: first␣
↪→line is 'trivalent'. Skipping.
[16:42:23]

(continues on next page)

6.33. Handling errors when reading molecules from a file 195

chemfp Documentation, Release 3.4

(continued from previous page)

Post-condition Violation
Element 'Qq' not found
Violation occurred on line 91 in file /Users/dalke/ftps/rdkit-Release_2020_03_1/Code/
↪→GraphMol/PeriodicTable.h
Failed Expression: anum > -1

[16:42:23] Element 'Qq' not found
ERROR: Could not parse molecule block, file 'bad_data.sdf', line 10,
record #2: first line is 'Q-record'. Skipping.

RDKit’s own error messages from ForwardSDMolSupplier, like “Unexpected error hit on line 14” / “moving
to the begining of the next molecule”, have disappeared, because chemfp handles record extraction. The
sanitization error message about explicit valence remains because RDKit still does that work.

Note also that under Python 2.7 chemfp returns a Unicode string for the id, rather than the byte string that
the native RDKit API returns.

That was RDKit. What about Open Babel?

>>> from __future__ import print_function # Only needed in Python 2
>>> from chemfp import openbabel_toolkit
>>> with openbabel_toolkit.read_ids_and_molecules(
... "bad_data.sdf", "sdf", errors="strict") as reader:
... for id, mol in reader:
... print("Read", repr(id), "first atom:", mol.GetAtom(1).GetAtomicNum())
...
Read 'trivalent' first atom: 8
Read 'Q-record' first atom: 0
Read 'nitrogen' first atom: 7

Open Babel reads all three records even in strict mode. Interestingly, Open Babel turns the ‘Qq’ atom into
a “*” atom, with atomic number 0. To double check, I’ll read the list of molecules, then write them all out
as SMILES:

>>> with openbabel_toolkit.read_molecules("bad_data.sdf") as reader:
... mols = [openbabel_toolkit.copy_molecule(mol) for mol in reader]
...
>>> len(mols)
3
>>> with openbabel_toolkit.open_molecule_writer(None, "smi") as writer:
... writer.write_molecules(mols)
...
C#[O] trivalent
* Q-record
[N] nitrogen

OEChem also parses that “Qq” record as an atom with atomic number of 0, and it also doesn’t give me a
warning message:

>>> from chemfp import openeye_toolkit
>>> with openeye_toolkit.read_ids_and_molecules(
... "bad_data.sdf", errors="strict") as reader:

(continues on next page)

196 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

(continued from previous page)

... for id, mol in reader:

... print("Read", repr(id), [a.GetAtomicNum() for a in mol.GetAtoms()])

...
Read 'trivalent' [8, 6]
Read 'Q-record' [0]
Read 'nitrogen' [7]

I totally didn’t expect the toolkits to parse an unknown atom type like “Qq”!

In any case, OEChem will skip records which it could not parse, and there’s no easy way for chemfp to get
that information, so in practice the “strict” and “report” options are meaningless.

6.34 Ignore errors in create_string() and create_bytes()

In this section you’ll learn how to ignore errors when converting a molecule into a string or byte record.

Some molecules cannot be represented in some formats. The easiest example is the molecule from the
SMILES “*”, which contains a single atom with the atomic number 0 and cannot be represented in InChI:

>>> from chemfp import rdkit_toolkit as T
>>> mol = T.parse_molecule("*", "smistring")
>>> T.create_string(mol, "smistring")
'[*]'
>>> T.create_string(mol, "inchistring")
[16:47:59] ERROR: Unknown element '*'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/rdkit_toolkit.py", line 418, in create_string

return _toolkit.create_string(mol, format, id, writer_args, errors)
File "chemfp/base_toolkit.py", line 1389, in create_string

return self._create_string_impl(format_config, mol, id, writer_args, error_handler)
File "chemfp/base_toolkit.py", line 1392, in _create_string_impl

return format_config.create_string(mol, id, writer_args, error_handler)
File "chemfp/_rdkit_toolkit.py", line 1709, in create_string
error_handler.error("RDKit cannot create the InChI string")

File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot create the InChI string

By default the chemfp.toolkit.create_string() and chemfp.toolkit.create_bytes() functions will
raise an exception if the molecule cannot be converted into the given record format. Use the errors
parameter to specify that behavior. Just like with file reading, the default value is “strict”, “ignore”
will return None if there was an error, and “report” will return None and also print some information about
the failure to stderr.

The following uses “ignore”:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> for toolkit in ("openbabel", "rdkit", "openeye"):
... T = chemfp.get_toolkit(toolkit)

(continues on next page)

6.34. Ignore errors in create_string() and create_bytes() 197

chemfp Documentation, Release 3.4

(continued from previous page)

... mol = T.parse_molecule("*", "smistring")

... result = T.create_string(mol, "inchistring", errors="ignore")

... print(toolkit, "returned", repr(result))

...
==============================
*** Open Babel Warning in InChI code
#0 :Unknown element(s): *

==============================
*** Open Babel Error in InChI code
InChI generation failed

openbabel returned None
[16:49:04] ERROR: Unknown element '*'
rdkit returned None
Warning: Unable to create InChI from molecule '' with wild card atoms:␣
↪→OEAtomBase::GetAtomicNum() == 0.
openeye returned None

The following uses “report”. You can see the only addition is the new line ‘ERROR: Open Babel cannot
create the InChI string. Skipping.’ For a bit of variation, I also changed things to use create_bytes instead
of create_string:

>>> from chemfp import openbabel_toolkit as T
>>> mol = T.parse_molecule("*", "smistring")
>>> result = T.create_bytes(mol, "inchistring", errors="report")
==============================
*** Open Babel Warning in InChI code
#0 :Unknown element(s): *

==============================
*** Open Babel Error in InChI code
InChI generation failed

ERROR: Open Babel cannot create the InChI string. Skipping.
>>> result is None
True

6.35 Ignore errors when writing molecules

In this section you’ll learn how to ignore errors and improve error reporting when writing a file, rather than
accept the default of raising an exception and stopping. You will need a copy of ChEBI_lite.sdf.gz.

It’s not unusal for there to be a few input records which cannot be parsed into a molecule. It’s much less
common to come across a molecule which cannot be turned into a record. The SMILES and SD file formats
are able to handle a wide range of chemistry. Even R-groups, which can’t directly be expressed as SMILES,
can be represented in one of several conventions, like [*:1] for R1.

There are no such conventions for InChI. As you saw in the previous section, it’s easy to make a molecule
to InChI converter fail if the structure contains a “*” atom.

The functions chemp.toolkit.open_molecule_writer(), chemp.toolkit.
open_molecule_writer_to_string(), and chemp.toolkit.open_molecule_writer_to_bytes() return a
molecule writer. This can be used to write a single molecule at a time, or to write molecule multiples from
an iterator.

What happens if I try to convert the ChEBI file into an InChI file using OEChem?

198 Chapter 6. Toolkit API examples

ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz

chemfp Documentation, Release 3.4

>>> from chemfp import openeye_toolkit as T
>>> reader = T.read_molecules("ChEBI_lite.sdf.gz")
>>> writer = T.open_molecule_writer("chebi.inchi")
>>> writer.write_molecules(reader)
Warning: Unable to create InChI from molecule '' with wild card atoms:␣
↪→OEAtomBase::GetAtomicNum() == 0.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/base_toolkit.py", line 283, in write_molecules
_compat.raise_tb(err[0], err[1])

File "<string>", line 1, in raise_tb
File "chemfp/_openeye_toolkit.py", line 685, in _gen_write_inchi_structures

error_handler.error(errmsg, location)
File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: OEChem cannot create the InChI string, file 'chebi.inchi', record #3

The third record could not be converted to an InChI string, and the warning message that OEChem printed
to the termal shows that the molecule contained a wildcard atom, that is, the “*” atom. But, did it really?

>>> reader = T.read_molecules("ChEBI_lite.sdf.gz")
>>> for i in range(3):
... mol = next(reader)
... print(T.create_string(mol, "smistring"))
...
c1cc(c(cc1[C@@H]2[C@@H](Cc3c(cc(cc3O2)O)O)O)O)O
C[C@]12CC[C@H](C1)C(C2=O)(C)C
*C(=O)OC(CO)CO[R1]

That shows “R1”, not an R-group. What’s going on? “R1” isn’t even a valid SMILES.

This is an OEChem extension to SMILES. The default output SMILES flavor includes the flag “RGroups”,
which

[c]ontrols whether atoms with atomic number zero (as determined by the
OEAtomBase::GetAtomicNum method), and a non-zero map index (as determined by the
OEAtomBase::GetMapIdx method) should be displayed using the [R1] notation. In this
notation, the integer value following the R corresponds to the atom’s map index. When this flag
isn’t set, such atoms are written in the Daylight convention [*:1]. – OEChem documenation

I’ll redo the loop but this time disable the RGroup using the writer_args option to set the flavor to “Default,
-RGroups”, that is, the default value but without RGroups being set:

>>> reader = T.read_molecules("ChEBI_lite.sdf.gz")
>>> for i in range(5):
... mol = next(reader)
... print(T.create_string(mol, "smistring",
... writer_args={"flavor": "Default,-RGroups"}))
...
c1cc(c(cc1[C@@H]2[C@@H](Cc3c(cc(cc3O2)O)O)O)O)O
C[C@]12CC[C@H](C1)C(C2=O)(C)C
C(=O)OC(CO)CO[:1]
C[C@]12CC[C@@H]3c4ccc(cc4CC[C@H]3[C@@H]1C[C@H](C2=O)O)O
c1cc(c(c(c1)Cl)C#N)Cl

6.35. Ignore errors when writing molecules 199

http://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemConstants/OESMILESFlag.html#OEChem::OESMILESFlag::RGroups

chemfp Documentation, Release 3.4

That indeed gives [*:1] which is the wildcard atom that InChI complains about.

The molecule writers support the same errors option as the molecule readers. The default value is “strict”,
which means to raise an exception. To ignore errors, use “ignore”, and to ignore errors except to report a
message to standard out, use “report”.

>>> from chemfp import openeye_toolkit as T # use your toolkit of choice
>>> reader = T.read_ids_and_molecules("ChEBI_lite.sdf.gz", id_tag="ChEBI ID", errors=
↪→"ignore")
>>> writer = T.open_molecule_writer("chebi.inchi", errors="report")
>>> writer.write_ids_and_molecules(reader)

The first few and last few lines of output are:

Warning: Unable to create InChI from molecule '' with wild card atoms:␣
↪→OEAtomBase::GetAtomicNum() == 0.
ERROR: OEChem cannot create the InChI string, file 'chebi.inchi', record #3. Skipping.
Warning: Unsupported Sgroup information ignored
Warning: Unsupported Sgroup information ignored
Warning: Unable to create InChI from molecule '' with wild card atoms:␣
↪→OEAtomBase::GetAtomicNum() == 0.
ERROR: OEChem cannot create the InChI string, file 'chebi.inchi', record #13. Skipping.
Warning: Stereochemistry corrected on atom number 2 of
Warning: Unable to create InChI from molecule '' with wild card atoms:␣
↪→OEAtomBase::GetAtomicNum() == 0.
ERROR: OEChem cannot create the InChI string, file 'chebi.inchi', record #133. Skipping.

...
ERROR: OEChem cannot create the InChI string, file 'chebi.inchi', record #94443.␣
↪→Skipping.
Warning: Stereochemistry corrected on atom number 8 of
Warning: Stereochemistry corrected on atom number 13 of
Warning: Stereochemistry corrected on atom number 36 of

where the lines starting “ERROR: OEChem” come from chemfp, and the others come from OEChem at a
lower-level. (Alas, the “report” isn’t as helpful as it should be. I would like it to include the output id in
the error message, but all it gives is the record number. Perhaps it will be in the next release?)

All told, there were 107205 of which 98631 could be written out. I got these numbers from the writer’s
location property (see Location information: filename, record_format, recno and output_recno, below).
Its recno is the number of records sent to the writer, and output_recno is the number of records actually
written:

>>> writer.location.recno
107205
>>> writer.location.output_recno
98631

6.36 Reader and writer format metadata

In this section you’ll learn about the format metadata attribute of the readers and writers. You will need
Compound_099000001_099500000.sdf.gz from PubChem if you want to reproduce this for yourself.

Each reader and writer has a metadata attribute, which stores some information about the parameters used
to open it:

200 Chapter 6. Toolkit API examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

>>> from chemfp import rdkit_toolkit as T
>>> reader = T.read_molecules("Compound_099000001_099500000.sdf.gz")
>>> reader.metadata
FormatMetadata(filename='Compound_099000001_099500000.sdf.gz',
record_format='sdf', args={'sanitize': True, 'removeHs': True, 'strictParsing': True,
↪→'includeTags': True})
>>> writer = T.open_molecule_writer(None, "sdf")
>>> writer.metadata
FormatMetadata(filename='<stdout>', record_format='sdf',
args={'includeStereo': False, 'kekulize': True, 'v3k': False})

The metadata for a structure reader and writer is a chemfp.base_toolkit.FormatMetadata instances, and
not the chemfp.Metadata for a fingerprint reader and writer.

The filename attribute is best effort at a string representation of the source or destination. It can either
be the original filename (if there is one), the strings “<stdin>” or “<stdout>” for stdin/stout, the string
“<string>” if reading or writing to memory, the source or destination’s “name” attribute if a file object, or
None if all else fails.

The record_format attribute is the format name for the record, which is the same as the input file format ex-
cept without any compression. As you can see in the above example, the “sdf.gz” reader has a record_format
of “sdf”. This parameter is useful when you want use the text_toolkit to extract records because you pass
the text reader’s record format as the format for the chemistry toolkit’s toolkit.parse_molecule().

The args attribute is the processed reader_args or writer_args, without any namespacing. For now it’s
mostly available for debugging purposes, so you can see how the toolkit layer actually processed your argu-
ments. In the future there will be a way to turn this into a text settings dictionary.

6.37 Location information: filename, record_format, recno and out-
put_recno

In this section you’ll learn the basics of the chemfp.io.Location API, you’ll learn how to get the location
object for each reader and writer, and you’ll learn about the recno and output_recno location attributes.

(See the next section for details about the lineno, offsets, record, and other location properties which
are not available for every toolkit format.)

The reader and writers track information about the current state of the reader and writer. Some of this
information is more generally useful, and available through the location attribute of each reader and writer:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> content = "C methane\nO=O oxygen\n"
>>> reader = T.read_molecules_from_string(content, "smi")
>>> reader.location
Location('<string>')
>>> loc = reader.location
>>> loc.filename
'<string>'
>>> loc.record_format
'smi'

If there is no actual filename then filename is “<string>” for string-based I/O, “<stdin>” when reading
from stdin, and “<stdout>” when writing to stdout. (The latter two occur when the source or destination

6.37. Location information: filename, record_format, recno and output_recno 201

chemfp Documentation, Release 3.4

parameter, respectively, are None.) The record_format is the record format name, without any compression
suffix:

>>> writer = T.open_molecule_writer("example.sdf.gz")
>>> writer.location.filename
'example.sdf.gz'
>>> writer.location.record_format
'sdf'
>>> writer.close()

All of the toolkit readers and writers support the recno location property, which is the number of records
which have been read or written. A recno of 0 means that no records have been read:

>>> reader = T.read_molecules_from_string(content, "smi")
>>> loc = reader.location
>>> loc.recno
0
>>> next(reader)
<rdkit.Chem.rdchem.Mol object at 0x10fb06e50>
>>> loc.recno
1
>>> next(reader)
<rdkit.Chem.rdchem.Mol object at 0x10fb06ec0>
>>> loc.recno
2

While you could use the recno property for simple enumeration, as in the folllowing:

>>> from __future__ import print_function # Only needed in Python 2
>>> with T.read_ids_and_molecules_from_string(content, "smi") as reader:
... loc = reader.location
... for id, mol in reader:
... print("record number:", loc.recno, "id:", id)
...
record number: 1 id: methane
record number: 2 id: oxygen

I would prefer that you write it with the “enumerate()” function, as in:

>>> with T.read_ids_and_molecules_from_string(content, "smi") as reader:
... for recno, (id, mol) in enumerate(reader, 1):
... print("record number:", recno, "id:", id)
...
record number: 1 id: methane
record number: 2 id: oxygen

The enumerate() function is both faster and more expected for this sort of code. The recno property exists
more to help with error reporting, and to report summary information, like:

>>> print("Read", reader.location.recno, "records")
Read 2 records

The output writers distinguish between recno, which is the number of molecules that chemfp tried to save,
and output_recno, which is the number of molecules that could actually be saved. This occurs because some
molecules cannot be written to a given format, like the SMILES “*” which has no InChI representation:

202 Chapter 6. Toolkit API examples

https://docs.python.org/3/library/functions.html#enumerate

chemfp Documentation, Release 3.4

>>> from chemfp import openbabel_toolkit
>>> writer = openbabel_toolkit.open_molecule_writer("example.inchi")
>>> parse_molecule = openbabel_toolkit.parse_molecule
>>> writer.write_molecule(parse_molecule("c1ccccc1O", "smistring"))
>>> writer.location.recno
1
>>> writer.location.output_recno
1
>>> writer.write_molecule(parse_molecule("*", "smistring"))
==============================
*** Open Babel Warning in InChI code
#0 :Unknown element(s): *

==============================
*** Open Babel Error in InChI code
InChI generation failed

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/base_toolkit.py", line 271, in write_molecule
_compat.raise_tb(err[0], err[1])

File "<string>", line 1, in raise_tb
File "chemfp/_openbabel_toolkit.py", line 1348, in _gen_write_delimited_structures

error_handler.error("Open Babel cannot create the %s string"
File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot create the InChI string, file 'example.inchi',␣
↪→record #2
>>> writer.location.recno
2
>>> writer.location.output_recno
1

6.38 Location information: record position and content

In this section you’ll learn how to get position information for each record and information about the
content of each record. You will need the RDKit toolkit or Open Babel toolkit. (Unfortunately for
me, OEChem doesn’t have a way to get this information, and my hybrid parser with improved error
reporting proved to be much slower than OEChem’s native performance.) You will also need Com-
pound_099000001_099500000.sdf.gz from PubChem.

(See the previous section for details about the filename, record_format, recno and output_recno location
properties, which are available for every toolkit format.)

Sometimes you want to know where a record is located in a file. You might want to report that the unusable
record started on line 12345 of a given file, or you might want to index a file to implement random access
lookup.

The underlying toolkits do not implement this functionality. Instead, chemfp includes its own SMILES and
SDF file readers. These know enough about the formats to extract a single record, then pass the record to
the toolkit to turn into a molecule. This lets chemfp track the line number of the start of the record, its
byte range, the text of the current record, and other details.

Timings show that the hybrid parser for the SMILES formats are no slower than the native RDKit and Open

6.38. Location information: record position and content 203

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

Babel readers, and that the hybrid SDF parser a bit slower than RDKit’s native parser (about 10%) and
slower than Open Babel’s native parser. In all cases, OEChem’s native parsers leave chemfp in the dust.

As a consequence, the rdkit_toolkit and openbabel_toolkit SMILES readers track more detailed record
information, but the openeye_toolkit one does not. (The text_toolkit of course always tracks that
information.) Here is an example which works for rdkit_toolkit and openbabel_toolkit:

>>> from __future__ import print_function # Only needed in Python 2
>>> from chemfp import openbabel_toolkit as T # or rdkit_toolkit
>>> content = "C methane\nO=O oxygen\n"
>>> reader = T.read_ids_and_molecules_from_string(content, "smi")
>>> loc = reader.location
>>> for id, mol in reader:
... print("id:", repr(id), "lineno:", loc.lineno, "byte range:", loc.offsets)
... print(" record content:", repr(loc.record))
... print(" first line:", repr(loc.first_line))
...
id: 'methane' lineno: 1 byte range: (0, 10)

record content: b'C methane\n'
first line: 'C methane'

id: 'oxygen' lineno: 2 byte range: (10, 21)
record content: b'O=O oxygen\n'
first line: 'O=O oxygen'

>>> content[0:10]
'C methane\n'
>>> content[10:21]
'O=O oxygen\n'

(Note: if the input record is a Unicode string then it will be converted into a UTF-8 encoded byte string.
The start and end positions are coordinates in the encoded byte string, not the text string.)

The location instance of the rdkit_toolkit SDF reader gives access to many details about the current parser
state:

>>> from chemfp import rdkit_toolkit
>>> reader = rdkit_toolkit.read_molecules("Compound_099000001_099500000.sdf.gz")
>>> next(reader)
<rdkit.Chem.rdchem.Mol object at 0x1104c9830>
>>> reader.location.lineno
1
>>> reader.location.offsets
(0, 6709)
>>> reader.location.first_line
'99000039'
>>> next(reader)
<rdkit.Chem.rdchem.Mol object at 0x1104c97c0>
>>> reader.location.lineno
223
>>> reader.location.offsets
(6709, 14560)
>>> reader.location.first_line
'99000230'

The openbabel_toolkit and openeye_toolkit implementations by default don’t track this level of detail,
because their native readers are faster than when I can manage in a hybrid reader. Consequently, those

204 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

values are None:

>>> from chemfp import openbabel_toolkit
>>> reader = openbabel_toolkit.read_molecules("Compound_099000001_099500000.sdf.gz")ne
>>> next(reader)
<openbabel.openbabel.OBMol; proxy of <Swig Object of type 'OpenBabel::OBMol *' at␣
↪→0x106eff4b0> >
>>> print(reader.location.lineno)
None
>>> print(reader.location.offsets)
None
>>> print(reader.location.first_line)
None

There is experimental support to use Open Babel in hybrid mode. The reader_args supports an “implemen-
tation” option. The default of None, or “openbabel”, tells chemfp to use Open Babel’s native parser, while
specifying “chemfp” tells it to use chemfp’s own SDF record parser:

>>> openbabel_toolkit.get_format("sdf").get_default_reader_args()
{'implementation': None, 'perceive_0d_stereo': False, 'perceive_stereo': False, 'options
↪→': None}
>>> reader = openbabel_toolkit.read_molecules("Compound_099000001_099500000.sdf.gz",
... reader_args={"implementation": "chemfp"})
>>> next(reader)
<openbabel.openbabel.OBMol; proxy of <Swig Object of type 'OpenBabel::OBMol *' at␣
↪→0x106effd20> >
>>> reader.location.lineno
1
>>> reader.location.offsets
(0, 6709)
>>> reader.location.first_line
'99000039'

If user-defined selection of the back-end implementation works well, I may add similar support for the
openeye_toolkit, for those who want the increased level of location detail despite the large performance
impact.

The RDKit “sdf” reader always uses the hybrid. This is for historical reasons. The hybrid solution was once
always faster than the native ForwardSDMolSupplier. That has since changed, and ForwardSDMolSupplier
is about 10% faster. At some point I will add an ‘implementation’ option so you can switch between
performance and improved error reporting.

6.39 Writing your own error handler (Experimental)

In this section you’ll learn how to write your own error handler. This is an advanced topic. Bear in mind
that this is highly experimental and very likely to change. I hope you can provide feedback about how to
improve it.

In earlier sections you learned that when the errors parameter is “strict”, the parser will raise an exception
if there’s a problem with a record. When it’s “ignore”, the record parsers return None as the molecule, while
the file and string readers skip the failing record. When it’s “report”, the result is the same as “ignore”
except that extra information about the failure is written to stderr.

The errors parameter can also take an object which implements the “errors()” method as in the following:

6.39. Writing your own error handler (Experimental) 205

chemfp Documentation, Release 3.4

import sys
class OopsHandler(object):

def error(self, msg, location=None):
if location is None:

sys.stderr.write("Oops! %s. Skipping.\n" % (msg,))
else:

sys.stderr.write("Oops! %s, %s. Skipping.\n" % (msg, location.where()))

The msg is a string describing the error, and location contains the chemfp.io.Location for the given
record. Here’s what it looks like in action:

>>> from __future__ import print_function # Only needed in Python 2
>>> import sys
>>> from chemfp import rdkit_toolkit as T
>>> T.parse_molecule("Q", "smistring", errors=OopsHandler())
>>> T.parse_molecule("Q", "smistring", errors=OopsHandler())
[10:54:57] SMILES Parse Error: syntax error while parsing: Q
[10:54:57] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
Oops! RDKit cannot parse the SMILES string 'Q'. Skipping.
>>> for mol in T.read_molecules_from_string("Q Q-ane\nC methane\n", "smi",
... errors=OopsHandler()):
... print("Processed", mol)
...
[10:55:21] SMILES Parse Error: syntax error while parsing: Q
[10:55:21] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
Oops! RDKit cannot parse the SMILES 'Q', file '<string>', line 1, record #1: first line␣
↪→is 'Q Q-ane'. Skipping.
Processed <rdkit.Chem.rdchem.Mol object at 0x109486670>

The location’s where() method tries to give useful information based on the location’s filename, line number,
record number, and the first line of the record (up to the first 40 characters).

It’s easy to see how to modify this to send the errors to a logger, or save them up to display in a GUI.

For the hybrid parsers, which give access to the raw record, you can do more advanced processing, like extract
the title lines of any SDF record which RDKit can’t handle. The following will make an SDF-formatted
string containing three records, where the second record is a 5-valent nitrogren that RDKit can’t parse. It
will then try to parse the string, and store the ids for records which couldn’t be parsed.

from __future__ import print_function # Only needed in Python 2
from rdkit import Chem
from chemfp import rdkit_toolkit

Use RDKit to make an SD file which RDKit cannot parse.
methane = rdkit_toolkit.parse_molecule("C methane", "smi")
Bypass normal sanitization so RDKit will read 5-valent nitrogens
pentavalent_n = rdkit_toolkit.parse_molecule("CN(C)(C)(C)C pentavalent N",

"smi", reader_args={"sanitize": False})

Chem.SanitizeMol(pentavalent_n, Chem.SanitizeFlags.SANITIZE_SETHYBRIDIZATION)
oxygen = rdkit_toolkit.parse_molecule("O=O oxygen", "smi")

Use the three molecules to make an SD file as a string
with rdkit_toolkit.open_molecule_writer_to_string("sdf") as writer:

(continues on next page)

206 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

(continued from previous page)

writer.write_molecules([methane, pentavalent_n, oxygen])

sdf_content = writer.getvalue()

User-defined error handler
class CaptureIds(object):

def __init__(self):
self.ids = []

def error(self, msg, location):
self.ids.append(location.first_line)

capture_ids = CaptureIds()

for mol in rdkit_toolkit.read_molecules_from_string(sdf_content, "sdf",
errors=capture_ids):

pass

print("Could not parse:", capture_ids.ids)

The content of sdf_content is:

methane
RDKit

1 0 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

M END
$$$$
pentavalent N

RDKit

6 5 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

1 2 1 0
2 3 1 0
2 4 1 0
2 5 1 0
2 6 1 0

M END
$$$$
oxygen

RDKit

2 1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0
(continues on next page)

6.39. Writing your own error handler (Experimental) 207

chemfp Documentation, Release 3.4

(continued from previous page)

M END
$$$$

and the output from the above is:

[10:59:59] Explicit valence for atom # 1 N, 5, is greater than permitted
Could not parse: ['pentavalent N']

The fingerprint type documentation includes another example of how to write an error handler.

6.40 A Babel-like structure format converter

In this section you’ll learn how to use the chemfp toolkit API to create a Babel-like structure file format
converter. This section goes into more details of how to develop real-world software using chemfp.

Pat Walters and Matt Stahl started Babel in the 1990s as a command-line program to convert from one
chemical structure format to another. This developed over the years, and after a major rewrite became
the LGPL toolkit “OELib”, OpenEye’s first commercial chemistry toolkit. OpenEye’s next rewrite lead to
OEChem, a proprietary chemistry toolkit. OELib was still available, and others continued to develop it. It
became Open Babel, and structure file format conversion continues to be Open Babel’s forte.

A full Babel-like program includes features to add and remove hydrogens of different sorts, select or reject
structures based on substructure or other features, add 2D or 3D coordinates, and more. You cannot use
chemfp for that. All chemfp can do is read structure files into a given toolkit’s molecule object, and write
molecule objects to a given format.

Even that basic ability is useful. I’ll explain how to write such a converter yourself. I’ll use as my example
file the following, “example.smi”:

c1ccccc1O phenol
C methane
O=O molecular oxygen

Here’s a minimal conversion program to convert the above into “example.sdf”:

from chemfp import rdkit_toolkit as T # use your toolkit of choice

reader = T.read_molecules("example.smi")
writer = T.open_molecule_writer("example.sdf")
writer.write_molecules(reader)

That code depends on Python’s garbage collection to close the output file handle. This is fine for a script,
but a longer running program may want to have more explicit control over closing the file handle and use a
context manager (see Reader and writer context managers):

from chemfp import rdkit_toolkit as T # use your toolkit of choice

with T.read_molecules("example.smi") as reader:
with T.open_molecule_writer("example.sdf") as writer:

writer.write_molecules(reader)

With that we have enough to build our first Babel program, which takes the input and output filenames
on the command-line. I’ll call this program “cbabel.py”, for “chemfp babel”, and have it implement the

208 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

command-line

usage: cbabel.py [-h] input_filename output_filename

I’ll use argparse from Python’s standard library to handle command-line argument processing. The
“nargs=1” in the following says that the input_filename and output_filename must exist, and only one
filename is allowed. Argparse will save those in a list of size 1, which is why I use [0] to get the actual string
I’m interested in:

import argparse
from chemfp import rdkit_toolkit as T

parser = argparse.ArgumentParser(
description = "A minimial chemical structure file converter"
)

parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

args = parser.parse_args()

with T.read_molecules(args.input_filename[0]) as reader:
with T.open_molecule_writer(args.output_filename[0]) as writer:

writer.write_molecules(reader)

I’ll convert the SMILES into canonical SMILES:

% python cbabel.py example.smi example.can
% cat example.can
Oc1ccccc1 phenol
C methane
O=O molecular oxygen

The only change is that the phenol went from c1ccccc1O to Oc1ccccc1.

I’ll add the ability to read from stdin and stdout. I’ll say that if the input filename is “-” then it will read
from stdin, and if the output filename is “-” then it will write to stdout. (If you have a file named “-” then
you’ll have to specify “./-” to read or write to it.):

import argparse
from chemfp import rdkit_toolkit as T

parser = argparse.ArgumentParser(
description = "A minimial chemical structure file converter"
)

parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

args = parser.parse_args()

Support "-" as stdin/stdout by mapping it to None,
which tells chemfp to use stdin/stout
input_filename = args.input_filename[0]
if input_filename == "-":

input_filename = None
(continues on next page)

6.40. A Babel-like structure format converter 209

https://docs.python.org/3/library/argparse.html

chemfp Documentation, Release 3.4

(continued from previous page)

output_filename = args.output_filename[0]
if output_filename == "-":

output_filename = None

with T.read_molecules(input_filename) as reader:
with T.open_molecule_writer(output_filename) as writer:

writer.write_molecules(reader)

There’s a limitation with this! When the input or output format is None, chemfp can’t figure out the format
based on the filename, so will assume that it’s a SMILES file. When I run the above I get SMILES output:

% python cbabel.py example.smi -
Oc1ccccc1 phenol
C methane
O=O molecular oxygen

But what if I want SDF output? I need a way to specify the input and output file formats on the command-
line. I’ll use the -i and -o options to specify those:

from __future__ import print_function # Only needed in Python 2
import argparse
from chemfp import rdkit_toolkit as T

parser = argparse.ArgumentParser(
description = "A minimial chemical structure file converter"
)

parser.add_argument("-i", metavar="FORMAT", dest="input_format",
help="input format name", default=None)

parser.add_argument("-o", metavar="FORMAT", dest="output_format",
help="output format name", default=None)

parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

args = parser.parse_args()

Support "-" as stdin/stdout by mapping it to None,
which tells chemfp to use stdin/stout
input_filename = args.input_filename[0]
if input_filename == "-":

input_filename = None

output_filename = args.output_filename[0]
if output_filename == "-":

output_filename = None

with T.read_molecules(input_filename, args.input_format) as reader:
with T.open_molecule_writer(output_filename, args.output_format) as writer:

writer.write_molecules(reader)

Now I can specify that I want stdout to be in SDF format:

210 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

% python cbabel.py -o sdf example.smi - | head -5
phenol

RDKit

7 7 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

In practice, required command-line arguments make life more difficult. For a simple program like this,
required arguments are not a problem, but what if I want to add a command to list the available formats?
That option doesn’t need an input or output filename, but argparse will enforce that requirement anyway.

There are a couple of ways to solve the problem. The correct one is to use an argparse Action but that’s
complicated. An easier one for this case is to let “-” be the default input and output filename. That’s easily
done by changing:

parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

to:

parser.add_argument("input_filename", nargs="?", default="-",
help="input filename")

parser.add_argument("output_filename", nargs="?", default="-",
help="output filename")

As a result I can add a new --help-formats argument:

parser.add_argument("--help-formats", action="store_true",
help="list the available file formats")

along with the handler for it, which prints information about the toolkit (its name and version string) and
each of the formats. Some of the formats, like “smistring”, don’t have an I/O format (for that, use “smi”),
so I need to filter those out. Also, some of the formats, like “inchikey”, are output only, and some of the
toolkit have formats that they read but don’t write, so I give more details about those:

args = parser.parse_args()

if args.help_formats:
print("Available I/O formats for toolkit %s (%s)" % (T.name, T.software))
for format in T.get_formats():

if not format.supports_io: # skip formats like "smistring" and "inchistring"
continue

if not format.is_output_format:
msg = " (input only)"

elif not format.is_input_format:
msg = " (output only)"

else:
msg = ""

print(" %s%s" % (format.name, msg))
raise SystemExit(0)

For my version of RDKit I get:

6.40. A Babel-like structure format converter 211

https://docs.python.org/3/library/argparse.html#action

chemfp Documentation, Release 3.4

% python cbabel.py --help-formats
Available I/O formats for toolkit rdkit (RDKit/2020.03.1)
smi
can
usm
sdf
fasta
mol2 (input only)
pdb
xyz (output only)
mae (input only)
inchi
inchikey (output only)

If I used openeye_toolkit instead of rdkit_toolkit I get:

Available I/O formats for toolkit openeye (OEChem/20191016)
smi
usm
can
sdf
skc (input only)
mol2
mol2h
sln (output only)
mmod
pdb
xyz
cdx
mopac (output only)
mf (output only)
oeb
inchi
inchikey (output only)
oez
cif
mmcif
fasta
csv
json

The code so far requires RDKit, but chemfp supports OEChem and Open Babel. Why not add the command-
line argument --toolkit to specify an alternate toolkit?

I ‘ll tell argparse that there’s a new --toolkit argument, which defaults to “rdkit” and also allows “openeye”
and “openbabel”:

parser.add_argument("--toolkit", metavar="NAME", choices=("rdkit", "openeye", "openbabel
↪→"),

help="toolkit name", default="rdkit")

I can no longer import the toolkit directly, which I did as:

212 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

from chemfp import rdkit_toolkit as T

because that line requires that RDKit be installed. Otherwise it will raise an ImportError exception. While
that might be reasonable if the user wanted to use the rdkit toolkit, it’s not reasonable if the user wanted
to use the Open Babel toolkit and didn’t care to know that RDKit isn’t available.

Instead of a direct import, I’ll use chemfp.get_toolkit() to get the named toolkit. It raises a ValueError
with a useful error message if the toolkit isn’t available or is unknown. If that happens, I’ll exit, and use
that message as the explanation:

import chemfp
... skipped many lines

try:
T = chemfp.get_toolkit(args.toolkit)

except ValueError as err:
raise SystemExit("Cannot use toolkit %s: %s" % (

args.toolkit, err))

After a bit of experimentation I found a small SMILES string which gives a different canonicalization for
each of the supported toolkits, which I present as evidence that it really is using a different toolkit:

% echo "NCC(N)O example" | python cbabel.py --toolkit openbabel
NCC(O)N example
% echo "NCC(N)O example" | python cbabel.py --toolkit rdkit
NCC(N)O example
% echo "NCC(N)O example" | python cbabel.py --toolkit openeye
C(C(N)O)N example

Here’s the final code, so you can see how everything works in context:

import argparse
import chemfp

parser = argparse.ArgumentParser(
description = "A minimial chemical structure file converter"
)

parser.add_argument("-i", metavar="FORMAT", dest="input_format",
help="input format name", default=None)

parser.add_argument("-o", metavar="FORMAT", dest="output_format",
help="output format name", default=None)

parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")
parser.add_argument("--toolkit", metavar="NAME", choices=("rdkit", "openeye", "openbabel
↪→"),

help="toolkit name", default="rdkit")
parser.add_argument("--help-formats", action="store_true",

help="list the available file formats")
parser.add_argument("input_filename", nargs="?", default="-",

help="input filename")
parser.add_argument("output_filename", nargs="?", default="-",

help="output filename")

args = parser.parse_args()

(continues on next page)

6.40. A Babel-like structure format converter 213

chemfp Documentation, Release 3.4

(continued from previous page)

try:
T = chemfp.get_toolkit(args.toolkit)

except ValueError as err:
raise SystemExit("Cannot use toolkit %s: %s" % (

args.toolkit, err))

if args.help_formats:
print("Available I/O formats for toolkit %s (%s)" % (T.name, T.software))
for format in T.get_formats():

if not format.supports_io: # skip formats like "smistring" and "inchistring"
continue

if not format.is_output_format:
msg = " (input only)"

elif not format.is_input_format:
msg = " (output only)"

else:
msg = ""

print(" %s%s" % (format.name, msg))
raise SystemExit(0)

Support "-" as stdin/stdout by mapping it to None,
which tells chemfp to use stdin/stout
input_filename = args.input_filename[0]
if input_filename == "-":

input_filename = None

output_filename = args.output_filename[0]
if output_filename == "-":

output_filename = None

with T.read_molecules(input_filename, args.input_format) as reader:
with T.open_molecule_writer(output_filename, args.output_format) as writer:

writer.write_molecules(reader)

Amazing how the original four lines of code expands to 55. It would be even more if I added full error
reporting instead of letting Python throw an exception on errors.

Speaking of errors, you may want to use hard-coded values of errors="ignore" or errors="report" to
have the parser skip records that the toolkit doesn’t understand, or perhaps pass in that information as a
command-line argument named --errors, with the possible choices of “strict”, “report”, or “ignore”.

You might also add the -R and -W options to set the reader args and writer args for the formats, but that’s
more complicated than I wanted to describe in this context. See the next section for a description of how to
do it.

6.41 argparse text settings to reader and writer args

In this section you’ll learn how to use argparse to handle reader args and writer args in the same style that
chemfp does.

The previous section showed how to create a Babel-like structure format conversion program and how to

214 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

use Python’s argparse library for command-line processing. That section was getting too long to describe
how to support command-line configuration of the reader args and writer args. In this section I’ll start with
a smaller version of the same code. This one requires an input filename and an output filename on the
command-line, and lets the user specify the toolkit:

I put this into a file named "convert.py"
import argparse
import chemfp

parser = argparse.ArgumentParser(
description = "Experiment with -R and -W options"
)

parser.add_argument("--toolkit", metavar="NAME", choices=("rdkit", "openeye", "openbabel
↪→"),

help="toolkit name", default="rdkit")
parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

args = parser.parse_args()

T = chemfp.get_toolkit(args.toolkit)
source = args.input_filename[0]
destination = args.output_filename[0]

with T.read_molecules(source) as reader:
with T.open_molecule_writer(destination) as writer:

writer.write_molecules(reader)

I’ll walk through the process of how to add support for the -R and -W options, to make it possible to say:

python convert.py example.smi example.can --toolkit rdkit -R delimiter=space -W␣
↪→allBondsExplicit=true

6.41.1 How to get from the command-line to reader and writer arguments

This requires a few conversions. I need to turn the command-line arguments into reader and writer text
settings dictionaries, then convert the text settings into reader_args and and writer_args dictionaries, before
finally passing the reader_args and writer_args to the molecule readers and writers. (See Convert text
settings into reader and writer arguments for more details about converting text settings to reader and
writer arguments.)

I’ll use argparse to place the -R and -W option values into separate lists of KEY=VALUE strings, and create
a new function which splits them apart on the “=” to get a dictionary of text settings. Then I’ll use the
Format object to convert the text settings into the correct reader_args and writer_args. The steps will look
something like this:

>>> from chemfp import rdkit_toolkit as T
>>>
>>> format = T.get_format("smi") # Specify the format and user-defined settings
>>> reader_settings = ["delimiter=space"]
>>> writer_settings = ["allBondsExplicit=true"]
>>>
>>> # The 'parse_text_settings' function doesn't yet exist. It will convert

(continues on next page)

6.41. argparse text settings to reader and writer args 215

https://docs.python.org/3/library/argparse.html

chemfp Documentation, Release 3.4

(continued from previous page)

... # the list of reader_settings into a dictionary of string values.

...
>>> reader_text_settings = parse_text_settings("-R", reader_settings)
>>> reader_text_settings
{'delimiter': 'space'}
>>>
>>> # Ask the format to turn the string values into string objects
...
>>> format.get_reader_args_from_text_settings(reader_text_settings)
{'delimiter': 'space'}
>>>
>>> # Do the same for the writer arguments
...
>>> writer_text_settings = parse_text_settings("-W", writer_settings)
>>> writer_text_settings
{'allBondsExplicit': 'true'}
>>> format.get_writer_args_from_text_settings(writer_text_settings)
{'allBondsExplicit': True}

For the actual code the input format may be different than the output format. By the way, if you look closely
you’ll see how “allBondsExplicit” in the text settings has a value of “true”, and the string was converted to
the Python object True to be a writer_arg.

To start! First, I need a way to read the list of -R and -W options. I’ll ask argparse to save them into a list,
for later post-processing to get the right values:

parser.add_argument("-R", metavar="KEY=VALUE", dest="reader_settings", action="append",
help="specify a reader argument", default=[])

parser.add_argument("-W", metavar="KEY=VALUE", dest="writer_settings", action="append",
help="specify a writer argument", default=[])

This will parse all of the -R terms, like “-R delimiter=space”, into the reader_settings list, and “-W
allBondsExplicit=true” into the writer_settings list, such that:

args.reader_settings == ["delimiter=space"]
args.writer_settings == ["allBondsExplicit=true"]

For that matter, it will also support “-R abc”, and put it into the reader_settings list even though it doesn’t
have a “=” in it. I also need to go through and figure out if any terms are incorrect, and report the problem.
I’ll make a function for this, along with a parameter so any error message can report if a problem comes
from the -R or -W command-line flag:

def parse_text_settings(flag, terms):
text_settings = {}
for term in terms:
left, mid, right = term.partition("=")
if mid != "=":
parser.error("%s setting %r must be of the form KEY=VALUE" %

(flag, term))
text_settings[left] = right

return text_settings

reader_text_settings = parse_text_settings("-R", args.reader_settings)
(continues on next page)

216 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

(continued from previous page)

writer_text_settings = parse_text_settings("-W", args.writer_settings)

This gives me two text settings dictionaries, where the keys and values are both strings. I’ll use the respective
Format object to convert a text setting dictionary into the correct reader and writer arguments dictionary:

input_format = T.get_input_format_from_source(source)
reader_args = input_format.get_reader_args_from_text_settings(reader_text_settings)
output_format = T.get_output_format_from_destination(destination)
writer_args = input_format.get_writer_args_from_text_settings(writer_text_settings)

All that’s left is to pass the reader_args and writer_args to the reader and writer. Since I already have the
input and output format objects, I’ll pass those in as well, rather than have them guess again based on the
source and destination names:

with T.read_molecules(source, input_format, reader_args=reader_args) as reader:
with T.open_molecule_writer(destination, output_format, writer_args=writer_args) as␣

↪→writer:
writer.write_molecules(reader)

6.41.2 Converter with -R and -W support

Here’s how it looks when I put it all together:

I put this into a file named "convert.py"
from __future__ import print_function # Only needed for Python 2
import argparse
import chemfp

parser = argparse.ArgumentParser(
description = "Experiment with -R and -W options"
)

parser.add_argument("--toolkit", metavar="NAME", choices=("rdkit", "openeye", "openbabel
↪→"),

help="toolkit name", default="rdkit")
parser.add_argument("-R", metavar="KEY=VALUE", dest="reader_settings", action="append",

help="specify a reader argument", default=[])
parser.add_argument("-W", metavar="KEY=VALUE", dest="writer_settings", action="append",

help="specify a writer argument", default=[])
parser.add_argument("input_filename", nargs=1, help="input filename")
parser.add_argument("output_filename", nargs=1, help="output filename")

def parse_text_settings(flag, terms):
text_settings = {}
for term in terms:
left, mid, right = term.partition("=")
if mid != "=":
parser.error("%s setting %r must be of the form KEY=VALUE" %

(flag, term))
text_settings[left] = right

return text_settings

(continues on next page)

6.41. argparse text settings to reader and writer args 217

chemfp Documentation, Release 3.4

(continued from previous page)

args = parser.parse_args()

T = chemfp.get_toolkit(args.toolkit)
source = args.input_filename[0]
destination = args.output_filename[0]

input_format = T.get_input_format_from_source(source)
reader_text_settings = parse_text_settings("-R", args.reader_settings)
reader_args = input_format.get_reader_args_from_text_settings(reader_text_settings)

output_format = T.get_output_format_from_destination(destination)
writer_text_settings = parse_text_settings("-W", args.writer_settings)
writer_args = input_format.get_writer_args_from_text_settings(writer_text_settings)

with T.read_molecules(source, input_format, reader_args=reader_args) as reader:
with T.open_molecule_writer(destination, output_format, writer_args=writer_args) as␣

↪→writer:
writer.write_molecules(reader)

Let’s see it in action. I’ll ask RDKit to include all of the bonds in the output SMILES, including the aromatic
bonds, and I’ll ask it to use the space character as the SMILES delimiter:

% python convert.py example.smi example_output.smi --toolkit rdkit -R delimiter=space -W␣
↪→allBondsExplicit=true
% cat example_output.smi
O-c1:c:c:c:c:c:1 phenol
C methane
O=O molecular

The lack of “oxygen” in “molecular oxygen” shows that the input SMILES reader used the “space” delimiter
instead of the default “to-eol” delimiter, just as I requested.

The -R and -W settings can also be qualified. (See Qualified reader and writer parameters names.) I’ll have
Open Babel and OEChem use different delimiter styles to get different results:

% python convert.py example.smi example_ob_output.smi --toolkit openbabel \
-R "openbabel.*.delimiter=to-eol" -R "openeye.*.delimiter=whitespace"

% cat example_ob_output.smi
Oc1ccccc1 phenol
C methane
O=O molecular oxygen
%
% python convert.py example.smi example_oe_output.smi --toolkit openeye \
-R "openbabel.*.delimiter=to-eol" -R "openeye.*.delimiter=whitespace"

% cat example_oe_output.smi
c1ccc(cc1)O phenol
C methane
O=O molecular

218 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

6.41.3 List the reader and writer arguments for the given formats

Finally, it’s difficult to remember all of the available settings for each input and output format. I’ll add a
--list-args command-line option which shows the available options, and for each option show the current
setting, along with an indicator if the current setting is the default value for that format or if the setting
comes from the command-line option.

I need argparse to know about the new option:

parser.add_argument("--list-args", action="store_true",
help="list the available input and output options")

and for the rest I replace the last three lines of the earlier code with:

if args.help_args:
Make a helper function to display the arguments
def report_args(format, msg, default_args, specified_args):

print("%s %s:" % (format.name, msg))
Merge the arguments; command-line overrides defaults;
all_args = default_args.copy()
all_args.update(specified_args)
for name, value in sorted(all_args.items()):

Was the name specified via -R/-W or is it a default?
where = "from command-line" if name in specified_args else "default value"
print(" %s: %r (%s)" % (name, value, where))

report_args(input_format, "reader arguments (-R)",
input_format.get_default_reader_args(), reader_args)

report_args(output_format, "writer arguments (-W)",
output_format.get_default_writer_args(), writer_args)

else:
with T.read_molecules(source, input_format, reader_args=reader_args) as reader:

with T.open_molecule_writer(destination, output_format, writer_args=writer_args) as␣
↪→writer:

writer.write_molecules(reader)

(See Get the default reader_args or writer_args for a format for more details on the default reader and
writer arguments.)

With those changes, the output using the new --list-args is:

% python convert.py example.smi example_output.smi --toolkit rdkit \
? -R delimiter=space -W allBondsExplicit=true --list-args
smi reader arguments (-R):

delimiter: 'space' (from command-line)
has_header: False (default value)
sanitize: True (default value)

smi writer arguments (-W):
allBondsExplicit: True (from command-line)
allHsExplicit: False (default value)
canonical: True (default value)
cxsmiles: False (default value)
delimiter: None (default value)
isomericSmiles: True (default value)
kekuleSmiles: False (default value)

6.41. argparse text settings to reader and writer args 219

chemfp Documentation, Release 3.4

6.42 Creating a specialized record parser

In this section you’ll learn how to make a specialized function to parse an record into a toolkit molecule. This
function is somewhat faster than calling the more general purpose toolkit.parse_id_and_molecule() and
might be used when you need to convert a lot of individual records into a molecule.

Sometimes you need to parse a lot of records which don’t come from a file. For example, substructure search
is typically split into a screening stage based on substructure fingerprints, followed by the atom-by-atom
substructure search. The screening stage returns identifiers and the substructure search takes molecules, so
in between them is code to look up a record based on its id and convert the result to a molecule.

Assuming a database record API where “db[id]” returns the record for a given id, that lookup function
might look like this:

def get_molecules(db, id_iter, toolkit, format, reader_args=None):
for id in id_iter:

record = db[id]
mol = toolkit.parse_molecule(record, format, reader_args=reader_args)
yield mol

(A more complex implementation should handle when the record id doesn’t exist, or can’t be converted into
a molecule.)

This isn’t as fast as it could be. The toolkit.parse_molecule() function validates that the format and
reader_args are correct and figures out the right parameters for the underlying toolkit code. It’s a waste of
time to redo those checks for every single call.

The function also promises that the caller will get a new molecule each time. That promise isn’t needed
for substructure screening. Timing tests with OEChem show that reusing the same molecule is faster than
creating a new one. For example, this OEChem code:

mol = OEGraphMol()
for i in range(100000):

OEParseSmiles(mol, "c1ccccc1Oc1ccccc1")
mol.Clear()

takes about 60% of the time as this code:

for i in range(100000):
mol = OEGraphMol()
OEParseSmiles(mol, "c1ccccc1Oc1ccccc1")

(Bear in mind that this code isn’t doing aromaticity perception, which roughly halves the performance.)

The function toolkit.make_id_and_molecule_parser() returns a specialized function to parse records,
based on the specified parameters:

>>> from chemfp import rdkit_toolkit as T
>>> parser = T.make_id_and_molecule_parser("smi")
>>> parser("c1ccccc1O phenol")
('phenol', <rdkit.Chem.rdchem.Mol object at 0x11254b7b0>)

For RDKit it’s about 10-15% faster to use the specialized function instead of the general purpose toolkit.
parse_molecule():

220 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

>>> from __future__ import print_function # Only needed in Python 2
>>> from chemfp import rdkit_toolkit as T
>>> import time
>>>
>>> smiles = "c1ccccc1Oc1ccccc1"
>>> if 1:
... t1 = time.time()
... for i in range(10000):
... mol = T.parse_molecule(smiles, "smi")
... print("Standard time:", time.time()-t1)
...
Standard time: 1.6667978763580322
>>> parser = T.make_id_and_molecule_parser("smi")
>>> if 1:
... t1 = time.time()
... for i in range(10000):
... id, mol = parser(smiles)
... print("Specialized time:", time.time()-t1)
...
Specialized time: 1.5279979705810547

The toolkit.make_id_and_molecule_parser() function parameters are almost identical to the ones
in toolkit.parse_id_and_molecule(), and with the same meaning. The only difference is that
make_id_and_molecule_parser does not support the record parameter. Instead, it returns a function which
takes the record and returns the (id, toolkit molecule) pair:

>>> from chemfp import rdkit_toolkit
>>> parser = rdkit_toolkit.make_id_and_molecule_parser(
... "smi", reader_args={"delimiter": "whitespace"}, errors="ignore")
>>> parser("c1ccccc1O methane 16.04246")
('methane', <rdkit.Chem.rdchem.Mol object at 0x11254bad0>)
>>> parser("Q q-ane")
[11:33:57] SMILES Parse Error: syntax error while parsing: Q
[11:33:57] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
('q-ane', None)

WARNING: The function that make_id_and_molecule_parser() returns may reuse the underlying molecule
object. Calling the function again may change the molecule returned in previous call:

>>> from chemfp import openeye_toolkit
>>> parser = openeye_toolkit.make_id_and_molecule_parser("smi")
>>> id, mol = parser("C")
>>> mol.NumAtoms()
1
>>>
>>> parser("CCC")
(None, <openeye.oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *'␣
↪→at 0x1151f5030> >)
3

RDKit doesn’t support molecule reuse so rdkit_toolkit returns a new molecule. Open Babel does support
reuse and openbabel_toolkit will reuse the molecule. However, my tests using Open Babel show a barely
detectable performance improvement if I reuse a molecule vs. creating a new one each time. Future versions
of chemfp may change the default, and may add an implementation option to specify if a new molecule

6.42. Creating a specialized record parser 221

chemfp Documentation, Release 3.4

should be returned each time.

In multithreaded code you should create a new parser for each thread.

You might have noticed there is no “make_molecule_parser()”. While it would be useful, it takes time to
develop, test, and document, and it wasn’t useful enough for this release. Let me know if you would like it
in the future.

6.43 Molecule API: Get and set the molecule id

In this section you’ll learn how to get and set the molecule id for a toolkit molecule.

Sometimes you want to get or set toolkit molecule id. This should be pretty rare because the input routines
all support a way to get the identifier in parallel with the molecule, and the output routines all support a
way to specify an identifier.

One exception is if you read molecules from an SD file where you want to use one of the SD tag values as
the identifier rather than the title line at the top of the record. This can occur with the ChEBI data set:

>>> from chemfp import rdkit_toolkit as T
>>> reader = T.read_ids_and_molecules("ChEBI_lite.sdf.gz", id_tag="ChEBI ID")
>>> next(reader)
('CHEBI:90', <rdkit.Chem.rdchem.Mol object at 0x1152648f0>)
>>> id, mol = _
>>> id
'CHEBI:90'
>>> mol
<rdkit.Chem.rdchem.Mol object at 0x1152648f0>
>>> mol.GetProp("_Name")
''
>>> print(reader.location.record[:34])
b'\n Marvin 01211310252D \n'
>>> print(reader.location.record.decode("utf8")[:200])

Marvin 01211310252D

22 24 0 0 0 0 999 V2000
-2.8644 -0.2905 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.8656 -1.1176 0.0000 C 0 0 0 0 0 0 0

Note: the location.record is a byte string. The decode("utf8") step is to make it easier to display under
Python 3.

The above used the RDKit-specific way to get the special “_Name” property and show that it’s the empty
string. The location object for the rdkit_toolkit SDF reader is able to show the raw text for the current
record. In the above I used the location.record to show that the record indeed has no title line.

I might want to tie that id directly to the molecule. For example, a lot of people write code which assume
that the molecule’s name or title is the identifier, because only ChEBI and a scant handful of other databases
use an alternative convention. You can use chemfp to get the appropriate id, then set the correct molecular
property.

If I know it’s an RDKit molecule then I could do:

mol.SetProp("_Name", id)

222 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

This is not portable. OEChem and Open Babel call this a “title”, and use the molecule’s “GetTitle()” and
“SetTitle()” accession methods to get and set it. For those toolkits I would need to do:

mol.SetTitle(id)

As part of chemfp’s limited molecule API, each chemfp toolkit layer implements a portable helper function
named “get_id()” to get the toolkit-appropriate “identifier”, and “set_id()” to set it. The following shows
an example of converting the title of a SMILES record to upper-case, and generating the corresponding
canonical SMILES:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> for toolkit_name in ("rdkit", "openeye", "openbabel"):
... T = chemfp.get_toolkit(toolkit_name)
... mol = T.parse_molecule("c1ccccc1O phenol", "smi")
... T.set_id(mol, T.get_id(mol).upper())
... smiles = T.create_string(mol, "smi")
... print(toolkit_name, "->", repr(smiles))
...
rdkit -> 'Oc1ccccc1 PHENOL\n'
openeye -> 'c1ccc(cc1)O PHENOL\n'
openbabel -> 'Oc1ccccc1 PHENOL\n'

Please note that this could be written more succinctly by passing the id directly to the chemfp.toolkit.
create_string() function, as:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> for toolkit_name in ("rdkit", "openeye", "openbabel"):
... T = chemfp.get_toolkit(toolkit_name)
... id, mol = T.parse_id_and_molecule("c1ccccc1O phenol", "smi")
... smiles = T. create_string(mol, "smi", id=id.upper())
... print(toolkit_name, "->", repr(smiles))
...
rdkit -> 'Oc1ccccc1 PHENOL\n'
openeye -> 'c1ccc(cc1)O PHENOL\n'
openbabel -> 'Oc1ccccc1 PHENOL\n'

Note: I may add support for an optional id_tag, as in:

T.get_id(mol, id_tag="ChEBI id") # Currently not valid chemfp code!

If you think this would be useful, please let me know about your use case.

Finally, if you want the output record as a UTF-8 encoded byte string rather than a Unicode string then
use chemfp.toolkit.create_bytes() instead of create_string().

6.44 Molecule API: Copy a molecule

In this section you’ll learn how to make a copy of a native toolkit molecule.

The chemfp file readers may clear and reuse the underlying toolkit molecule. This is a problem if you want
to load all of the molecules from a data set into memory:

6.44. Molecule API: Copy a molecule 223

chemfp Documentation, Release 3.4

>>> from chemfp import openeye_toolkit
>>> content = "C methane\nO=O oxygen\n"
>>> mols = list(openeye_toolkit.read_molecules_from_string(content, "smi"))
>>> mols
[<oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at 0x109776d20>␣
↪→>,
<oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at 0x109776d20> >
↪→]
>>> mols[0] is mols[1]
True
>>> openeye_toolkit.create_string(mols[0], "smistring")
''
>>> openeye_toolkit.create_string(mols[1], "smistring")
''

You can see that the openeye_toolkit reader reuses the same OEGraphMol, and that the molecule is cleared
at the end of parsing.

In the future there may be a reader_args parameter to tell the reader to make a new molecule for each term.
Until that possible future happens, one work-around is to make a copy of the molecule using the respective
chemfp toolkit’s toolkit.copy_molecule() function:

>>> from chemfp import openeye_toolkit as T
>>> mols = [T.copy_molecule(mol) for mol in openeye_toolkit.read_molecules_from_
↪→string(content, "smi")]
>>> mols
[<oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at 0x10b31e930>␣
↪→>,
<oechem.OEGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at 0x10b31e6f0> >
↪→]
>>> mols[0] is mols[1]
False
>>> T.create_string(mols[0], "smistring")
'C'
>>> T.create_string(mols[1], "smistring")
'O=O'

The various writers may also modify the molecule, for example, by temporarily changing the molecule id or
by reperceiving aromaticity. If this is a problem then you can use the copy_molecule() as a way to work
around it.

This is definitely a work-around solution because it’s currently impossible to know if a copy is needed or
not. The fail-safe solution is to always copy, which will lead to extra copies and slower code when using the
rdkit_toolkit. Other more complicated workarounds might be faster, but the real solution that I hope to
implement in the future is to specify the requested behavior as a parameter.

6.45 Molecule API: Working with SD tags

In this section you’ll learn how to work with SD tag data.

Chemfp supports a limited cross-toolkit API for working with SD tags. You can get a value for a single tag,
the list of all tags and values, and add (and potentially replace) a tag with a given name.

NOTE: This is not a general-purpose SD tag API.

224 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

The two main goals of the SD tag API are to get a tag’s value (most likely for use as an identifier) and to add a
fingerprint or similarity search result to a molecule. This can be done with the toolkit’s toolkit.add_tag()
and toolkit.get_tag() functions:

>>> from chemfp import rdkit_toolkit as T
>>> mol = T.parse_molecule("O=O oxygen", "smi")
>>> T.add_tag(mol, "score", "0.9851")
>>> T.get_tag(mol, "score")
'0.9851'
>>> print(T.create_string(mol, "sdf"))
oxygen

RDKit

2 1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0
M END
> <score>
0.9851

$$$$

If a given tag already exists then add_tag() may replace the existing value, or it may add a second tag with
the same name. (Eg, rdkit_toolkit currently replaces an existing tag while openeye_toolkit creates a second
entry.) Chemfp does no additional error checking, so please be careful about the use of “>” and newline
characters in the tag value.

It is sometimes useful to get all of the tags and corresponding values. The toolkit’s toolkit.
get_tag_pairs() function returns these as a list of 2-element tuples, where the first term is the tag name
and the second is the value:

>>> T.add_tag(mol, "best_id", "ABC00000123")
>>> T.add_tag(mol, "text", "This continues\nacross multiple\nlines")
>>> T.get_tag_pairs(mol)
[('score', '0.9851'), ('best_id', 'ABC00000123'), ('text', 'This continues\nacross␣
↪→multiple\nlines')]
>>> print(T.create_string(mol, "sdf"))
oxygen

RDKit

2 1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0
M END
> <score>
0.9851

> <best_id>
ABC00000123

> <text>
This continues

(continues on next page)

6.45. Molecule API: Working with SD tags 225

chemfp Documentation, Release 3.4

(continued from previous page)

across multiple
lines

$$$$

If there are multiple tags with the same name then get_tag() arbitrarily decides which value to return.
The get_tag_pairs() function includes duplicates if the underlying toolkit supports it.

6.46 Add fingerprints to an SD file using a toolkit

In this section you’ll learn how to add a fingerprint as a tag to the structures in an SD file using a chemistry
toolkit.

The FPS and FPB fingerprint file formats store the record id and the fingerprint, but not the original
structure. The most common way to tie the structure to a fingerprint is to use an SD file, and store the
fingerprint as one of the tag values. (Another is to create a SMILES file variant, also called a CSV file, with
the fingerprint as a new column.)

The following will parse an SD file, and for each molecule it will compute the MACCS fingerprints and
add the base64-encoded fingerprint to the molecule using the unimaginative tag name “FP”. It will save the
results to the file named “example.sdf”, which is equally unimaginative:

import sys
import base64
import chemfp

Portable code to convert a fingerprint to a string
which the underlying toolkits will accept.
#
b64encode returns a byte string, which is fine for
all toolkits under Python 2.
if sys.version_info.major == 2:
b64encode = base64.b64encode

else:
Under Python 3, RDKit and Open Babel accept a byte string.
OEChem does not. Always convert to Unicode.
def b64encode(s):

return base64.b64encode(s).decode("ascii")

Select your toolkit of choice
fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
#fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")
#fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")

T = fptype.toolkit

reader_args = {"rdkit.sdf.removeHs": False}
with T.read_molecules("Compound_099000001_099500000.sdf.gz",

reader_args=reader_args) as reader:
with T.open_molecule_writer("example.sdf") as writer:

for mol in reader:
(continues on next page)

226 Chapter 6. Toolkit API examples

chemfp Documentation, Release 3.4

(continued from previous page)

fp = fptype.compute_fingerprint(mol)
T.add_tag(mol, "FP", b64encode(fp))
writer.write_molecule(mol)

This is a very general purpose solution. It’s easy to change the fingerprint type, or switch the input to a
SMILES file or other supported structure file format.

(Unfortunately, there is no general purpose base64 encoder which works across all toolkits and both Python
2 and Python 3. Hence the complicated code to do the right thing.)

What it doesn’t do is preserve all of the details of the input records. It converts the input record into a
molecule, and back out to a new record, and the intermediate record doesn’t keep all of the details.

For example, if I use OpenEye-MACCS166 and compare the first record of the original with the first record
of the transformed output then the diff comparison is:

2c2
< -OEChem-04292009532D

> -OEChem-06182011512D
221a222,224
> > <FP>
> AAAEAAAAMAABwEBOk+GQU9yga24b
>

This says that the second line changed, and three new lines were added at line 221

The second line contains a date stamp, so this isn’t a big change, and the three new lines are the ones I
requested. This doesn’t look like much of a change, but that’s because OEChem was used to make the
record in the first place. Open Babel and RDKit have their own set of differences from the OEChem output
defaults. For example, RDKit will sort the SD tags alphabetically.

I wanted to compare the original OEChem-based PubChem record to the output record from RDKit. I com-
mented/uncommented the fingerprint names to use RDKit instead of OEChem. When I did this originally
(since fixed), I noticed that the atom and bond counts line changed.

The first problem I noticed, before I fixed it, is that the atom and bond counts line changed. The original
record has 46 atoms and 49 bonds:

46 49 0 1 0 0 0 0 0999 V2000

while the RDKit output said there are only 28 atoms and 31 bonds:

28 31 0 0 1 0 0 0 0 0999 V2000

What happened is that RDKit by default will convert explicit hydrogens to implicit hydrogens as part of
the input process, while OEChem does not.

I can disable that in RDKit using the removeHs reader_arg, which is in the code I showed earlier:

reader_args = {"rdkit.sdf.removeHs": False}

With removeHs disabled, the RDKit atom counts match the original atom counts. There are still a few
differences in the molblock.

• RDKit places a “0” in the obsolete 4th field of the counts line, while OEChem leaves it empty.

6.46. Add fingerprints to an SD file using a toolkit 227

chemfp Documentation, Release 3.4

• RDKit uses the CHG property block and does not include duplicate charge information in the atom
line. The PubChem file only stores charge information in the atom line.

• RDKit leaves the last three fields empty, while PubChem uses 0. These fields are respectively ‘obsolete’,
used for “SSS queries only”, and used for “Reaction, Query”.

That aside, the MACCS fingerprints should be the same, right?

They are not. The RDKit (and Open Babel and CDK) MACCS keys implementations assume that all
hydrogens are implicit. If there are explicit hydrogens then they will likely give a different fingerprint. If
you run the above code using RDKit, with and without removeHs, you’ll see two different values for FP:

AAAEAAAAMAABxABOk+GwU9zhb24f # RDKit, removeHs=False
AAAEAAAAMAABwABOk2GwUdzhZ24f # RDKit, removeHs=True

See MACCS dependency on hydrogens for a more detailed description of the problem.

I’m left with the unfortunate situation where I can’t preserve the explicit hydrogens without affecting the
MACCS fingerprints. I think the right solution is to fix the SMARTS patterns that RDKit and others use
(which is a goal of chemfp’s own RDMACCS fingerprints).

Another solution for this is to use the text_toolkit to preserve the input SDF record syntax, and combine it
with a chemistry toolkit to get the molecule you want.

228 Chapter 6. Toolkit API examples

CHAPTER 7

Text toolkit examples

The text toolkit separates record parsing from chemical parsing. It understands the basic text structure of
SDF and SMILES-based files and records, but not chemistry. It’s designed with the following use cases in
mind:

• add tag data to an input SDF record but keep everything else unchanged. This preserves data which
might be lost by converting to then from a chemical toolkit molecule.

• synchronize operations between multiple toolkits; For example, consider a hybrid fingerprint using both
OEChem and RDKit. The individual RDKit and OEChem SDF readers may get out of synch when on
toolkit can’t parse a record which the other can. In that case, use the text toolkit to read the records
then pass the record to the chemistry toolkit.

• extract tags from an SD file. Chemfp’s sdf2fps uses the text toolkit to get the id and the tag value
which contains the fingerprint.

The text toolkit implements the chemistry toolkit API, except that instead of real molecule objects it uses
a thin wrapper around the text for each wrapper. This chapter uses many of the concepts developed in the
chapter on Toolkit API examples.

7.1 Toolkits may modify the molecular structure

In this section you’ll learn that a chemistry toolkit might change details of a structure record so the input
record and output record have some differences, even though the molecular “essence” is preserved. This
is meant as an example for why you might not want to work through a chemistry toolkit molecule for
everything.

The section Add fingerprints to an SD file using a toolkit gave an example of using a toolkit to read an SD
file, compute a MACCS fingerprint, add the fingerprint as a new SD tag, and save the result to a new SD
file. This is a very common task.

A problem is that toolkits can apply various normalizations, like aromaticity perception, which change atom
and bond aromaticity assignments. RDKit by default will also convert explicit hydrogens into implicit
hydrogens. In that section, the input record had 46 atoms while RDKit generated an output record with 28

229

chemfp Documentation, Release 3.4

atoms. RDKit may also ‘sanitize’ the structures further (for example, convert ‘neutral 5 coordinate Ns with
double bonds to Os to the zwitterionic form’).

While it’s possible to configure RDKit to keep implicit hydrogens, the RDKit MACCS fingerprinter assumes
there are no explicit hydrogens. You would need to make a copy of the molecule, remove the explicit
hydrogens yourself, generate the fingerprint, and then add the fingerprint to the molecule which still has the
explicit hydrogens.

Bear in mind that the number of explicit atoms and bonds is based on the molecular graph model, which is
only one possible representation for the actual chemical molecule. While I said there was a semantic change,
the 46 atom structure and the 28 atom structure are really the same structure, just at different levels of
conceptualization.

7.2 Toolkits may modify SDF syntax

In this section you’ll see that passing a structure file through a chemistry toolkit and back to the same format
will likely make syntax changes to the record. While not as significant as the previous section, it may help
persuade you that there are cases where you want to work with the original record as text rather than as a
molecule.

You will need Compound_099000001_099500000.sdf.gz from PubChem.

I’ll read an SD file to get the first record as a toolkit molecule, save the molecule to SDF format, and compare
the original record with the new one. This is called a round-trip test. Will there be differences?

import chemfp

Select your toolkit of choice
T = chemfp.get_toolkit("openeye")
#T = chemfp.get_toolkit("rdkit")
#T = chemfp.get_toolkit("openbabel")

reader_args = {"rdkit.*.removeHs": False}
with T.read_molecules("Compound_099000001_099500000.sdf.gz",

reader_args=reader_args) as reader:
with T.open_molecule_writer("example.sdf") as writer:

for mol in reader:
writer.write_molecule(mol)
break # only process the first molecule

If I use the “openeye” toolkit and compare its output to the first record of the input then the difference is
trivial:

2c2
< -OEChem-04292009532D

> -OEChem-06182012582D

This difference is shown in the diff utility’s default format. The “2c2” means there was a change in line 2,
and the changed line is also on line 2. The “<” indicates the line in the first file (in this case the original
PubChem file) and the “>” indicates the line in the second file (in this case “example.sdf”). The “---” is
to make it easier for humans to see break between the two files.

But what does that line mean? The “CTfile” (“connection table file”) spec from MDL, err, I mean Accelry,
err, I mean Symyx, err, I mean BIOVIA, gives the full details. The first two characters (both blank here) are

230 Chapter 7. Text toolkit examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
http://en.wikipedia.org/wiki/Diff_utility
http://accelrys.com/products/informatics/cheminformatics/ctfile-formats/no-fee.php

chemfp Documentation, Release 3.4

the user’s initials, the next 8 characters (OpenEye uses “-” to pad out “OEChem”) are the program name.

The next six character are the date, followed by 4 characters for the time. The PubChem record was created
on 29 April 2020 at 09:33 while I did the transformation on 18 June 2020 at 12:58. The last two characters
are the dimensionality; in this case the structure contains 2D coordinates.

PubChem used OEChem to make the file in the first place, so it’s not too suprising that there weren’t any
differences. What about Open Babel? I changed the toolkit to “openbabel” and re-did the comparison. The
first few lines of the diff are:

2c2
< -OEChem-04292009532D

> OpenBabel06182013012D
4c4
< 46 49 0 1 0 0 0 0 0999 V2000

> 46 49 0 0 1 0 0 0 0 0999 V2000

The 2c2 change you know already, and you can see it was a few minutes between when I ran the OEChem
code and the Open Babel code.

The change to line 4 is meaningless. If you look closely you’ll see that OEChem has a blank in column 12
where Open Babel has a “0”. The specification say that this field is obsolete, so I think you can do whatever
you want there.

The next few lines are:

65c65
< 8 9 1 6 0 0 0

> 8 9 1 0 0 0 0
67c67
< 8 29 1 0 0 0 0

> 8 29 1 1 0 0 0

This says that OEChem interprets the bond between atoms 8 and 9 as “6” = “down” stereochemistry, while
Open Babel says it’s not stereo. On the other hand, OEChem interprets the bond bond atoms 8 and 29 as
having no stereochemistry while Open Babel says it has “1” = “up” stereochemistry. Looks to me like two
valid interpretations of the same thing.

The rest of the differences are trivial and semantically meaningless: Open Babel uses two spaces between
the “>” and “<” of a data header line, while OEChem uses one space:

101c101
< > <PUBCHEM_COMPOUND_CID>

> > <PUBCHEM_COMPOUND_CID>
104c104

Finally, I’ll use RDKit for the conversion. By default RDKit removes hydrogens, which would leave the result
with 15 atoms. Unlike Open Babel, that action is configurable. I told RDKit to never remove hydrogens for
any of its supported formats, via the reader_args:

reader_args = {"rdkit.*.removeHs": False}

7.2. Toolkits may modify SDF syntax 231

chemfp Documentation, Release 3.4

(I didn’t actually need the “rdkit.*.” namespace prefix, but the “rdkit” helps as a reminder that this is an
RDKit-specific option.)

There are the familiar changes in the second and fouth lines:

2c2
< -OEChem-04292009532D

> RDKit 2D
4c4
< 46 49 0 1 0 0 0 0 0999 V2000

> 46 49 0 0 1 0 0 0 0 0999 V2000

RDKit doesn’t include the timestamp so leaves that fields blank. (Then again, just how useful is the
timestamp? On the third hand, the chemfp fingerprint formats include a timestamp as part of the meta-
data, so it’s odd that I question having it in another format. On the fourth hand, OEChem supports the
SuppressTimestamps option to disable including the timestamp.)

While I love knowing these sorts of details, none of these (except for the explicit hydrogens) affect the
semantic interpretation. Still, I can think of cases where you want to preserve the original syntax, like if you
have fragile code which expects a “0” at a certain field and will crash if there’s a blank.

7.3 The text toolkit “molecules”

In this section you’ll learn about the molecule-like object used by the text_toolkit.

The text_toolkit implements the standard toolkit API, which means it reads and writes “molecules”. Re-
member that it isn’t really a chemical molecule but more like a thin layer around a molecule record. Internally
these are subclasses of a TextRecord, though I’ll often refer to them as “text molecules” to distinguish them
from the the actual record as a text string.

Every text molecule has an id attribute, which may be None if there is no identifier, and a record attribute
containing the actual record as a string:

>>> from chemfp import text_toolkit
>>> mol = text_toolkit.parse_molecule("c1ccccc1O benzene", "smi")
>>> mol
SmiRecord(id='benzene', record=b'c1ccccc1O benzene', smiles='c1ccccc1O',
encoding='utf8', encoding_errors='strict')
>>> mol.id # a Unicode string
'benzene'
>>> mol.record # a byte string
b'c1ccccc1O benzene'
>>> text_toolkit.create_string(mol, "smistring")
'c1ccccc1O'
>>> text_toolkit.create_string(mol, "smi")
'c1ccccc1O benzene\n'
>>> text_toolkit.create_bytes(mol, "smistring")
b'c1ccccc1O'
>>> text_toolkit.create_bytes(mol, "smistring.zlib")
b'x\x9cK6L\x06\x01C\x7f\x00\x0fh\x03\x04'
>>>
>>> sdf_record = (

(continues on next page)

232 Chapter 7. Text toolkit examples

chemfp Documentation, Release 3.4

(continued from previous page)

... 'methane\n' +

... '\n' +

... '\n' +

... ' 1 0 0 0 0 0 0 0 0 0999 V2000\n' +

... ' 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0\n' +

... 'M END\n' +

... '$$$$\n')
>>>
>>> sdf_mol = text_toolkit.parse_molecule(sdf_record, "sdf")
>>> sdf_mol
SDFRecord(id_bytes=b'methane'(id='methane'),
record=b'methane\n\n\n 1 0 0 0 0 0 0 0 0 0999 V2000\n 0.0 ...',
encoding='utf8', encoding_errors='strict')
>>> sdf_mol.id
'methane'
>>> sdf_mol.record[-20:]
b'0 0 0\nM END\n$$$$\n'

The record is always uncompressed.

Each of the SMILES-based records has its own unique class:

>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "smi")
SmiRecord(id='benzene', record=b'c1ccccc1O benzene',
smiles='c1ccccc1O', encoding='utf8', encoding_errors='strict')
>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "can")
CanRecord(id='benzene', record=b'c1ccccc1O benzene',
smiles='c1ccccc1O', encoding='utf8', encoding_errors='strict')
>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "usm")
UsmRecord(id='benzene', record=b'c1ccccc1O benzene',
smiles='c1ccccc1O', encoding='utf8', encoding_errors='strict')
>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "smistring")
SmiStringRecord(id=None, record=b'c1ccccc1O', smiles='c1ccccc1O')
>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "canstring")
CanStringRecord(id=None, record=b'c1ccccc1O', smiles='c1ccccc1O')
>>> text_toolkit.parse_molecule("c1ccccc1O benzene", "usmstring")
UsmStringRecord(id=None, record=b'c1ccccc1O', smiles='c1ccccc1O')

and for SMILES records you can access the SMILES directly through the smiles attribute:

>>> text_mol = text_toolkit.parse_molecule("C methane", "smistring")
>>> text_mol.smiles
'C'

Each text molecule also has a record_format attribute, which is the format name for the record.

>>> text_mol.record_format
'smistring'
>>> sdf_mol.record_format
'sdf'

The record_format values are “smi”, “can”, …, “usmstring” for the SMILES formats or “sdf” for a file in
SDF format. The record_format will never have a compression suffix.

7.3. The text toolkit “molecules” 233

chemfp Documentation, Release 3.4

Unlike the chemistry-backed toolkits, the text_toolkit has no real understanding of chemistry, only a limited
knowledge of the format structure. It will parse an generate garbage:

>>> text_mol = text_toolkit.parse_molecule("garbage", "smi")
>>> text_toolkit.create_string(text_mol, "smi", id="and trash",
... writer_args={"delimiter": "tab"})
'garbage\tand trash\n'

The encoding and encoding_errors parameters describe the character encoding of the record bytes, and
how to handle errors in converting to or from that encoding. For details see the section Unicode and other
character encoding.

7.4 The text toolkit implements the toolkit API

In this section you’ll learn that the text toolkit is a pretty complete implementation of chemfp’s toolkit
API.

The text toolkit implements all of the standard toolkit API, except that it doesn’t know how to convert
between SMILES and SDF format. Here are some examples:

>>> from __future__ import print_function # Only needed for Python 2
>>> from chemfp import text_toolkit
>>> mol = text_toolkit.parse_molecule("C", "smistring")
>>> text_toolkit.get_id(mol) is None
True
>>> text_toolkit.set_id(mol, u"methane")
>>> text_toolkit.get_id(mol)
'methane'
>>> text_toolkit.create_string(mol, "smi")
'C methane\n'
>>> content = "C methane\nO=O molecular oxygen\n"
>>> with text_toolkit.read_ids_and_molecules_from_string(
... content, "smi") as reader:
... for id, mol in reader:
... print("#%d %r" % (reader.location.recno, id))
...
#1 'methane'
#2 'molecular oxygen'
>>>
>>> writer = text_toolkit.open_molecule_writer("light.sdf")
>>> for mol in text_toolkit.read_molecules("Compound_099000001_099500000.sdf.gz"):
... mass = text_toolkit.get_tag(mol, "PUBCHEM_EXACT_MASS")
... mass = float(mass)
... if mass > 100.0:
... continue
... cid = text_toolkit.get_tag(mol, "PUBCHEM_COMPOUND_CID")
... print("Found", cid, mass)
... writer.write_molecule(mol)
...
Found 99109812 99.068414
Found 99109899 97.052764
Found 99118867 98.073165

(continues on next page)

234 Chapter 7. Text toolkit examples

chemfp Documentation, Release 3.4

(continued from previous page)

Found 99118868 98.073165
Found 99123566 97.089149
Found 99151119 84.057515
Found 99151121 84.057515
Found 99162605 98.073165
Found 99162607 98.073165
>>> writer.close()
>>> for lineno, line in enumerate(open("light.sdf"), 1):
... print(repr(line))
... if lineno == 4:
... break
...
'99109812\n'
' -OEChem-04292009532D\n'
'\n'
' 16 17 0 1 0 0 0 0 0999 V2000\n'

What you can’t do with the text_toolkit is convert from a SMILES-based format to SDF, or vice-versa. If
you try you’ll either get an exception or a meaningless molecule representation.

While you can seemingly convert between the SMILES formats, the text toolkit doesn’t actually modify the
SMILES term, so an input of “[238U]” will have a “canstring” (non-isomeric SMILES) of “[238U]”:

>>> U = text_toolkit.parse_molecule("[235U]", "smistring")
>>> text_toolkit.create_string(U, "canstring")
'[235U]'

I don’t know if I should make this more strict in the future, and prohibit conversion between “smi”, “can”,
and “usm” formats.

7.5 Reading and adding SD tags with the text_toolkit

In this section you’ll learn how to get and set the title line and get and add tag values to an SDF record
when you have the record as a block of text.

There are two ways to get or modify SD tags for an SDFRecord, which is the TextRecord subclass for
files in SDF format. The first is through the standard toolkit API functions chemfp.toolkit.get_tag(),
chemfp.toolkit.get_tag_pairs(), and chemfp.toolkit.add_tag():

>>> from __future__ import print_function # Only needed for Python 2
>>> from chemfp import text_toolkit
>>> content = (
... "methane\n" +
... " RDKit \n" +
... "\n" +
... " 1 0 0 0 0 0 0 0 0 0999 V2000\n" +
... " 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0\n" +
... "M END\n" +
... "$$$$\n")
>>> mol = text_toolkit.parse_molecule(content, "sdf")
>>> text_toolkit.add_tag(mol, "MW", "16.04246")

(continues on next page)

7.5. Reading and adding SD tags with the text_toolkit 235

chemfp Documentation, Release 3.4

(continued from previous page)

>>> new_record = text_toolkit.create_string(mol, "sdf")
>>> print(new_record)
methane

RDKit

1 0 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

M END
> <MW>
16.04246

$$$$

>>> new_mol = text_toolkit.parse_molecule(new_record, "sdf")
>>> text_toolkit.get_tag(new_mol, "MW")
'16.04246'
>>> text_toolkit.get_tag_pairs(new_mol)
[('MW', u'16.04246')]

and the second is to use the corresponding methods of the text molecule: TextRecord.get_tag(),
TextRecord.get_tag_pairs(), and TextRecord.add_tag():

>>> new_mol.get_tag_pairs()
[('MW', u'16.04246')]
>>> new_mol.get_tag("MW")
'16.04246'
>>>
>>> text_toolkit.get_tag_pairs(new_mol)
[('MW', u'16.04246')]
>>> new_mol.get_tag_pairs()
[('MW', u'16.04246')]
>>> new_mol.get_tag("MW")
'16.04246'
>>> new_mol.add_tag("NUM_ATOMS", "5")
>>> print(text_toolkit.create_string(new_mol, "sdf")[-39:])
> <MW>
16.04246

> <NUM_ATOMS>
5

$$$$

Bear in mind that there is no way to delete a tag. This may be added in the future.

7.6 Synchronizing readers from different toolkits through the text
toolkit

In this section you’ll learn how to keep two different toolkit parsers synchronized by using the text toolkit
to parse the records, then pass the record over to each toolkit to convert it to a molecule.

236 Chapter 7. Text toolkit examples

chemfp Documentation, Release 3.4

A structure file may have a couple of records which cannot be parsed by a toolkit, usually due to odd
chemistry definitions. It’s usually fine to skip those records, which is the purpose of the errors="ignore"
setting. (See Handling errors when reading molecules from a string for more information about the errors
parameter.)

Consider the following SMILES file with three lines:

% cat strange.smi
C methane
C--C ethane not for RDKit
CC ethane for everyone

The first and last are valid SMILES, but “C--C” is invalid. However, Open Babel will accept it, and OEChem
will accept it because the default flavor does not add the “Strict” flavor flag. (See OpenEye-specific SMILES
reader_args and writer_args for more information about OEChem flavors). As a result:

>>> from __future__ import print_function # Only needed for Python 2
>>> from chemfp import openeye_toolkit, rdkit_toolkit, openbabel_toolkit
>>> for id, mol in openeye_toolkit.read_ids_and_molecules("strange.smi", errors="ignore
↪→"):
... print("openeye found", repr(id))
...
openeye found 'methane'
openeye found 'ethane not for RDKit'
openeye found 'ethane for everyone'
>>>
>>> for id, mol in rdkit_toolkit.read_ids_and_molecules("strange.smi", errors="ignore"):
... print("rdkit found", repr(id))
...
rdkit found 'methane'
[15:12:30] SMILES Parse Error: syntax error while parsing: C--C
[15:12:30] SMILES Parse Error: Failed parsing SMILES 'C--C' for input: 'C--C'
rdkit found 'ethane for everyone'
>>>
>>> for id, mol in openbabel_toolkit.read_ids_and_molecules("strange.smi", errors="ignore
↪→"):
... print("openbabel found", repr(id))
...
openbabel found 'methane'
openbabel found 'ethane not for RDKit'
openbabel found 'ethane for everyone'

Sometime you want to work with multiple toolkits using the same input molecule. For example, you might
want to compute a hybrid fingerprint, or make a model prediction where the descriptors come from different
toolkits.

To do that, use the text_toolkit.read_ids_and_molecules() to read each record as a text molecule, and
pass the actual record to the toolkit.parse_molecule() for each toolkit to get a molecule. Because I
specifed the “ignore” error handler, the molecule will be None if the record could not be parsed. (See Specify
alternate error behavior for more details.):

.. code-block:: python

from chemfp import openeye_toolkit, rdkit_toolkit, openbabel_toolkit from chemfp import
text_toolkit

7.6. Synchronizing readers from different toolkits through the text toolkit 237

chemfp Documentation, Release 3.4

for id, text_mol in text_toolkit.read_ids_and_molecules(“strange.smi”, errors=”ignore”):

if openeye_toolkit.parse_molecule(text_mol.record, text_mol.record_format , errors=”ignore”):
print(“openeye parsed”, repr(id))

else: print(“openeye could not parse”, repr(id))

if rdkit_toolkit.parse_molecule(text_mol.record, text_mol.record_format , errors=”ignore”):
print(“rdkit parsed”, repr(id))

else: print(“rdkit could not parse”, repr(id))

if openbabel_toolkit.parse_molecule(text_mol.record, text_mol.record_format , errors=”ignore”):
print(“openbabel parsed”, repr(id))

else: print(“openbabel could not parse”, repr(id))

The output from running the above is:

.. code-block:: none

openeye parsed ‘methane’ rdkit parsed ‘methane’ openbabel parsed ‘methane’ openeye parsed
‘ethane not for RDKit’ [15:13:45] SMILES Parse Error: syntax error while parsing: C–C [15:13:45]
SMILES Parse Error: Failed parsing SMILES ‘C–C’ for input: ‘C–C’ rdkit could not parse ‘ethane
not for RDKit’ openbabel parsed ‘ethane not for RDKit’ openeye parsed ‘ethane for everyone’
rdkit parsed ‘ethane for everyone’ openbabel parsed ‘ethane for everyone’

The above works, but there’s a lot of duplicate code, I don’t like the layout for the output, and there’s bit of
extra overhead to re-interpret the parse_molecule() for each call. I’ll make a space-delimited file as output,
and use toolkit.make_id_and_molecule_parser() to create a specialized parser for each available toolkit:

from __future__ import print_function # Only needed for Python 2
import chemfp
from chemfp import text_toolkit

reader = text_toolkit.read_ids_and_molecules("strange.smi")
format = reader.metadata.record_format

column_headers = []
parsers = []
for toolkit_name in ("openeye", "rdkit", "openbabel"):
column_headers.append(toolkit_name)
try:
toolkit = chemfp.get_toolkit(toolkit_name)

except ValueError:
parsers.append(None)

else:
parser = toolkit.make_id_and_molecule_parser(format, errors="ignore")
parsers.append(parser)

column_headers.append("ID")

print(*column_headers, sep="\t") # print the header

for id, text_mol in reader:
columns = []

(continues on next page)

238 Chapter 7. Text toolkit examples

chemfp Documentation, Release 3.4

(continued from previous page)

for parser in parsers:
if parser is None:
columns.append("N/A")

else:
id, mol = parser(text_mol.record)
if mol is not None:
columns.append("Yes")

else:
columns.append("No")

columns.append(id)
print(*columns, sep="\t")

This writes a tab-delimited file to stdout, ready for import into any spreadsheet program:

.. code-block:: none

openeye rdkit openbabel ID Yes Yes Yes methane [15:15:21] SMILES Parse Error: syntax error
while parsing: C–C [15:15:21] SMILES Parse Error: Failed parsing SMILES ‘C–C’ for input:
‘C–C’ Yes No Yes ethane not for RDKit Yes Yes Yes ethane for everyone

(There will also be error messages from RDKit sent to stderr.)

7.7 Add multiple toolkit fingerprints to an SD file

In this section you’ll learn how to use multiple toolkits to generate fingerprints for each molecule in an SD
file, and add the fingerprints results back to the record as new SD tags.

In Add fingerprints to an SD file using a toolkit you learned how to use a toolkit to read a file as molecules,
compute a fingerprint for each molecule, and add the fingerprint to the molecule as an SD tag, and save the
result to a new SD file. The processing pipeline converted the input to a toolkit molecule and out again,
and in doing so changed other parts of the record besides the new SD tag.

Sometimes you want to preserve the input as much as you can. For that case you can use the text reader to
get text molecules, pass each text molecule’s record that to the toolkit to compute the fingerprint, add the
new fingerprint as a tag for the text molecule, and save the result to a file.

I’ll do that one better; I’ll generate fingerprints using multiple toolkit and add all of them to the output
file. Here’s an example of what the end of a new record will look like. Note: although the fingerprints are
actually on one line, I’ve folded the long fingerprints across multiple lines so it doesn’t overflow this page.

> <rdkit512>
3ffef7cefffffffefbfedffbbdffefffbfffffffffbbbffffffffffdfddffdfffffdf7fffeffffe7
feeffffffffffbffef9ffffffd7fffeff6deffff3feffdff

> <rdkit1024>
3ffca78efffdfeecdbfedefbbd97657f8dfbf0f35aba3fff2fff7ffdaddffdfffff9f1befafe3fa7
7eeefbdff7f78bfbcf97fb37996eef67e25ef37f1bcd7db50b76f242efff93baf9d6533b91ebefef
bbdd7ffeefb3bf9bf3abca45d55f7da79df5e6fb96dfc647eccfef67dfbbfb36ad9fecebf53f9acb
f6ca4efc3eeafdff

> <oecircular4>
00000000000000080000000001080000000008000000080800000000000000000000000000000000

(continues on next page)

7.7. Add multiple toolkit fingerprints to an SD file 239

chemfp Documentation, Release 3.4

(continued from previous page)

00000000100000000000000000000000000400000000000080000000000000000000000008002000
00000300000000000040000200100000000000000000000000000000008000010002000000054800
00000000000800000000040000000000200000002800000000000000000000000000000000000000
00000000400000000000000080000000000000000000000000000010001000000000400000000000
00000000008080000000000080000000000010004000000100000020010002200000000001000000
00000000000002021000002000000000000000100000004000000000000000000000000000200080
001080000000100000
10000000000080000000000000000000000000000400000080000000000000000000000000000000
00200000000000000000040000100000000000001000010000000000000200000080000000000001
00000804000008000000000000000000000000000004004000000000000000000000008000000001
20000010000000000100000000200000010000040000000000000010000000800000000000000000
0000000000000000004002000000000000000000000000000000000400000000

> <obecfp2>
00000000001000
00001000002000
000200000000000000000000000000000000004000
00000000800000000000000001000000000000000000000000000000000200000000000000000000
0000400000000000080004000020000000
00028000000000000000000000000000000000
000000000000000000000000000000000000002000
0040000000000000000040
00000080000000000000000000000004000800
000000000000020000000000000000000000008000
0004000000000020000000000000080000
0000000200000000000000000000008000
000800001000000000

$$$$

I’ll break it down into stages. The first is some preamble code to import the modules and configure the input
and output files:

import chemfp

I'll use chemfp's text-based SD parser, so the output SD records
will be identical to the input records, except to append the new
tags at the end of each record.

from chemfp import text_toolkit, bitops

input_filename = "Compound_099000001_099500000.sdf.gz"
output_filename = "output.sdf.gz"

Next is to get the right SDF parser (a function which converts an SDF record into a identifier and a native
toolkit molecule) and fingerprinter (a function which converts a toolkit molecule into a fingerprint) for
each fingerprint type.

The list of tag names and the corresponding fingerprint types.
wanted_fingerprint_types = (

("rdkit512", "RDKit-Fingerprint fpSize=512"),
("rdkit1024", "RDKit-Fingerprint fpSize=1024"),

(continues on next page)

240 Chapter 7. Text toolkit examples

chemfp Documentation, Release 3.4

(continued from previous page)

("oecircular4", "OpenEye-Circular maxradius=4"),
("obecfp2", "OpenBabel-ECFP2"),
)

build_data = [] # I'll use this to build the fingerprint data.
toolkit_sdf_record_parsers = {} # I'll use this to convert an SD record into a molecule.

for output_tag, fingerprint_type_string in wanted_fingerprint_types:
First, get the corresponding fingerprint type.
fingerprint_type = chemfp.get_fingerprint_type(fingerprint_type_string)

Figure out which toolkit to use to parse the SD records.
toolkit = fingerprint_type.toolkit

For each unique toolkit, get a function that turns an SD record into a molecule.
(If multiple fingerprints use the same toolkit then I only
need to parse it once.)
if toolkit.name not in toolkit_sdf_record_parsers:

The "ignore" means to return None on error, rather than raise an exception.
toolkit_sdf_record_parsers[toolkit.name] = toolkit.make_id_and_molecule_parser(

↪→"sdf", errors="ignore")

Get a function which turns a molecule into a fingerprint.
fingerprinter = fingerprint_type.make_fingerprinter()

Store this information for record processing.
build_data.append((output_tag, toolkit.name, fingerprinter))

Finally, use the text toolkit to read text molecules for each record, then use the SDF parser to get the id
and molecule from the record text, then the fingerprinter to get the fingerprint from the molecule:

Use the text toolkit to read and write SDF records.
with text_toolkit.open_molecule_writer(output_filename) as writer:

for text_mol in text_toolkit.read_molecules(input_filename):

The text "molecule" .record is the actual text.
record = text_mol.record

Make the fingerprints for each record and append the tag.

For extra performance, cache parsed molecules for future use.
toolkit_mols = {}

for output_tag, toolkit_name, fingerprinter in build_data:
There's no need to reparse the record if I've seen it before.
if toolkit_name in toolkit_mols:

toolkit_mol = toolkit_mols[toolkit_name]
else:

Parse the record and save the molecule for later.
toolkit_id, toolkit_mol = toolkit_sdf_record_parsers[toolkit_

↪→name](record)
toolkit_mols[toolkit_name] = toolkit_mol

(continues on next page)

7.7. Add multiple toolkit fingerprints to an SD file 241

chemfp Documentation, Release 3.4

(continued from previous page)

if toolkit_mol is None:
There's no molecule, so no fingerprint. Save the empty string.
text_mol.add_tag(output_tag, "")

else:
Make a fingeprint and save it to the tag as a hex-encoded string.
fp = fingerprinter(toolkit_mol)
text_mol.add_tag(output_tag, bitops.hex_encode(fp))

Write the text molecule to the output stream.
writer.write_molecule(text_mol)

7.8 Text toolkit and SDF files

In this section you’ll learn about the specialized SDF reader API to read SDF records and tag values directly
instead of through a text record.

The text toolkit support for the toolkit API lets you use the same code for SDF and SMILES, and switch
between text-based and molecule-based parsers. Genericness comes at a cost. The TextRecord class is a
wrapper around the actual record, so at the least there is some overhead for creating a wrapper for each
record.

The text toolkit has special support for reading SDF records as raw byte strings, which are not wrapped in
any object. There several SDF reader variations depending on if you want to read from a file or a string,
and if you want to read the record, the (id, record) pair, or an (id, tag value) pair. These functions are:

• read_sdf_records() - iterate over the records in an SD file

• read_sdf_records_from_string() - the same, but from a string

• read_sdf_ids_and_records() - iterate over the (id, record string) pairs from an SD file

• read_sdf_ids_and_records_from_string() - the same, but from a string

• read_sdf_ids_and_values() - iterator over the (id, value) pairs from an SD file

• read_sdf_ids_and_values_from_string() - the same, but from a string

(Note: while I write this as (id, value), those are just labels. By default it returns (SD title, SD title) pairs,
or you can specify an alternate id_tag and value_tag to get the pairs you want.)

There are also special functions to work with the tag data and title of an SDF record, which take the record
string as input:

• get_sdf_tag() - get a named tag from an SDF record

• add_sdf_tag() - return a new SDF record with the new tag and value at the end of the tag block

• get_sdf_tag_pairs() - return a list of (tag name, tag value) pairs

• get_sdf_id() - return the first line of the SDF record

• set_sdf_id() - return a new SDF record with the new title line

The next few sections will cover some examples of how to use these specialized functions.

242 Chapter 7. Text toolkit examples

chemfp Documentation, Release 3.4

7.9 Read id and tag value pairs from an SD file

In this section you’ll learn how read the (id, tag value) for each record in an SD file using a specialized SDF
reader. You will need Compound_099000001_099500000.sdf.gz from PubChem.

The specialized SDF readers are faster than the more generic text_toolkit support for the toolkit API. As an
example, I’ll extract the identifer and molecular weight field from a PubChem file using the (slower) chemfp
toolkit API:

from __future__ import print_function # Only needed for Python 2
from chemfp import text_toolkit

filename = "Compound_099000001_099500000.sdf.gz"
with text_toolkit.read_ids_and_molecules(filename) as reader:

for id, text_mol in reader:
mw = text_mol.get_tag("PUBCHEM_EXACT_MASS")
print(id, mw)

Next I’ll extract it using the (faster) read_sdf_ids_and_values() function, which returns an iterator of the
(id, tag value) pairs. Just like with toolkit.read_ids_and_molecules(), by default the id is the title line
of the SD record, or I can use the id_tag parameter to get it from one of the SD tags. The value_tag has the
same meaning; by default the value is the record’s title, or I can specify an alternate tag name containing
the value to use:

from __future__ import print_function # Only needed for Python 2
from chemfp import text_toolkit

filename = "Compound_099000001_099500000.sdf.gz"
with text_toolkit.read_sdf_ids_and_values(filename, value_tag="PUBCHEM_EXACT_MASS") as␣
↪→reader:

for id, mw in reader:
print(id, mw)

Both of these generate output starting with:

99000039 374.13789
99000230 449.162057
99002251 335.126991
99003537 374.210661
99003538 374.210661
99005028 315.183444
99005031 315.183444

My timings using the larger file Compound_145500001_146000000.sdf.gz show that the first, generic im-
plementation takes 14.0 seconds while the second, specialized implementation takes 10.3 seconds, which is
about 25% faster, which would save a lot of time when parsing all of PubChem. (The difference is even
larger - nearly 50% faster! - without the gzip overhead.) That’s why the sdf2fps command-line tool uses this
function to extract the ids and fingerprint values from PubChem files.

7.10 Extract the id and atom and bond counts from an SD file

In this section you’ll use a specialized SDF reader iterate over the records of an SD file. You will need
Compound_099000001_099500000.sdf.gz from PubChem.

7.9. Read id and tag value pairs from an SD file 243

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

The “records” returned by read_sdf_records(), read_sdf_records_from_string(),
read_sdf_ids_and_records(), and read_sdf_ids_and_records_from_string() are the actual record
content as a string, and not wrapped in a TextRecord or other class.

For example, the following will read each record from an SD file and use a regular expression to extract the
title line, the number of atoms from the first 3 characters of line 4, and the number of bonds as the second
3 characters of line 4:

from __future__ import print_function # Only needed for Python 2
from chemfp import text_toolkit
import re

pat = re.compile(br"(.*)\n.*\n.*\n(...)(...)")

filename = "Compound_099000001_099500000.sdf.gz"
for record in text_toolkit.read_sdf_records(filename):
m = pat.match(record)
id = m.group(1).decode("utf8")
num_atoms = int(m.group(2))
num_bonds = int(m.group(3))
print(id, num_atoms, num_bonds)

The output starts:

99000039 46 49
99000230 58 60
99002251 42 43
99003537 54 57
99003538 54 57
99005028 48 49
99005031 48 49
99006292 56 58

(Bear in mind that there may also be implicit hydrogens, so unless you know that all hydrogens are explicit
or implicit, these numbers may only be roughly useful.)

7.10.1 Records are byte strings

The example code, while short, is still a bit tricky. The reader returns the SD records as byte strings, not
Unicode strings. Why? First and foremost, using Python to read bytes from a file is significantly faster than
reading Unicode. If all you care about is reading a couple of fields from the record then it’s faster to work
with bytes and convert only those fields.

Second, this is a low-level API meant to give the actual byte representation of the data. Among other things,
you should be able to know exactly where the record is located in the file. You can even do things like handle
mixed encodings, where one tag value is UTF-8 encoded and another is Latin-1 encoded and cannot be read
as a value UTF-8.

Python 3 makes a strong distinction between a byte string and a Unicode string. For Python 3, because the
record a byte string, you’ll have to use a byte-based regular expression to parse it, as in:

pat = re.compile(br"(.*)\n.*\n.*\n(...)(...)")

You’ll also have to convert the title bytes to Unicode if you want to print the result, as in:

244 Chapter 7. Text toolkit examples

chemfp Documentation, Release 3.4

id = m.group(1).decode("utf8")

Thankfully, int() knows how to read the ASCII digits from a byte string, so I didn’t have to do extra work
there.

7.11 SDF-specific parser parameters

In this section you’ll learn that the specialized SDF readers support the standard errors and location , and
have a few special parameters of their own. You will need Compound_099000001_099500000.sdf.gz from
PubChem.

All six of the read_sdf_* functions support the same errors and location parameters as the standard toolkit
API, with the same meaning. For example, the following shows where each record is located in the uncom-
pressed file:

from __future__ import print_function # Only needed for Python 2
from chemfp import text_toolkit

filename = "Compound_099000001_099500000.sdf.gz"
with text_toolkit.read_sdf_ids_and_records(filename) as reader:
loc = reader.location
for id, record in reader:

start_byte, end_byte = loc.offsets
print("%s at line %d (bytes %d-%d)" % (id, loc.lineno, start_byte, end_byte))

The output starts:

.. code-block:: none

99000039 at line 1 (bytes 0-6709) 99000230 at line 223 (bytes 6709-14560) 99002251 at line 462
(bytes 14560-20689) 99003537 at line 668 (bytes 20689-28115) 99003538 at line 909 (bytes 28115-
35540) 99005028 at line 1150 (bytes 35540-42315)

See Handling errors when reading molecules from a string for more information about the errors parameter,
and Location information: record position and content for a description of the how to use a Location to the
record’s first line number and start/end offsets in the file.

The six functions do not have a format option, because the format must be “sdf” or “sdf.gz”. Instead, there
is a compression parameter. The default of None selects the compression type based on the filename, if the
filename is available, or assumes the input is uncompressed. Use “gz” if the input is gzip’ed, “zst” if the
input use Zstandard compression (and the zstandard Python package is available) and “none” or “” if the
input is uncompressed.

The block_size is a tunable parameter, with a default value of 320 KB. The underlying reader reads a block
of text then tries to extract records. When it gets to the end of a block, it reads a new block, and prepends
the remaining part of the old block to the new one before looking for new records.

For performance reasons, the block_size should be several times larger than the largest record. During error
recovery, the reader will read up to 320 KB or 5*block_size, whichever is larger, in order to find the next
“$$$$” line and resynchronize.

7.11. SDF-specific parser parameters 245

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

7.12 Working with SD records as strings

In this section you’ll learn about the helper functions to work with SD record id and tag data when the SD
record is a string. You will need Compound_099000001_099500000.sdf.gz from PubChem.

I’ll use one of the specialized SD file readers, read_sdf_records(), to get the first record from an SD file:

.. code-block:: pycon

>>> from __future__ import print_function # Only needed for Python 2
>>> from chemfp import text_toolkit
>>> record = next(text_toolkit.read_sdf_records("Compound_099000001_099500000.
↪→sdf.gz"))
>>> print(record[:73])
b'99000039\n -OEChem-04292009532D\n\n 46 49 0 1 0 0 0 0 0999 V2000\n
↪→'
>>> print(record.decode("utf8")[:110])
99000039
-OEChem-04292009532D

46 49 0 1 0 0 0 0 0999 V2000 7.8451 3.0179 0.0000 O 0

I can use get_sdf_tag() and get_sdf_tag_pairs() to get information about the tags in the record:

.. code-block:: pycon

>>> for tag_name, tag_value in text_toolkit.get_sdf_tag_pairs(record):
... print(tag_name, "=", repr(tag_value[:40]))
...
b'PUBCHEM_COMPOUND_CID' = b'99000039'
b'PUBCHEM_COMPOUND_CANONICALIZED' = b'1'
b'PUBCHEM_CACTVS_COMPLEXITY' = b'611'
b'PUBCHEM_CACTVS_HBOND_ACCEPTOR' = b'4'

...
b'PUBCHEM_CACTVS_TAUTO_COUNT' = b'-1'
b'PUBCHEM_COORDINATE_TYPE' = b'1\n5\n255'
b'PUBCHEM_BONDANNOTATIONS' = b'12 13 8\n12 17 8\n13 18 8\n16 19 8\n'
>>> text_toolkit.get_sdf_tag(record, "PUBCHEM_IUPAC_OPENEYE_NAME")
u'2-(2-hydroxyethylsulfanylmethyl)-4-nitro-phenol'

or use add_sdf_tag() to create a new record with a given tag and value added to the end of the tag block:

>>> print(record[-210:].decode("utf8"))
> <PUBCHEM_BONDANNOTATIONS>
12 13 8
12 17 8
13 18 8
16 19 8
16 23 8
17 20 8
18 21 8
19 22 8
19 24 8

(continues on next page)

246 Chapter 7. Text toolkit examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.4

(continued from previous page)

20 21 8
22 25 8
23 26 8
24 27 8
25 26 8
27 28 8
7 22 8
7 28 8
8 9 6

$$$$

>>> new_record = text_toolkit.add_sdf_tag(record, b"VOLUME", b"123.45")
>>> print(new_record[-229:].decode("utf8"))
> <PUBCHEM_BONDANNOTATIONS>
12 13 8
12 17 8
13 18 8
16 19 8
16 23 8
17 20 8
18 21 8
19 22 8
19 24 8
20 21 8
22 25 8
23 26 8
24 27 8
25 26 8
27 28 8
7 22 8
7 28 8
8 9 6

> <VOLUME>
123.45

$$$$

I can also get the title line of the SD record using get_sdf_id():

>>> text_toolkit.get_sdf_id(record)
b'99000039'

or create a new string which is the old string with the title line replaced by a new value:

>>> new_record = text_toolkit.set_sdf_id(record, b"987ZYX")
>>> text_toolkit.get_sdf_id(new_record)
b'987ZYX'

Note that I used byte strings, like b"VOLUME" and b"987ZYX". In general the values must be of the same
string type as the record. On the flip side, if you have a Unicode record then you must pass in Unicode
strings as values:

7.12. Working with SD records as strings 247

chemfp Documentation, Release 3.4

>>> unicode_record = record.decode("utf8")
>>> new_record = text_toolkit.set_sdf_id(unicode_record, u"Hello")
>>> new_record[:6]
'Hello\n'

7.13 Unicode and other character encoding

In this section you’ll learn a bit about how the text toolkit deals with different character encodings. This is
a hard topic and I won’t cover it in full details. If you have a problem with Unicode encodings (and hopefuly
a support contract) then contact me and I’ll help that way.

The SDF format is 8-bit clean. The specification itself uses ASCII but fields like the title, the tag name,
and the tag value can contain nearly any byte value. (Some values like newline and ‘<’ and ‘>’ in the tag
name, have special meaning and must not be used.)

Unfortunately, different software handle those non-ASCII values differently. An older Unix system might
use the Latin-1 character set, which is able to handle many European and some non-European languages,
but doesn’t have the Euro currency symbol. Microsoft Windows code page 1252 is effectively a superset of
Latin-1, with the Euro symbol and a several other additional symbols.

There are of course many other symbols. The consensus for new systems is to use UTF-8 encoded Unicode,
which is compatible with 8-bit clean ASCII and can handle most of the world’s languages, plus a large
number of symbols. This encoding may use one, two, or more bytes to represent each symbol.

The Python3 bindings of OpenEye, RDKit, and Open Babel’s have all decided to interpret SD files as UTF-8
encoded. This consensus is great … so long as your files are also compatible with UTF-8. But what if they
aren’t? What if you have to read Latin-1 encoded file, or worse, a file where different fields have multiple
encodings?

To demonstrate the problem, I’ll construct a problematic file for β-methylphenethylamine, with an experi-
mental melting point of 140-142°C, stored in a Latin-1 encoded SD file. For now I’ll use use ‘Beta’ for the
name, and ‘DEGREE’ for the temperature, as placeholders for the two non-ASCII characters.

>>> from __future__ import print_function # Only needed for Python 2
>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("NCC(c1ccccc1)C", "smi")
>>> T.set_id(mol, "Beta-methylphenethylamine")
>>> T.add_tag(mol, "MP", "140-142DEGREEC")
>>> unicode_record = T.create_string(mol, "sdf")
>>> print(unicode_record)
Beta-methylphenethylamine

RDKit

10 10 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

(continues on next page)

248 Chapter 7. Text toolkit examples

https://en.wikipedia.org/wiki/8-bit_clean

chemfp Documentation, Release 3.4

(continued from previous page)

0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0
2 3 1 0
3 4 1 0
4 5 2 0
5 6 1 0
6 7 2 0
7 8 1 0
8 9 2 0
3 10 1 0
9 4 1 0

M END
> <MP>
140-142DEGREEC

$$$$

Next, I’ll replace the ‘DEGREE’ with the corresponding Unicode characters. (I’ll use the long Unicode name
to be explicit.)

>>> unicode_record = unicode_record.replace(u"DEGREE", u"\N{DEGREE SIGN}")
>>> print(unicode_record)
Beta-methylphenethylamine

RDKit

10 10 0 0 0 0 0 0 0 0999 V2000
....

M END
> <MP>
140-142°C

$$$$

Finally, I’ll save it to the file “latin1.sdf”, using the Latin-1 encoding:

>>> open("latin1.sdf", "wb").write(unicode_record.encode("latin1"))
948

(The “948” indicates that 948 bytes were written to the file.)

This is not valid UTF-8. In my terminal, the MP tag value looks like:

> <MP>
140-142�C

where the “�” is the special symbol for REPLACEMENT CHARACTER, meaning that the actual character
cannot be shown.

What happens if I read the file using each of the native toolkit APIs? First, OEChem under both Python
2.7 and Python 3.8:

>>> from openeye.oechem import *
>>> ifs = oemolistream("latin1.sdf")
>>> mol = OEGraphMol()

(continues on next page)

7.13. Unicode and other character encoding 249

https://en.wikipedia.org/wiki/Specials_(Unicode_block)#Replacement_character

chemfp Documentation, Release 3.4

(continued from previous page)

>>> OEReadMolecule(ifs, mol)
True
>>> OEGetSDData(mol, "MP") # OEChem on Python 2.7
'140-142\xb0C'

>>> OEGetSDData(mol, "MP") # OEChem on Python 3.8
'140-142\udcb0C'

Remember, OEGetSDData() on Python 2.7 returns byte strings, and you’ll need to decode that string
manually to get the degree symbol. While OEGetSDData() on Python 3.8 returns Unicode strings, but the
byte “\xb0” is not a valid UTF-8 encoding. Instead, OEChem uses the Unicode codepoint “\udcb0”. This
is a surrogate for the actual character, and something I don’t fully understand. Various sources say this is
a UTF-16 behavior which isn’t correct UTF-8. Python doesn’t like it:

>>> print('140-142\udcb0C')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

UnicodeEncodeError: 'utf-8' codec can't encode character '\udcb0' in position 7:␣
↪→surrogates not allowed

Next, Open Babel under both Python 2.7 and Python 3.6:

>>> from openbabel import openbabel as ob
>>> conv = ob.OBConversion()
>>> mol = ob.OBMol()
>>> conv.ReadFile(mol, "latin1.sdf")
True
>>> mol.GetData("MP").GetValue() # Open Babel on Python 2.7
'140-142\xb0C'

>>> mol.GetData("MP").GetValue() # Open Babel on Python 3.8
'140-142\udcb0C'

Open Babel gives exactly the same results as OEChem.

Finally, RDKit:

>>> from rdkit import Chem
>>> supplier = Chem.ForwardSDMolSupplier("latin1.sdf")
>>> mol = next(supplier)
>>> mol.GetProp("MP") # RDKit on Python 2.7
'140-142\xb0C'

>>> mol.GetProp("MP") # RDKit on Python 3.8
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb0 in position 7: invalid start␣
↪→byte

RDKit doesn’t give a surrogate value for the illegal UTF-8 character. Instead, it complains. Which also
means there is no way to get that data from Python.

What do you do if you have to read a Latin-1 encoded SD file? One solution is to use an external tool like
iconv to translate the file to UTF8.

250 Chapter 7. Text toolkit examples

https://en.wikipedia.org/wiki/Iconv

chemfp Documentation, Release 3.4

% iconv -f latin1 -t utf-8 < latin1.sdf > utf8.sdf

Another is to use Python to convert the entire file from Latin-1 to UTF8 then pass the transcoded contents
to the toolkit:

>>> content = open("latin1.sdf", "rb").read()
>>> content = content.decode("latin1").encode("utf8")
>>>
>>> from __future__ import print_function # Only needed for Python 2
>>> import chemfp
>>> for tk in ("openbabel", "openeye", "rdkit"):
... T = chemfp.get_toolkit(tk)
... for mol in T.read_molecules_from_string(content, "sdf"):
... print(tk, T.get_tag(mol, "MP"))
openbabel 140-142°C
openeye 140-142°C
rdkit 140-142°C

But if all you want is some of the tag data values, and not the molecule, then you can ask the text_toolkit
to read the record as a “latin1” encoded file:

>>> from chemfp import text_toolkit
>>> for mol in text_toolkit.read_molecules("latin1.sdf", encoding="latin1"):
... print(mol.get_tag("MP"))
...
140-142°C

The content is converted on-demand, that is, only when get_id() or get_tag() are called. The
text_toolkit’s “molecule” stores the encoding so it knows how to decode the fields:

>>> mol.encoding
'latin1'

By the way, if you omit the ‘encoding=”latin1”’ parameter then you’ll get an exception:

>>> for mol in text_toolkit.read_molecules("latin1.sdf"):
... print(mol.get_tag("MP"))
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "chemfp/_text_toolkit.py", line 209, in get_tag

return get_sdf_record_tag(self.record, tag, self.encoding, self.encoding_errors)
File "chemfp/_text_toolkit.py", line 1445, in get_sdf_record_tag

return value.decode(encoding, encoding_errors)
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb0 in position 7: invalid start␣
↪→byte

7.14 Mixed encodings and raw bytes

In this section you’ll learn how to get access to the id and tag data as byte strings rather than Unicode
strings. This might be used if you have a perverse file which uses multiple encodings. If you run into that
case, let me know - I’ll give you a sympathy prize for having to deal with it.

7.14. Mixed encodings and raw bytes 251

chemfp Documentation, Release 3.4

In the previous section you learned a few ways to read an Latin-1 encoded SD file. What happens if the title
line contains an id which is UTF-8 encoded while the tag data contains a Latin-1 encoded value? (Or if you
have to deal with a ‘clever’ programmer who put in semi-binary data into a data field. Because that’s the
sort of thing we clever programmers sometimes do.)

The techniques I mentioned in that previous section won’t work because they assume the entire file has the
same encoding.

Instead, use the text_toolkit to read the file, but access it through the byte API rather than the string API.

I need an example file. I’ll start with the “latin1.sdf” file I created for the previous section, which uses a
Latin-1 encoded degree symbol in the “MP” tag data. I’ll modify it so the “Beta” in the title line is replaced
by the UTF-8 encoded “β” character.

>>> content = open("latin1.sdf", "rb").read()
>>> mixed_content = content.replace(b"Beta", u"\N{GREEK SMALL LETTER BETA}".encode("utf8
↪→"))
>>> open("mixed.sdf", "wb").write(mixed_content)
946

On a UTF-8 terminal the title line and the MP tag data line are respectively:

On a Latin-1 terminal they are:

How do I get their “real” values? I’ll use the text_toolkit to read the first record from the file:

>>> from chemfp import text_toolkit
>>> mol = next(text_toolkit.read_molecules("mixed.sdf"))
>>> mol
SDFRecord(id_bytes=b'\xce\xb2-methylphenethylamine'(id='β-methylphenethylamine'),
record=b'\xce\xb2-methylphenethylamine\n RDKit \n\n 10 10 0 ...',
encoding='utf8', encoding_errors='strict')

The title line is in utf8 so that’s not a problem

>>> print(mol.id)
β-methylphenethylamine

But I won’t be able to read the “MP” field because it’s not UTF-8 encoded:

>>> mol.get_tag("MP")
Traceback (most recent call last):

...
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb0 in position 7: invalid start␣
↪→byte

Instead, I’ll use get_tag_as_bytes() to get the underlying bytes for the named tag, rather than as converted
to a Unicode string:

>>> mol.get_tag_as_bytes(b"MP")
'140-142\xb0C'

Once I have the bytes, I can decode them as Latin-1:

>>> print(mol.get_tag_as_bytes(b"MP").decode("latin1"))
140-142°C

252 Chapter 7. Text toolkit examples

chemfp Documentation, Release 3.4

Note that this function requires the tag name be the byte string which is found in the file. A Unicode name
(which is the default string type under Python 3) will raise an exception:

>>> mol.get_tag_as_bytes(u"MP")
Traceback (most recent call last):

...
ValueError: tag must be a byte string or None

Use method get_tag_pairs_as_bytes() to get the list of all (tag, data) pairs, where both the tag and data
are return as byte strings.

>>> mol.get_tag_pairs_as_bytes()
[(b'MP', b'140-142\xb0C')]

Finally, use id_bytes to get the raw bytes for the identifier:

>>> mol.id_bytes
b'\xce\xb2-methylphenethylamine'

For example, if I read the file as Latin-1 then the Unicode id “MP” tag be what I expected, the id won’t be
correct. Instead, I can get the id_bytes and decode it manually as UTF-8:

>>> mol2 = next(text_toolkit.read_molecules("mixed.sdf", encoding="latin1"))
>>> print(mol2.get_tag("MP"))
140-142°C
>>> mol2.id
'Î2-methylphenethylamine'
>>>
>>> print(mol2.id_bytes.decode("utf8"))
β-methylphenethylamine

7.14. Mixed encodings and raw bytes 253

chemfp Documentation, Release 3.4

254 Chapter 7. Text toolkit examples

CHAPTER 8

chemfp API

This chapter contains the docstrings for the public portion of the chemfp API.

8.1 chemfp top-level API

The following functions and classes are in the top-level chemfp module.

8.1.1 is_licensed

chemfp.is_licensed()
Return True if the chemfp license is valid, otherwise return False.

Returns True or False

New in chemfp 3.2.1.

8.1.2 get_license_date

chemfp.get_license_date()
Return expiration date as a 3-element tuple in the form (year, month, day).

If the license key is not found or does not pass the security check then the function returns None. If
this version of chemfp does not need a license key then it returns (9999, 12, 25).

Returns a 3-element tuple or None

New in chemfp 3.2.1.

255

chemfp Documentation, Release 3.4

8.1.3 open

chemfp.open(source, format=None, location=None)
Read fingerprints from a fingerprint file

Read fingerprints from source, using the given format. If source is a string then it is treated as a
filename. If source is None then fingerprints are read from stdin. Otherwise, source must be a Python
file object supporting the read and readline methods.

If format is None then the fingerprint file format and compression type are derived from the source
filename, or from the name attribute of the source file object. If the source is None then the stdin is
assumed to be uncompressed data in “fps” format.

The supported format strings are:

• “fps”, “fps.gz”, or “fps.zst” for fingerprints in FPS format

• “fpb”, “fpb.gz” or “fpb.zst” for fingerprints in FPB format

The optional location is a chemfp.io.Location instance. It will only be used if the source is in FPS
format.

If the source is in FPS format then open will return a chemfp.fps_io.FPSReader, which will use the
location if specified.

If the source is in FPB format then open will return a chemfp.arena.FingerprintArena and the
location will not be used.

Here’s an example of printing the contents of the file:

from chemfp.bitops import hex_encode
reader = chemfp.open("example.fps.gz")
for id, fp in reader:

print(id, hex_encode(fp))

Parameters

• source (A filename string, a file object, or None) – The fingerprint source.

• format (string, or None) – The file format and optional compression.

Returns a chemfp.fps_io.FPSReader or chemfp.arena.FingerprintArena

8.1.4 load_fingerprints

chemfp.load_fingerprints(reader, metadata=None, reorder=True, alignment=None, for-
mat=None)

Load all of the fingerprints into an in-memory FingerprintArena data structure

The function reads all of the fingerprints and identifers from reader and stores them into an in-memory
chemfp.arena.FingerprintArena data structure which supports fast similarity searches.

If reader is a string or has a read attribute then it will be passed to the chemfp.open() function
and the result used as the reader. If that returns a FingerprintArena then the reorder and alignment
parameters are ignored and the arena returned.

If reader is a FingerprintArena then the reorder and alignment parameters are ignored. If metadata
is None then the input reader is returned without modifications, otherwise a new FingerprintArena is
created, whose metadata attribue is metadata.

256 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

Otherwise the reader or the result of opening the file must be an iterator which returns (id, fingerprint)
pairs. These will be used to create a new arena.

metadata specifies the metadata for all returned arenas. If not given the default comes from the source
file or from reader.metadata.

The loader may reorder the fingerprints for better search performance. To prevent ordering, use
reorder=False. The reorder parameter is ignored if the reader is an arena or FPB file.

The alignment option specifies the alignment data alignment and padding size for each fingerprint. A
value of 8 means that each fingerprint will start on a 8 byte alignment, and use storage space which
a multiple of 8 bytes long. The default value of None will determine the best alignment based on the
fingerprint size and available popcount methods. This parameter is ignored if the reader is an arena
or FPB file.

Parameters

• reader (a string, file object, or (id, fingerprint) iterator) – An iter-
ator over (id, fingerprint) pairs

• metadata (Metadata) – The metadata for the arena, if other than reader.metadata

• reorder (True or False) – Specify if fingerprints should be reordered for better
performance

• alignment (a positive integer, or None) – Alignment size in bytes (both data
alignment and padding); None autoselects the best alignment.

• format (None, "fps", "fps.gz", "fps.zst", "fpb", "fpb.gz" or "fpb.
zst") – The file format name if the reader is a string

Returns chemfp.arena.FingerprintArena

8.1.5 read_molecule_fingerprints

chemfp.read_molecule_fingerprints(type, source=None, format=None, id_tag=None,
reader_args=None, errors=”strict”)

Read structures from source and return the corresponding ids and fingerprints

This returns an chemfp.fps_io.FPSReader which can be iterated over to get the id and fingerprint
for each read structure record. The fingerprint generated depends on the value of type. Structures are
read from source, which can either be the structure filename, or None to read from stdin.

type contains the information about how to turn a structure into a fingerprint. It can be a string or
a metadata instance. String values look like OpenBabel-FP2/1, OpenEye-Path, and OpenEye-Path/
1 min_bonds=0 max_bonds=5 atype=DefaultAtom btype=DefaultBond. Default values are used for
unspecified parameters. Use a Metadata instance with type and aromaticity values set in order to pass
aromaticity information to OpenEye.

If format is None then the structure file format and compression are determined by the filename’s
extension(s), defaulting to uncompressed SMILES if that is not possible. Otherwise format may be
“smi” or “sdf” optionally followed by “.gz” or “.bz2” to indicate compression. The OpenBabel and
OpenEye toolkits also support additional formats.

If id_tag is None, then the record id is based on the title field for the given format. If the input format
is “sdf” then id_tag specifies the tag field containing the identifier. (Only the first line is used for
multi-line values.) For example, ChEBI omits the title from the SD files and stores the id after the “>
<ChEBI ID>” line. In that case, use id_tag = "ChEBI ID".

The reader_args is a dictionary with additional structure reader parameters. The parameters depend
on the toolkit and the format. Unknown parameters are ignored.

8.1. chemfp top-level API 257

chemfp Documentation, Release 3.4

errors specifies how to handle errors. The value “strict” raises an exception if there are any detected
errors. The value “report” sends an error message to stderr and skips to the next record. The value
“ignore” skips to the next record.

Here is an example of using fingerprints generated from structure file:

from chemfp.bitops import hex_encode
fp_reader = chemfp.read_molecule_fingerprints("OpenBabel-FP4/1", "example.sdf.gz")
print("Each fingerprint has", fp_reader.metadata.num_bits, "bits")
for (id, fp) in fp_reader:
print(id, hex_encode(fp))

See also chemfp.read_molecule_fingerprints_from_string().

Parameters

• type (string or Metadata) – information about how to convert the input structure
into a fingerprint

• source (A filename (as a string), a file object, or None to read from
stdin) – The structure data source.

• format (string, or None to autodetect based on the source) – The file for-
mat and optional compression. Examples: “smi” and “sdf.gz”

• id_tag (string, or None to use the default title for the given format)
– The tag containing the record id. Example: “ChEBI ID”. Only valid for SD files.

• reader_args (dict, or None to use the default arguments) – additional pa-
rameters for the structure reader

• errors (one of "strict", "report", or "ignore") – specify how to handle
parse errors

Returns a chemfp.FingerprintReader

8.1.6 read_molecule_fingerprints_from_string

chemfp.read_molecule_fingerprints_from_string(type, content, format, id_tag=None,
reader_args=None, errors=”strict”)

Read structures from the content string and return the corresponding ids and fingerprints

The parameters are identical to chemfp.read_molecule_fingerprints() except that the entire con-
tent is passed through as a content string, rather than as a source filename. See that function for
details.

You must specify the format! As there is no source filename, it’s not possible to guess the format
based on the extension, and there is no support for auto-detecting the format by looking at the string
content.

Parameters

• type (string or Metadata) – information about how to convert the input structure
into a fingerprint

• content (string) – The structure data as a string.

• format (string) – The file format and optional compression. Examples: “smi” and
“sdf.gz”

258 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• id_tag (string, or None to use the default title for the given format)
– The tag containing the record id. Example: “ChEBI ID”. Only valid for SD files.

• reader_args (dict, or None to use the default arguments) – additional pa-
rameters for the structure reader

• errors (one of "strict" (raise exception), "report" (send a
message to stderr and continue processing), or "ignore" (continue
processing)) – specify how to handle parse errors

Returns a chemfp.FingerprintReader

8.1.7 open_fingerprint_writer

chemfp.open_fingerprint_writer(destination, metadata=None, format=None, alignment=8, re-
order=True, level=None, tmpdir=None, max_spool_size=None,
errors=”strict”, location=None)

Create a fingerprint writer for the given destination

The fingerprint writer is an object with methods to write fingerprints to the given destination. The
output format is based on the format. If that’s None then the format depends on the destination, or
is “fps” if the attempts at format detection fail.

The metadata, if given, is a Metadata instance, and used to fill the header of an FPS file or META
block of an FPB file.

If the output format is “fps”, “fps.gz”, or “fps.zst” then destination may be a filename, a file object,
or None for stdout. If the output format is “fpb” then destination must be a filename or seekable file
object. A fingerprint writer with compressed FPB output is not supported; use arena.save() instead,
or post-process the file.

Use level to change the compression level. The default is 9 for gzip and 3 for ztd. Use “min”, “default”,
or “max” as aliases for the minimum, default, and maximum values for each range.

Some options only apply to FPB output. The alignment specifies the arena byte alignment. By default
the fingerprints are reordered by popcount, which enables sublinear similarity search. Set reorder to
False to preserve the input fingerprint order.

The default FPB writer stores everything into memory before writing the file, which may cause per-
formance problems if there isn’t enough available free memory. In that case, set max_spool_size to
the number of bytes of memory to use before spooling intermediate data to a file. (Note: there are
two independent spools so this may use up to roughly twice as much memory as specified.)

Use tmpdir to specify where to write the temporary spool files if you don’t want to use the operating
system default. You may also set the TMPDIR, TEMP or TMP environment variables.

Some options only apply to FPS output. errors specifies how to handle recoverable write errors. The
value “strict” raises an exception if there are any detected errors. The value “report” sends an error
message to stderr and skips to the next record. The value “ignore” skips to the next record.

The location is a Location instance. It lets the caller access state information such as the number of
records that have been written.

Parameters

• destination (a filename, file object, or None) – the output destination

• metadata (a Metadata instance, or None) – the fingerprint metadata

• format (None, "fps", "fps.gz", "fps.zst", or "fpb") – the output format

• alignment (positive integer) – arena byte alignment for FPB files

8.1. chemfp top-level API 259

chemfp Documentation, Release 3.4

• reorder (True or False) – True reorders the fingerprints by popcount, False leaves
them in input order

• level (an integer, the strings "min", "default" or "max", or None for
default) – True reorders the fingerprints by popcount, False leaves them in input
order

• tmpdir (string or None) – the directory to use for temporary files, when
max_spool_size is specified

• max_spool_size (integer, or None) – number of bytes to store in memory before
using a temporary file. If None, use memory for everything.

• location (a Location instance, or None) – a location object used to access out-
put state information

Returns a chemfp.FingerprintWriter

8.1.8 ChemFPError

class chemfp.ChemFPError
Base class for all of the chemfp exceptions

8.1.9 ParseError

class chemfp.ParseError
Exception raised by the molecule and fingerprint parsers and writers

The public attributes are:

msg
a string describing the exception

location
a chemfp.io.Location instance, or None

8.1.10 Metadata

class chemfp.Metadata

Store information about a set of fingerprints

The public attributes are:

num_bits
the number of bits in the fingerprint

num_bytes
the number of bytes in the fingerprint

type
the fingerprint type string

aromaticity
aromaticity model (only used with OEChem, and now deprecated)

software
software used to make the fingerprints

260 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

sources
list of sources used to make the fingerprint

date
a datetime timestamp of when the fingerprints were made

__repr__()
Return a string like Metadata(num_bits=1024, num_bytes=128, type='OpenBabel/FP2', ..
..)

__str__()
Show the metadata in FPS header format

copy(num_bits=None, num_bytes=None, type=None, aromaticity=None, software=None,
sources=None, date=None)
Return a new Metadata instance based on the current attributes and optional new values

When called with no parameter, make a new Metadata instance with the same attributes as the
current instance.

If a given call parameter is not None then it will be used instead of the current value. If you
want to change a current value to None then you will have to modify the new Metadata after you
created it.

Parameters

• num_bits (an integer, or None) – the number of bits in the fingerprint

• num_bytes (an integer, or None) – the number of bytes in the fingerprint

• type (string or None) – the fingerprint type description

• aromaticity (None) – obsolete

• software (string or None) – a description of the software

• sources (list of strings, a string (interpreted as a list with one
string), or None) – source filenames

• date (a datetime instance, or None) – creation or processing date for the con-
tents

Returns a new Metadata instance

8.1.11 FingerprintReader

class chemfp.FingerprintReader

Base class for all chemfp objects holding fingerprint records

All FingerprintReader instances have a metadata attribute containing a Metadata and can
be iteratated over to get the (id, fingerprint) for each record.

__iter__()
iterate over the (id, fingerprint) pairs

iter_arenas(arena_size=1000)
iterate through arena_size fingerprints at a time, as subarenas

Iterate through arena_size fingerprints at a time, returned as chemfp.arena.FingerprintArena
instances. The arenas are in input order and not reordered by popcount.

This method helps trade off between performance and memory use. Working with arenas is often
faster than processing one fingerprint at a time, but if the file is very large then you might run

8.1. chemfp top-level API 261

https://docs.python.org/2/library/datetime.html#module-datetime

chemfp Documentation, Release 3.4

out of memory, or get bored while waiting to process all of the fingerprint before getting the first
answer.

If arena_size is None then this makes an iterator which returns a single arena containing all of
the fingerprints.

Parameters arena_size (positive integer, or None) – The number of fingerprints
to put into each arena.

Returns an iterator of chemfp.arena.FingerprintArena instances

save(destination, format=None, level=None)
Save the fingerprints to a given destination and format

The output format is based on the format. If the format is None then the format depends on the
destination file extension. If the extension isn’t recognized then the fingerprints will be saved in
“fps” format.

If the output format is “fps”, “fps.gz”, or “fps.zst” then destination may be a filename, a file
object, or None; None writes to stdout.

If the output format is “fpb” then destination must be a filename or seekable file object. Chemfp
cannot save to compressed FPB files.

Parameters

• destination (a filename, file object, or None) – the output destination

• format (None, "fps", "fps.gz", "fps.zst", or "fpb") – the output format

• level (an integer, or "min", "default", or "max" for
compressor-specific values) – compression level when writing .gz or .zst
files

Returns None

get_fingerprint_type()
Get the fingerprint type object based on the metadata’s type field

This uses self.metadata.type to get the fingerprint type string then calls chemfp.
get_fingerprint_type() to get and return a chemfp.types.FingerprintType instance.

This will raise a TypeError if there is no metadata, and a ValueError if the type field was invalid
or the fingerprint type isn’t available.

Returns a chemfp.types.FingerprintType

8.1.12 FingerprintIterator

class chemfp.FingerprintIterator

A chemfp.FingerprintReader for an iterator of (id, fingerprint) pairs

This is often used as an adapter container to hold the metadata and (id, fingerprint) iter-
ator. It supports an optional location, and can call a close function when the iterator has
completed.

A FingerprintIterator is a context manager which will close the underlying iterator if it’s
given a close handler.

Like all iterators you can use next() to get the next (id, fingerprint) pair.

262 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

__init__(metadata, id_fp_iterator, location=None, close=None)
Initialize with a Metadata instance and the (id, fingerprint) iterator

The metadata is a Metadata instance. The id_fp_iterator is an iterator which returns (id, fin-
gerprint) pairs.

The optional location is a chemfp.io.Location. The optional close callable is called (as close())
whenever self.close() is called and when the context manager exits.

__iter__()
Iterate over the (id, fingerprint) pairs

close()
Close the iterator

The call will be forwarded to the close callable passed to the constructor. If that close is None
then this does nothing.

8.1.13 Fingerprints

class chemfp.Fingerprints

A chemf.FingerprintReader containing a metadata and a list of (id, fingerprint) pairs.

This is typically used as an adapater when you have a list of (id, fingerprint) pairs and you
want to pass it (and the metadata) to the rest of the chemfp API.

This implements a simple list-like collection of fingerprints. It supports:

• for (id, fingerprint) in fingerprints: …

• id, fingerprint = fingerprints[1]

• len(fingerprints)

More features, like slicing, will be added as needed or when requested.

__init__(metadata, id_fp_pairs)
Initialize with a Metadata instance and the (id, fingerprint) pair list

The metadata is a Metadata instance. The id_fp_iterator is an iterator which returns (id, fin-
gerprint) pairs.

8.1.14 FingerprintWriter

class chemfp.FingerprintWriter

Base class for the fingerprint writers

The three fingerprint writer classes are:

• chemfp.fps_io.FPSWriter - write an FPS file

• chemfp.fpb_io.OrderedFPBWriter - write an FPB file, sorted by popcount

• chemfp.fpb_io.InputOrderFPBWriter - write an FPB file, preserving input order

If the chemfp_converters package is available then its FlushFingerprintWriter will be used
to write fingerprints in flush format.

Use chemfp.open_fingerprint_writer() to create a fingerprint writer class; do not create
them directly.

8.1. chemfp top-level API 263

chemfp Documentation, Release 3.4

All classes have the following attributes:

• metadata - a chemfp.Metadata instance

• format - a string describing the base format type (without compression); either ‘fps’ or
‘fpb’

• closed - False when the file is open, else True

Fingerprint writers are also their own context manager, and close the writer on context exit.

write_fingerprint(id, fp)
Write a single fingerprint record with the given id and fp to the destination

Parameters

• id (string) – the record identifier

• fp (byte string) – the fingerprint

write_fingerprints(id_fp_pairs)
Write a sequence of (id, fingerprint) pairs to the destination

Parameters id_fp_pairs – An iterable of (id, fingerprint) pairs. id is a string and
fingerprint is a byte string.

close()
Close the writer

This will set self.closed to False.

8.1.15 ChemFPProblem

class chemfp.ChemFPProblem
Information about a compatibility problem between a query and target.

Instances are generated by chemfp.check_fingerprint_problems() and chemfp.
check_metadata_problems().

The public attributes are:

severity
one of “info”, “warning”, or “error”

error_level
5 for “info”, 10 for “warning”, and 20 for “error”

category
a string used as a category name. This string will not change over time.

description
a more detailed description of the error, including details of the mismatch. The description
depends on query_name and target_name and may change over time.

The current category names are:

• “num_bits mismatch” (error)

• “num_bytes_mismatch” (error)

• “type mismatch” (warning)

• “aromaticity mismatch” (info)

• “software mismatch” (info)

264 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.1.16 check_fingerprint_problems

chemfp.check_fingerprint_problems(query_fp, target_metadata, query_name=”query”, tar-
get_name=”target”)

Return a list of compatibility problems between a fingerprint and a metadata

If there are no problems then this returns an empty list. If there is a bit length or byte length mismatch
between the query_fp byte string and the target_metadata then it will return a list containing a
ChemFPProblem instance, with a severity level “error” and category “num_bytes mismatch”.

This function is usually used to check if a query fingerprint is compatible with the target fingerprints.
In case of a problem, the default message looks like:

>>> problems = check_fingerprint_problems("A"*64, Metadata(num_bytes=128))
>>> problems[0].description
'query contains 64 bytes but target has 128 byte fingerprints'

You can change the error message with the query_name and target_name parameters:

>>> import chemfp
>>> problems = check_fingerprint_problems("z"*64, chemfp.Metadata(num_bytes=128),
... query_name="input", target_name="database")
>>> problems[0].description
'input contains 64 bytes but database has 128 byte fingerprints'

Parameters

• query_fp (byte string) – a fingerprint (usually the query fingerprint)

• target_metadata (Metadata instance) – the metadata to check against (usually
the target metadata)

• query_name (string) – the text used to describe the fingerprint, in case of problem

• target_name (string) – the text used to describe the metadata, in case of problem

Returns a list of ChemFPProblem instances

8.1.17 check_metadata_problems

chemfp.check_metadata_problems(query_metadata, target_metadata, query_name=”query”, tar-
get_name=”target”)

Return a list of compatibility problems between two metadata instances.

If there are no probelms then this returns an empty list. Otherwise it returns a list of ChemFPProblem
instances, with a severity level ranging from “info” to “error”.

Bit length and byte length mismatches produce an “error”. Fingerprint type and aromaticity mis-
matches produce a “warning”. Software version mismatches produce an “info”.

This is usually used to check if the query metadata is incompatible with the target metadata. In case
of a problem the messages look like:

>>> import chemfp
>>> m1 = chemfp.Metadata(num_bytes=128, type="Example/1")
>>> m2 = chemfp.Metadata(num_bytes=256, type="Counter-Example/1")
>>> problems = chemfp.check_metadata_problems(m1, m2)
>>> len(problems)

(continues on next page)

8.1. chemfp top-level API 265

chemfp Documentation, Release 3.4

(continued from previous page)

2
>>> print(problems[1].description)
query has fingerprints of type 'Example/1' but target has fingerprints of type
↪→'Counter-Example/1'

You can change the error message with the query_name and target_name parameters:

>>> problems = chemfp.check_metadata_problems(m1, m2, query_name="input", target_
↪→name="database")
>>> print(problems[1].description)
input has fingerprints of type 'Example/1' but database has fingerprints of type
↪→'Counter-Example/1'

Parameters

• fp (byte string) – a fingerprint

• metadata (Metadata instance) – the metadata to check against

• query_name (string) – the text used to describe the fingerprint, in case of problem

• target_name (string) – the text used to describe the metadata, in case of problem

Returns a list of ChemFPProblem instances

8.1.18 count_tanimoto_hits

chemfp.count_tanimoto_hits(queries, targets, threshold=0.7, arena_size=100)
Count the number of targets within threshold of each query term

For each query in queries, count the number of targets in targets which are at least threshold similar
to the query. This function returns an iterator containing the (query_id, count) pairs.

Example:

queries = chemfp.open("queries.fps")
targets = chemfp.load_fingerprints("targets.fps.gz")
for (query_id, count) in chemfp.count_tanimoto_hits(queries, targets, threshold=0.
↪→9):
print(query_id, "has", count, "neighbors with at least 0.9 similarity")

Internally, queries are processed in batches with arena_size elements. A small batch size uses less
overall memory and has lower processing latency, while a large batch size has better overall performance.
Use arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and
not reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have
an FPS file then that takes extra time to load. At times, if there is a small number of queries, the time
to load the arena from an FPS file may be slower than the direct search using an FPSReader.

If you know the targets are in an arena then you may want to use chemfp.search.
count_tanimoto_hits_fp() or chemfp.search.count_tanimoto_hits_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

266 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• arena_size (a positive integer, or None) – The number of queries to process
in a batch

Returns iterator of the (query_id, score) pairs, one for each query

8.1.19 count_tanimoto_hits_symmetric

chemfp.count_tanimoto_hits_symmetric(fingerprints, threshold=0.7)
Find the number of other fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the number of other fingerprints in the same arena
which are at least threshold similar to it. The arena must have pre-computed popcounts. A fingerprint
never matches itself.

This function returns an iterator of (fingerprint_id, count) pairs.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, count) in chemfp.count_tanimoto_hits_symmetric(arena, threshold=0.6):

print(fp_id, "has", count, "neighbors with at least 0.6 similarity")

You may also be interested in chemfp.search.count_tanimoto_hits_symmetric().

Parameters

• fingerprints (a FingerprintArena with precomputed popcount_indices) –
The arena containing the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns An iterator of (fp_id, count) pairs, one for each fingerprint

8.1.20 threshold_tanimoto_search

chemfp.threshold_tanimoto_search(queries, targets, threshold=0.7, arena_size=100)
Find all targets within threshold of each query term

For each query in queries, find all the targets in targets which are at least threshold similar to the
query. This function returns an iterator containing the (query_id, hits) pairs. The hits are stored as
a list of (target_id, score) pairs.

Example:

queries = chemfp.open("queries.fps")
targets = chemfp.load_fingerprints("targets.fps.gz")
for (query_id, hits) in chemfp.id_threshold_tanimoto_search(queries, targets,␣
↪→threshold=0.8):

print(query_id, "has", len(hits), "neighbors with at least 0.8 similarity")
non_identical = [target_id for (target_id, score) in hits if score != 1.0]
print(" The non-identical hits are:", non_identical)

8.1. chemfp top-level API 267

chemfp Documentation, Release 3.4

Internally, queries are processed in batches with arena_size elements. A small batch size uses less
overall memory and has lower processing latency, while a large batch size has better overall performance.
Use arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and
not reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have
an FPS file then that takes extra time to load. At times, if there is a small number of queries, the time
to load the arena from an FPS file may be slower than the direct search using an FPSReader.

If you know the targets are in an arena then you may want to use chemfp.search.
threshold_tanimoto_search_fp() or chemfp.search.threshold_tanimoto_search_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• arena_size (positive integer, or None) – The number of queries to process in
a batch

Returns An iterator containing (query_id, hits) pairs, one for each query. ‘hits’ contains
a list of (target_id, score) pairs.

8.1.21 threshold_tanimoto_search_symmetric

chemfp.threshold_tanimoto_search_symmetric(fingerprints, threshold=0.7)
Find the other fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the other fingerprints in the same arena which share
at least threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never
matches itself.

This function returns an iterator of (fingerprint, SearchResult) pairs. The chemfp.search.
SearchResult hit order is arbitrary.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, hits) in chemfp.threshold_tanimoto_search_symmetric(arena, threshold=0.
↪→75):

print(fp_id, "has", len(hits), "neighbors:")
for (other_id, score) in hits.get_ids_and_scores():

print(" %s %.2f" % (other_id, score))

You may also be interested in the chemfp.search.threshold_tanimoto_search_symmetric() func-
tion.

Parameters

• fingerprints (a FingerprintArena with precomputed popcount_indices) –
The arena containing the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns An iterator of (fp_id, SearchResult) pairs, one for each fingerprint

268 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.1.22 knearest_tanimoto_search

chemfp.knearest_tanimoto_search(queries, targets, k=3, threshold=0.7, arena_size=100)
Find the k-nearest targets within threshold of each query term

For each query in queries, find the k-nearest of all the targets in targets which are at least threshold
similar to the query. Ties are broken arbitrarily and hits with scores equal to the smallest value may
have been omitted.

This function returns an iterator containing the (query_id, hits) pairs, where hits is a list of (target_id,
score) pairs, sorted so that the highest scores are first. The order of ties is arbitrary.

Example:

Use the first 5 fingerprints as the queries
queries = next(chemfp.open("pubchem_subset.fps").iter_arenas(5))
targets = chemfp.load_fingerprints("pubchem_subset.fps")

Find the 3 nearest hits with a similarity of at least 0.8
for (query_id, hits) in chemfp.id_knearest_tanimoto_search(queries, targets, k=3,␣
↪→threshold=0.8):

print(query_id, "has", len(hits), "neighbors with at least 0.8 similarity")
if hits:

target_id, score = hits[-1]
print(" The least similar is", target_id, "with score", score)

Internally, queries are processed in batches with arena_size elements. A small batch size uses less
overall memory and has lower processing latency, while a large batch size has better overall performance.
Use arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and
not reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have
an FPS file then that takes extra time to load. At times, if there is a small number of queries, the time
to load the arena from an FPS file may be slower than the direct search using an FPSReader.

If you know the targets are in an arena then you may want to use chemfp.search.
knearest_tanimoto_search_fp() or chemfp.search.knearest_tanimoto_search_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• k (positive integer) – The maximum number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• arena_size (positive integer, or None) – The number of queries to process in
a batch

Returns An iterator containing (query_id, hits) pairs, one for each query. The hits are a
list of (target_id, score) pairs, sorted by score.

8.1. chemfp top-level API 269

chemfp Documentation, Release 3.4

8.1.23 knearest_tanimoto_search_symmetric

chemfp.knearest_tanimoto_search_symmetric(fingerprints, k=3, threshold=0.7)
Find the k-nearest fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the nearest k fingerprints in the same arena which
have at least threshold similar to it. The arena must have pre-computed popcounts. A fingerprint
never matches itself.

This function returns an iterator of (fingerprint, SearchResult) pairs. The chemfp.search.
SearchResult hits are ordered from highest score to lowest, with ties broken arbitrarily.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, hits) in chemfp.knearest_tanimoto_search_symmetric(arena, k=5,␣
↪→threshold=0.5):

print(fp_id, "has", len(hits), "neighbors, with scores", end="")
print(", ".join("%.2f" % x for x in hits.get_scores()))

You may also be interested in the chemfp.search.knearest_tanimoto_search_symmetric() func-
tion.

Parameters

• fingerprints (a FingerprintArena with precomputed popcount_indices) –
The arena containing the fingerprints.

• k (positive integer) – The maximum number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns An iterator of (fp_id, SearchResult) pairs, one for each fingerprint

8.1.24 count_tversky_hits

chemfp.count_tversky_hits(queries, targets, threshold=0.7, alpha=1.0, beta=1.0, arena_size=100)
Count the number of targets within threshold of each query term

For each query in queries, count the number of targets in targets which are at least threshold similar
to the query. This function returns an iterator containing the (query_id, count) pairs.

Example:

queries = chemfp.open("queries.fps")
targets = chemfp.load_fingerprints("targets.fps.gz")
for (query_id, count) in chemfp.count_tversky_hits(

queries, targets, threshold=0.9, alpha=0.5, beta=0.5):
print(query_id, "has", count, "neighbors with at least 0.9 Dice similarity")

Internally, queries are processed in batches with arena_size elements. A small batch size uses less
overall memory and has lower processing latency, while a large batch size has better overall performance.
Use arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and
not reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have
an FPS file then that takes extra time to load. At times, if there is a small number of queries, the time
to load the arena from an FPS file may be slower than the direct search using an FPSReader.

270 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

If you know the targets are in an arena then you may want to use chemfp.search.
count_tversky_hits_fp() or chemfp.search.count_tversky_hits_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• arena_size (a positive integer, or None) – The number of queries to process
in a batch

Returns iterator of the (query_id, score) pairs, one for each query

8.1.25 count_tversky_hits_symmetric

chemfp.count_tversky_hits_symmetric(fingerprints, threshold=0.7, alpha=1.0, beta=1.0)
Find the number of other fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the number of other fingerprints in the same arena
which are at least threshold similar to it. The arena must have pre-computed popcounts. A fingerprint
never matches itself.

This function returns an iterator of (fingerprint_id, count) pairs.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, count) in chemfp.count_tversky_hits_symmetric(

arena, threshold=0.6, alpha=0.5, beta=0.5):
print(fp_id, "has", count, "neighbors with at least 0.6 Dice similarity")

You may also be interested in chemfp.search.count_tversky_hits_symmetric().

Parameters

• fingerprints (a FingerprintArena with precomputed popcount_indices) –
The arena containing the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns An iterator of (fp_id, count) pairs, one for each fingerprint

8.1.26 threshold_tversky_search

chemfp.threshold_tversky_search(queries, targets, threshold=0.7, alpha=1.0, beta=1.0,
arena_size=100)

Find all targets within threshold of each query term

For each query in queries, find all the targets in targets which are at least threshold similar to the
query. This function returns an iterator containing the (query_id, hits) pairs. The hits are stored as
a list of (target_id, score) pairs.

Example:

8.1. chemfp top-level API 271

chemfp Documentation, Release 3.4

queries = chemfp.open("queries.fps")
targets = chemfp.load_fingerprints("targets.fps.gz")
for (query_id, hits) in chemfp.id_threshold_tanimoto_search(

queries, targets, threshold=0.8, alpha=0.5, beta=0.5):
print(query_id, "has", len(hits), "neighbors with at least 0.8 Dice similarity")
non_identical = [target_id for (target_id, score) in hits if score != 1.0]
print(" The non-identical hits are:", non_identical)

Internally, queries are processed in batches with arena_size elements. A small batch size uses less
overall memory and has lower processing latency, while a large batch size has better overall performance.
Use arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and
not reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have
an FPS file then that takes extra time to load. At times, if there is a small number of queries, the time
to load the arena from an FPS file may be slower than the direct search using an FPSReader.

If you know the targets are in an arena then you may want to use chemfp.search.
threshold_tversky_search_fp() or chemfp.search.threshold_tversky_search_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• arena_size (positive integer, or None) – The number of queries to process in
a batch

Returns An iterator containing (query_id, hits) pairs, one for each query. ‘hits’ contains
a list of (target_id, score) pairs.

8.1.27 threshold_tversky_search_symmetric

chemfp.threshold_tversky_search_symmetric(fingerprints, threshold=0.7, alpha=1.0, beta=1.0)
Find the other fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the other fingerprints in the same arena which share
at least threshold similar to it. The arena must have pre-computed popcounts. A fingerprint never
matches itself.

This function returns an iterator of (fingerprint, SearchResult) pairs. The chemfp.search.
SearchResult hit order is arbitrary.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, hits) in chemfp.threshold_tversky_search_symmetric(

arena, threshold=0.75, alpha=0.5, beta=0.5):
print(fp_id, "has", len(hits), "Dice neighbors:")
for (other_id, score) in hits.get_ids_and_scores():

print(" %s %.2f" % (other_id, score))

272 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

You may also be interested in the chemfp.search.threshold_tversky_search_symmetric() func-
tion.

Parameters

• fingerprints (a FingerprintArena with precomputed popcount_indices) –
The arena containing the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns An iterator of (fp_id, SearchResult) pairs, one for each fingerprint

8.1.28 knearest_tversky_search

chemfp.knearest_tversky_search(queries, targets, k=3, threshold=0.7, alpha=1.0, beta=1.0,
arena_size=100)

Find the k-nearest targets within threshold of each query term

For each query in queries, find the k-nearest of all the targets in targets which are at least threshold
similar to the query. Ties are broken arbitrarily and hits with scores equal to the smallest value may
have been omitted.

This function returns an iterator containing the (query_id, hits) pairs, where hits is a list of (target_id,
score) pairs, sorted so that the highest scores are first. The order of ties is arbitrary.

Example:

Use the first 5 fingerprints as the queries
queries = next(chemfp.open("pubchem_subset.fps").iter_arenas(5))
targets = chemfp.load_fingerprints("pubchem_subset.fps")

Find the 3 nearest hits with a similarity of at least 0.8
for (query_id, hits) in chemfp.id_knearest_tversky_search(

queries, targets, k=3, threshold=0.8, alpha=0.5, beta=0.5):
print(query_id, "has", len(hits), "neighbors with at least 0.8 Dice similarity")
if hits:

target_id, score = hits[-1]
print(" The least similar is", target_id, "with score", score)

Internally, queries are processed in batches with arena_size elements. A small batch size uses less
overall memory and has lower processing latency, while a large batch size has better overall performance.
Use arena_size=None to process the input as a single batch.

Note: an chemfp.fps_io.FPSReader may be used as a target but it will only process one batch and
not reset for the next batch. It’s faster to search a chemfp.arena.FingerprintArena, but if you have
an FPS file then that takes extra time to load. At times, if there is a small number of queries, the time
to load the arena from an FPS file may be slower than the direct search using an FPSReader.

If you know the targets are in an arena then you may want to use chemfp.search.
knearest_tversky_search_fp() or chemfp.search.knearest_tversky_search_arena().

Parameters

• queries (any fingerprint container) – The query fingerprints.

• targets (chemfp.arena.FingerprintArena or the slower chemfp.fps_io.
FPSReader) – The target fingerprints.

• k (positive integer) – The maximum number of nearest neighbors to find.

8.1. chemfp top-level API 273

chemfp Documentation, Release 3.4

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• arena_size (positive integer, or None) – The number of queries to process in
a batch

Returns An iterator containing (query_id, hits) pairs, one for each query. The hits are a
list of (target_id, score) pairs, sorted by score.

8.1.29 knearest_tversky_search_symmetric

chemfp.knearest_tversky_search_symmetric(fingerprints, k=3, threshold=0.7, alpha=1.0,
beta=1.0)

Find the k-nearest fingerprints within threshold of each fingerprint

For each fingerprint in the fingerprints arena, find the nearest k fingerprints in the same arena which
have at least threshold similar to it. The arena must have pre-computed popcounts. A fingerprint
never matches itself.

This function returns an iterator of (fingerprint, SearchResult) pairs. The chemfp.search.
SearchResult hits are ordered from highest score to lowest, with ties broken arbitrarily.

Example:

arena = chemfp.load_fingerprints("targets.fps.gz")
for (fp_id, hits) in chemfp.knearest_tversky_search_symmetric(

arena, k=5, threshold=0.5, alpha=0.5, beta=0.5):
print(fp_id, "has", len(hits), "neighbors, with Dice scores", end="")
print(", ".join("%.2f" % x for x in hits.get_scores()))

You may also be interested in the chemfp.search.knearest_tversky_search_symmetric() function.

Parameters

• fingerprints (a FingerprintArena with precomputed popcount_indices) –
The arena containing the fingerprints.

• k (positive integer) – The maximum number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns An iterator of (fp_id, SearchResult) pairs, one for each fingerprint

8.1.30 get_fingerprint_families

chemfp.get_fingerprint_families(toolkit_name=None)
Return a list of available fingerprint families

Parameters toolkit_name (string) – restrict fingerprints to the named toolkit

Returns a list of chemfp.types.FingerprintFamily instances

8.1.31 get_fingerprint_family

chemfp.get_fingerprint_family(family_name)
Return the named fingerprint family, or raise a ValueError if not available

274 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

Given a family_name like OpenBabel-FP2 or OpenEye-MACCS166 return the corresponding chemfp.
types.FingerprintFamily.

Parameters family_name (string) – the family name

Returns a chemfp.types.FingerprintFamily instance

8.1.32 get_fingerprint_family_names

chemfp.get_fingerprint_family_names(include_unavailable=False, toolkit_name=None)
Return a set of fingerprint family name strings

The function tries to load each known fingerprint family. The names of the families which could be
loaded are returned as a set of strings.

If include_unavailable is True then this will return a set of all of the fingerprint family names, including
those which could not be loaded.

The set contains both the versioned and unversioned family names, so both OpenBabel-FP2/1 and
OpenBabel-FP2 may be returned.

Parameters include_unavailable (True or False) – Should unavailable family names
be included in the result set?

Returns a set of strings

8.1.33 get_fingerprint_type

chemfp.get_fingerprint_type(type, fingerprint_kwargs=None)
Get the fingerprint type based on its type string and optional keyword arguments

Given a fingerprint type string like OpenBabel-FP2, or RDKit-Fingerprint/1 fpSize=1024, return
the corresponding chemfp.types.FingerprintType.

The fingerprint type string may include fingerprint parameters. Parameters can also be specified
through the fingerprint_kwargs dictionary, where the dictionary values are native Python values. If
the same parameter is specified in the type string and the kwargs dictionary then the fingerprint_kwargs
takes precedence.

For example:

>>> fptype = get_fingerprint_type("RDKit-Fingerprint fpSize=1024 minPath=3", {
↪→"fpSize": 4096})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=3 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

Use get_fingerprint_type_from_text_settings() if your fingerprint parameter values are all
string-encoded, eg, from the command-line or a configuration file.

Parameters

• type (string) – a fingerprint type string

• fingerprint_kwargs (a dictionary of string names and Python types for
values) – fingerprint type parameters

Returns a chemfp.types.FingerprintType

8.1. chemfp top-level API 275

chemfp Documentation, Release 3.4

8.1.34 get_fingerprint_type_from_text_settings

chemfp.get_fingerprint_type_from_text_settings(type, settings=None)
Get the fingerprint type based on its type string and optional settings arguments

Given a fingerprint type string like OpenBabel-FP2, or RDKit-Fingerprint/1 fpSize=1024, return
the corresponding chemfp.types.FingerprintType.

The fingerprint type string may include fingerprint parameters. Parameters can also be specified
through the settings dictionary, where the dictionary values are string-encoded values. If the same
parameter is specified in the type string and the settings dictionary then the settings take precedence.

For example:

>>> fptype = get_fingerprint_type_from_text_settings("RDKit-Fingerprint fpSize=1024␣
↪→minPath=3",
... {"fpSize": "4096"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=3 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

This function is for string settings from a configuration file or command-line. Use
get_fingerprint_type() if your fingerprint parameters are Python values.

Parameters

• type (string) – a fingerprint type string

• fingerprint_kwargs (a dictionary of string names and Python types for
values) – fingerprint type parameters

Returns a chemfp.types.FingerprintType

8.1.35 has_fingerprint_family

chemfp.has_fingerprint_family(family_name)
Test if the fingerprint family is available

Return True if the fingerprint family_name is available, otherwise False. The family_name may be
versioned or unversioned, like “OpenBabel-FP2/1” or “OpenEye-MACCS166”.

Parameters family_name (string) – the family name

Returns True or False

8.1.36 get_max_threads

chemfp.get_max_threads()
Return the maximum number of threads available.

WARNING: this likely doesn’t do what you think it does. Do not use!

If OpenMP is not available then this will return 1. Otherwise it returns the maximum number of
threads available, as reported by omp_get_num_threads().

276 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.1.37 get_num_threads

chemfp.get_num_threads()
Return the number of OpenMP threads to use in searches

Initially this is the value returned by omp_get_max_threads(), which is generally 4 unless you set the
environment variable OMP_NUM_THREADS to some other value.

It may be any value in the range 1 to get_max_threads(), inclusive.

Returns the current number of OpenMP threads to use

8.1.38 set_num_threads

chemfp.set_num_threads(num_threads)
Set the number of OpenMP threads to use in searches

If num_threads is less than one then it is treated as one, and a value greater than get_max_threads()
is treated as get_max_threads().

Parameters num_threads (int) – the new number of OpenMP threads to use

8.1.39 get_toolkit

chemfp.get_toolkit(toolkit_name)
Return the named toolkit, if available, or raise a ValueError

If toolkit_name is one of “openbabel”, “openeye”, or “rdkit” and the named toolkit is available, then
it will return chemfp.openbabel_toolkit, chemfp.openeye_toolkit, or chemfp.rdkit_toolkit, re-
spectively.:

>>> import chemfp
>>> chemfp.get_toolkit("openeye")
<module 'chemfp.openeye_toolkit' from 'chemfp/openeye_toolkit.py'>
>>> chemfp.get_toolkit("rdkit")
Traceback (most recent call last):

...
ValueError: Unable to get toolkit 'rdkit': No module named rdkit

Parameters toolkit_name (string) – the toolkit name

Returns the chemfp toolkit

Raises ValueError if toolkit_name is unknown or the toolkit does not exist

8.1.40 get_toolkit_names

chemfp.get_toolkit_names()
Return a set of available toolkit names

The function checks if each supported toolkit is available by trying to import its corresponding module.
It returns a set of toolkit names:

8.1. chemfp top-level API 277

chemfp Documentation, Release 3.4

>>> import chemfp
>>> chemfp.get_toolkit_names()
set(['openeye', 'rdkit', 'openbabel'])

Returns a set of toolkit names, as strings

8.1.41 has_toolkit

chemfp.has_toolkit(toolkit_name)
Return True if the named toolkit is available, otherwise False

If toolkit_name is one of “openbabel”, “openeye”, or “rdkit” then this function will test to see if the
given toolkit is available, and if so return True. Otherwise it returns False.

>>> import chemfp
>>> chemfp.has_toolkit("openeye")
True
>>> chemfp.has_toolkit("openbabel")
False

The initial test for a toolkit can be slow, especially if the underlying toolkit loads a lot of shared
libraries. The test is only done once, and cached.

Parameters toolkit_name (string) – the toolkit name

Returns True or False

8.2 chemfp.types - fingerprint families and types

A “fingerprint type” is an object which knows how to convert a molecule into a fingerprint. A “fingerprint
family” is an object which uses a set of parameters to make a specific fingerprint type.

>>> import chemfp
>>> fpfamily = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> fpfamily.get_defaults()
{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}
>>>
>>> fptype = fpfamily() # create the default fingerprint type
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'
>>>
>>> fptype = fpfamily(fpSize=1024) # use a non-default value
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'
>>> mol = fptype.toolkit.parse_molecule("c1ccccc1O", "smistring")
>>> fptype.compute_fingerprint(mol)
'\x04\x00\x00\x00\x00\x00\x10\x00\x00\x00 ... x00\x00\x00\x00\x00'

8.2.1 FingerprintFamily

class chemfp.types.FingerprintFamily

278 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

A FingerprintFamily is used to create a FingerprintType or get information about its pa-
rameters

Two reasons to use a FingerprintFamily (instead of using chemfp.get_fingerprint_type()
or chemfp.get_fingerprint_type_from_text_settings()) are:

• figure out the default arguments;

• given a text settings or parameter dictionary, use the keys from the default argument keys
to remove other parameters before creating a FingerprintType (otherwise the creation
function will raise an exception)

All fingerprint families have the following attributes:

• name - the type name, including version

• toolkit - the toolkit API for the underlying chemistry toolkit, or None

__repr__()
Return a string like ‘FingerprintFamily(<RDKit-Fingerprint/2>)’

name
Read-only attribute.

The full fingerprint name, including the version

base_name
Read-only attribute.

The base fingerprint name, without the version

version
Read-only attribute.

The fingerprint version

toolkit
Read-only attribute.

The toolkit used to implement this fingerprint, or None

__call__(**fingerprint_kwargs)
Create a fingerprint type; keyword arguments can override the defaults

The argument values are native Python values, not string-encoded values:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> fptype = family()
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'
>>> fptype = family(fpSize=1024)
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'

The function will raise an exception for unknown arguments.

Parameters fingerprint_kwargs – the fingerprint parameters

Returns an object implementing the chemfp.types.FingerprintType API

from_kwargs(fingerprint_kwargs=None)
Create a fingerprint type; items in the fingerprint_kwargs dictionary can override the defaults

The dictionary values are native Python values, not string-encoded values:

8.2. chemfp.types - fingerprint families and types 279

chemfp Documentation, Release 3.4

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> fptype = family()
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'
>>> fptype = family.from_kwargs({"fpSize": 1024})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'

The function will raise an exception for unknown arguments.

Parameters fingerprint_kwargs (a dictionary where the values are Python
objects) – the fingerprint parameters

Returns an object implementing the chemfp.types.FingerprintType API

from_text_settings(settings=None)
Create a fingerprint type; settings is a dictionary with string-encoded value that can override the
defaults

The dictionary values are string-encoded values, not native Python values. This function exists
to help handle command-line arguments and setting files.:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> fptype = family.from_text_settings()
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'
>>> fptype = family.from_text_settings({"fpSize": "1024"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'

The function will raise an exception for unknown arguments.

Parameters settings (a dictionary where the values are string-encoded) –
the fingerprint text settings

Returns an object implementing the chemfp.types.FingerprintType API

get_kwargs_from_text_settings(settings=None)
Convert a dictionary of string-encoded fingerprint parameters into native Python values

String-encoded values (“text settings”) can come from the command-line, a configuration file, a
web reqest, or other text sources. The fingerprint types need actual Python values. This method
converts the first to the second:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> family.get_kwargs_from_text_settings()
{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}
>>> family.get_kwargs_from_text_settings({"fpSize": "128", "maxPath": "5"})
{'maxPath': 5, 'fpSize': 128, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

Parameters settings (a dictionary where the values are string-encoded) –
the fingerprint text settings

Returns an dictionary of (decoded) fingerprint parameters

280 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

get_defaults()
Return the default parameters as a dictionary

The dictionary values are native Python objects:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")
>>> family.get_defaults()
{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

Returns an dictionary of fingerprint parameters

8.2.2 FingerprintType

class chemfp.types.FingerprintType

The base to all fingerprint types

A fingerprint type has the following public attributes:

name
the fingerprint name, including the version

base_name
the fingerprint name, without the version

version
the fingerprint version

toolkit
the toolkit API for the underlying chemistry toolkit, or None

software
a string which characterizes the toolkit, including version information

num_bits
the number of bits in this fingerprint type

fingerprint_kwargs
a dictionary of the fingerprint arguments

The built-in fingerprint types are:

• chemfp.openbabel_types.OpenBabelFP2FingerprintType_v1 - OpenBabel-FP2/1 -
Open Babel FP2

• chemfp.openbabel_types.OpenBabelFP3FingerprintType_v1 - OpenBabel-FP3/1 -
Open Babel FP3

• chemfp.openbabel_types.OpenBabelFP4FingerprintType_v1 - OpenBabel-FP4/1 -
Open Babel FP4

• chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v1 - OpenBabel-MACCS/
1 - Open Babel 166 MACCS keys

• chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v2 - OpenBabel-MACCS/
2 - Open Babel 166 MACCS keys

• chemfp.openbabel_patterns.SubstructOpenBabelFingerprinter_v1 -
ChemFP-Substruct-OpenBabel/1 - chemfp’s 881 CACTVS/PubChem-like keys
implemented with Open Babel

8.2. chemfp.types - fingerprint families and types 281

chemfp Documentation, Release 3.4

• chemfp.openbabel_patterns.RDMACCSOpenBabelFingerprinter_v1 -
RDMACCS-OpenBabel/1 - chemfp’s own 166 MACCS keys implemented with Open
Babel (does not include key 44)

• chemfp.openbabel_patterns.RDMACCSOpenBabelFingerprinter_v2 -
RDMACCS-OpenBabel/1 - chemfp’s own 166 MACCS keys implemented with Open
Babel

• chemfp.openeye_types.OpenEyeCircularFingerprintType_v2 - OpenEye-Circular/
2 - OEGraphSim circular fingerprints

• chemfp.openeye_types.OpenEyeMACCSFingerprintType_v2 - OpenEye-MACCS166/2 -
OEGraphSim 166 MACCS keys

• chemfp.openeye_types.OpenEyePathFingerprintType_v2 - OpenEye-Path/2 - OE-
GraphSim path fingerprints

• chemfp.openeye_types.OpenEyeTreeFingerprintType_v2 - OpenEye-Tree/2 - OE-
GraphSim tree fingerprints

• chemfp.openeye_patterns.SubstructOpenEyeFingerprinter_v1 -
ChemFP-Substruct-OpenEye/1 - chemfp’s 881 CACTVS/PubChem-like keys im-
plemented with OEChem

• chemfp.openeye_patterns.RDMACCSOpenEyeFingerprinter_v1 - RDMACCS-OpenEye/1
- chemfp’s own 166 MACCS keys implemented with OEChem (does not include key 44)

• chemfp.openeye_patterns.RDMACCSOpenEyeFingerprinter_v2 - RDMACCS-OpenEye/2
- chemfp’s own 166 MACCS keys implemented with OEChem

• chemfp.rdkit_types.RDKitFingerprintType_v1 - RDKit-Fingerprint/1 - RDKit path
and tree fingerprint

• chemfp.rdkit_types.RDKitFingerprintType_v2 - RDKit-Fingerprint/2 - RDKit path
and tree fingerprint

• chemfp.rdkit_types.RDKitMACCSFingerprintType_v1 - RDKit-MACCS/1 - RDKit 166
MACCS keys (does not include key 44)

• chemfp.rdkit_types.RDKitMACCSFingerprintType_v2 - RDKit-MACCS/2 - RDKit 166
MACCS keys

• chemfp.rdkit_types.RDKitMorganFingerprintType_v1 - RDKit-Morgan/1 - RDKit
circular fingerprints

• chemfp.rdkit_types.RDKitAtomPairFingerprint_v1 - RDKit-AtomPair/1 - RDKit
atom pair fingerprints

• chemfp.rdkit_types.RDKitAtomPairFingerprint_v2 - RDKit-AtomPair/2 - RDKit
atom pair fingerprints

• chemfp.rdkit_types.RDKitTorsionFingerprintType_v1 - RDKit-Torsion/1 - RDKit
torsion fingerprints

• chemfp.rdkit_types.RDKitTorsionFingerprintType_v2 - RDKit-Torsion/2 - RDKit
torsion fingerprints

• chemfp.rdkit_types.RDKitTorsionFingerprintType_v3 - RDKit-Torsion/3 - RDKit
torsion fingerprints

• chemfp.rdkit_patterns.SubstructRDKitFingerprintType_v1 -
ChemFP-Substruct-RDKit/1 - chemfp’s 881 CACTVS/PubChem-like keys imple-
mented with RDKit

282 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• chemfp.rdkit_patterns.RDMACCSRDKitFingerprinter_v1 - RDMACCS-RDKit/1 -
chemfp’s own 166 MACCS keys implemented with OEChem (does not include key 44)

• chemfp.rdkit_patterns.RDMACCSRDKitFingerprinter_v2 - RDMACCS-RDKit/2 -
chemfp’s own 166 MACCS keys implemented with OEChem

get_type()
Get the full type string (name and parameters) for this fingerprint type

Returns a canonical fingerprint type string, including its parameters

get_metadata(sources=None)
Return a Metadata appropriate for the given fingerprint type.

This is most commonly used to make a chemfp.Metadata that can be passed into a chemfp.
FingerprintWriter.

If sources is a string or a list of strings then it will passed to the newly created Metadata instance.
It should contain filenames or other description of the fingerprint sources.

Parameters sources (None, a string, or list of strings) – fingerprint source
filenames or other description

Returns a chemfp.Metadata

make_fingerprinter()
Make a ‘fingerprinter’; a callable which takes a molecule and returns a fingerprint

Returns a function object which takes a molecule and return a fingerprint

read_molecule_fingerprints(source, format=None, id_tag=None, reader_args=None, er-
rors=”strict”, location=None)

Read fingerprints from a structure source as a FingerprintIterator

Iterate through the format structure records in source. If format is None then auto-detect the
format based on the source. Use the fingerprint type to compute the fingerprint. For SD files, use
id_tag to get the record id from the given SD tag instead of the title line.

The reader_args dictionary parameters depend on the toolkit and format. For details see the
docstring for self.toolkit.read_molecules.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends
a message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a Location instance. If None then a default Location will be created.

Parameters

• source (a filename, file object, or None to read from stdin) – the
structure source

• format (a format name string, or Format object, or None to
auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag containing the
record id

• reader_args (a dictionary) – reader parameters passed to the underlying toolkit

• errors (one of "strict", "report", or "ignore") – specify how to handle
errors

• location (a Location object, or None) – object used to track parser state in-
formation

Returns a chemfp.FingerprintIterator which iterates over the (id, fingerprint) pair

8.2. chemfp.types - fingerprint families and types 283

chemfp Documentation, Release 3.4

read_molecule_fingerprints_from_string(content, format=None, id_tag=None,
reader_args=None, errors=”strict”, loca-
tion=None)

Read fingerprints from structure records in a string, as a FingerprintIterator

Iterate through the format structure records in content. Use the fingerprint type to compute the
fingerprint. For SD files, use id_tag to get the record id from the given SD tag instead of the title
line.

The reader_args dictionary parameters depend on the toolkit and format. For details see the
docstring for self.toolkit.read_molecules.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends
a message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a Location instance. If None then a default Location will be created.

Parameters

• content – the string containing structure records

• format (a format name string, or Format object) – the input structure for-
mat

• id_tag (string, or None to use the record title) – SD tag containing the
record id

• reader_args (a dictionary) – reader parameters passed to the underlying toolkit

• errors (one of "strict", "report", or "ignore") – specify how to handle
errors

• location (a Location object, or None) – object used to track parser state in-
formation

Returns a chemfp.FingerprintIterator which iterates over the (id, fingerprint) pair

parse_molecule_fingerprint(content, format, reader_args=None, errors=”strict”)
Parse the first molecule record of the content then compute and return the fingerprint

Read the first molecule from content, which contains records in the given format. Compute and
return its fingerprint.

The reader_args dictionary parameters depend on the toolkit and format. For details see the
docstring for self.toolkit.read_molecules.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends a
message to stderr and return None for the fingerprint, and “ignore” returns None for the fingerprint
without any extra message.

Parameters

• content – the string containing at least one structure record

• format (a format name string, or Format object) – the input structure for-
mat

• reader_args (a dictionary) – reader parameters passed to the underlying toolkit

• errors (one of "strict", "report", or "ignore") – specify how to handle
errors

Returns the fingerprint as a byte string

284 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

parse_id_and_molecule_fingerprint(content, format, id_tag=None, reader_args=None, er-
rors=”strict”)

Parse the first molecule record of the content then compute and return the id and fingerprint

Read the first molecule from content, which contains records in the given format. Compute its
fingerprint and get the molecule id. For an SD record use id_tag to get the record id from the
given SD tag instead of from the title line.

Return the id and fingerprint as the (id, fingerprint) pair.

The reader_args dictionary parameters depend on the toolkit and format. For details see the
docstring for self.toolkit.read_molecules.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends
a message to stderr and return None for values it cannot compute, and “ignore” is like “report”
but without the error message. For “report” and “ignore”, if the molecule cannot be parsed then
the result will be (None, None). If the fingerprint cannot be computed then the result will be (id,
None).

Parameters

• content – the string containing at least one structure record

• format (a format name string, or Format object) – the input structure for-
mat

• id_tag (string, or None to use the record title) – SD tag containing the
record id

• reader_args (a dictionary) – reader parameters passed to the underlying toolkit

• errors (one of "strict", "report", or "ignore") – specify how to handle
errors

Returns a pair of (id string, fingerprint byte string)

make_id_and_molecule_fingerprint_parser(format, id_tag=None, reader_args=None, er-
rors=”strict”)

Make a function which parses molecule from a record and returns the id and computed fingerprint

This is a very specialized function, designed for performance, but it doesn’t appear to give any
advantage. You likely don’t need it.

Return a function which parses a content string containing structure records in the given format
to get a molecule. Use the molecule to compute the fingerprint and get its id. For an SD record
use id_tag to get the record id from the given SD tag instead of from the title line.

The new function will return the (id, fingerprint) pair.

The reader_args dictionary parameters depend on the toolkit and format. For details see the
docstring for self.toolkit.read_molecules.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report” sends
a message to stderr and return None for values it cannot compute, and “ignore” is like “report”
but without the error message. For “report” and “ignore”, if the molecule cannot be parsed then
the result will be (None, None). If the fingerprint cannot be computed then the result will be (id,
None).

Parameters

• format (a format name string, or Format object) – the input structure for-
mat

8.2. chemfp.types - fingerprint families and types 285

chemfp Documentation, Release 3.4

• id_tag (string, or None to use the record title) – SD tag containing the
record id

• reader_args (a dictionary) – reader parameters passed to the underlying toolkit

• errors (one of "strict", "report", or "ignore") – specify how to handle
errors

Returns a function which takes a content string and returns an (id, fingerprint) pair

compute_fingerprint(mol)
Compute and return the fingerprint byte string for the toolkit molecule

Parameters mol – a toolkit molecule

Returns the fingerprint as a byte string

compute_fingerprints(mols)
Compute and return the fingerprint for each toolkit molecule in an iterator

This function is a slightly optimized version of:

for mol in mols:
yield self.compute_fingerprint(mol)

Parameters mols – an iterable of toolkit molecules

Returns a generator of fingerprints, one per molecule

get_fingerprint_family()
Return the fingerprint family for this fingerprint type

Returns a FingerprintFamily

8.2.3 Open Babel fingerprints

Open Babel implements four fingerprints families and chemfp implements two fingerprint families using the
Open Babel toolkit. These are:

• OpenBabel-FP2 - Indexes linear fragments up to 7 atoms.

• OpenBabel-FP3 - SMARTS patterns specified in the file patterns.txt

• OpenBabel-FP4 - SMARTS patterns specified in the file SMARTS_InteLigand.txt

• OpenBabel-MACCS - SMARTS patterns specified in the file MACCS.txt, which implements nearly all
of the 166 MACCS keys

• RDMACCS-OpenBabel - a chemfp implementation of nearly all of the MACCS keys

• ChemFP-Substruct-OpenBabel - an experimental chemfp implementation of the PubChem keys

Most people use FP2 and MACCS.

Note: chemfp-2.0 implements both RDMACCS-OpenBabel/1 and RDMACCS-OpenBabel/2. Version 1 did
not have a definition for key 44.

286 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

OpenBabelFP2FingerprintType_v1

class chemfp.openbabel_types.OpenBabelFP2FingerprintType_v1
OpenBabel FP2 fingerprint based on path enumeration

See http://openbabel.org/wiki/FP2

This is a Daylight-like path enumeration fingerprint with 1021 bits.

The OpenBabel-FP2/1 FingerprintType has no parameters.

OpenBabelFP3FingerprintType_v1

class chemfp.openbabel_types.OpenBabelFP3FingerprintType_v1
OpenBabel FP3 fingerprint

See http://openbabel.org/wiki/FP3

55 bit fingerprints based on a set of SMARTS patterns defining functional groups.

The OpenBabel-FP3/1 FingerprintType has no parameters.

OpenBabelFP4FingerprintType_v1

class chemfp.openbabel_types.OpenBabelFP4FingerprintType_v1
OpenBabel FP4 fingerprint

http://openbabel.org/wiki/FP4

307 bit fingerprints based on a set of SMARTS patterns defining functional groups.

The OpenBabel-FP4/1 FingerprintType has no parameters.

OpenBabelMACCSFingerprintType_v1

class chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v1
Open Babel’s implementation of the 166 MACCS keys

WARNING: This implementation contains serious bugs! All of the ring sizes are wrong.

See http://openbabel.org/wiki/Tutorial:Fingerprints and https://github.com/openbabel/openbabel/
blob/master/data/MACCS.txt .

The OpenBabel-MACCS/1 FingerprintType has no parameters.

Note: this version is only available in older (pre-2012) versions of Open Babel.

OpenBabelMACCSFingerprintType_v2

class chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v2
Open Babel’s implementation of the 166 MACCS keys

See http://openbabel.org/wiki/Tutorial:Fingerprints and https://github.com/openbabel/openbabel/
blob/master/data/MACCS.txt .

Note: Open Babel added support for key 44 on 20 October 2014. This should have been version 3.
However, I didn’t notice until 1 May 2017 that there was no chemfp test for it. Since everyone has
been using it as v2, and very few people used the older version, I won’t change the version number.

8.2. chemfp.types - fingerprint families and types 287

http://openbabel.org/wiki/FP2
http://openbabel.org/wiki/FP3
http://openbabel.org/wiki/FP4
http://openbabel.org/wiki/Tutorial:Fingerprints
https://github.com/openbabel/openbabel/blob/master/data/MACCS.txt
https://github.com/openbabel/openbabel/blob/master/data/MACCS.txt
http://openbabel.org/wiki/Tutorial:Fingerprints
https://github.com/openbabel/openbabel/blob/master/data/MACCS.txt
https://github.com/openbabel/openbabel/blob/master/data/MACCS.txt

chemfp Documentation, Release 3.4

The OpenBabel-MACCS/2 FingerprintType has no parameters.

OpenBabelECFP0FingerprintType_v1

class chemfp.openbabel_types.OpenBabelECFP0FingerprintType_v1
Open Babel’s implementation of the ECFP0 fingerprint

This is a circular fingerprint of diameter 0.

The OpenBabel-ECFP0/1 FingerprintType parameter is:

• nBits - the number of bits in the fingerprint (default: 4096 and must be a power of 2)

OpenBabelECFP2FingerprintType_v1

class chemfp.openbabel_types.OpenBabelECFP2FingerprintType_v1
Open Babel’s implementation of the ECFP2 fingerprint

This is a circular fingerprint of diameter 2.

The OpenBabel-ECFP2/1 FingerprintType parameter is:

• nBits - the number of bits in the fingerprint (default: 4096 and must be a power of 2)

OpenBabelECFP4FingerprintType_v1

class chemfp.openbabel_types.OpenBabelECFP4FingerprintType_v1
Open Babel’s implementation of the ECFP4 fingerprint

This is a circular fingerprint of diameter 4.

The OpenBabel-ECFP4/1 FingerprintType parameter is:

• nBits - the number of bits in the fingerprint (default: 4096 and must be a power of 2)

OpenBabelECFP6FingerprintType_v1

class chemfp.openbabel_types.OpenBabelECFP6FingerprintType_v1
Open Babel’s implementation of the ECFP6 fingerprint

This is a circular fingerprint of diameter 6.

The OpenBabel-ECFP6/1 FingerprintType parameter is:

• nBits - the number of bits in the fingerprint (default: 4096 and must be a power of 2)

OpenBabelECFP8FingerprintType_v1

class chemfp.openbabel_types.OpenBabelECFP8FingerprintType_v1
Open Babel’s implementation of the ECFP8 fingerprint

This is a circular fingerprint of diameter 8.

The OpenBabel-ECFP8/1 FingerprintType parameter is:

• nBits - the number of bits in the fingerprint (default: 4096 and must be a power of 2)

288 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

OpenBabelECFP10FingerprintType_v1

class chemfp.openbabel_types.OpenBabelECFP10FingerprintType_v1
Open Babel’s implementation of the ECFP10 fingerprint

This is a circular fingerprint of diameter 10.

The OpenBabel-ECFP10/1 FingerprintType parameter is:

• nBits - the number of bits in the fingerprint (default: 4096 and must be a power of 2)

SubstructOpenBabelFingerprinter_v1

class chemfp.openbabel_patterns.SubstructOpenBabelFingerprinter_v1
chemfp’s Substruct fingerprint implementation for OEChem, version 1

WARNING: these fingerprints have not been validated.

The Substruct fingerprints are CACTVS/PubChem-like fingerprints designed for use across multiple
toolkits.

The ChemFP-Substruct-OpenBabel/1 FingerprintType has no parameters.

RDMACCSOpenBabelFingerprinter_v1

class chemfp.openbabel_patterns.RDMACCSOpenBabelFingerprinter_v1
chemfp’s RDMACCS fingerprint implementation for Open Babel, version 1

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but
designed to be (slightly) more portable across multiple chemistry toolkits.

This version does not define key 44.

The RDMACSS-OpenBabel/1 FingerprintType has no parameters.

RDMACCSOpenBabelFingerprinter_v2

class chemfp.openbabel_patterns.RDMACCSOpenBabelFingerprinter_v2
chemfp’s RDMACCS fingerprint implementation for Open Babel, version 2

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but
designed to be (slightly) more portable across multiple chemistry toolkits.

This version defines key 44.

The RDMACSS-OpenBabel/2 FingerprintType has no parameters.

8.2.4 OpenEye fingerprints

OpenEye’s OEGraphSim library implements four bitstring-based fingerprint families, and chemfp implements
two fingerprint families based on OEChem. These are:

• OpenEye-Path - exhaustive enumeration of all linear fragments up to a given size

• OpenEye-Circular - exhaustive enumeration of all circular fragments grown radially from each heavy
atom up to a given radius

• OpenEye-Tree - exhaustive enumeration of all trees up to a given size

8.2. chemfp.types - fingerprint families and types 289

chemfp Documentation, Release 3.4

• OpenEye-MACCS166 - an implementation of the 166 MACCS keys

• RDMACCS-OpenEye - a chemfp implementation of the 166 MACCS keys

• ChemFP-Substruct-OpenEye - an experimental chemfp implementation of the PubChem keys

Note: chemfp-2.0 implements both RDMACCS-OpenEye/1 and RDMACCS-OpenEye/2. Version 1 did not
have a definition for key 44.

OpenEyeCircularFingerprintType_v2

class chemfp.openeye_types.OpenEyeCircularFingerprintType_v2
OEGraphSim fingerprint based on circular fingerprints around heavy atoms, version 2

See https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#
section-fingerprint-circular

The OpenEye-Circular/2 FingerprintType parameters are:

• numbits - the number of bits in the fingerprint (default: 4096)

• minradius - the minimum radius (default: 0)

• maxradius - the maximum radius (default: 5)

• atype - the atom type (default: “Default”)

• btype - the bond type (default: “Default”)

The atype is either 0 or a ‘|’ separated string containing one or more of the following: Aromatic-
ity, AtomicNumber, Chiral, EqHBondAcceptor, EqHBondDonor, EqHalogen, FormalCharge, HCount,
HvyDegree, Hybridization, InRing, EqAromatic,

The btype is either 0 or a ‘|’ separated string containing one or more of the following: BondOrder,
Chiral, InRing.

OpenEyeMACCSFingerprintType_v2

class chemfp.openeye_types.OpenEyeMACCSFingerprintType_v2
OEGraphSim implementation of the 166 MACCS keys, version 2

See https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#maccs .

The OpenEye-MACCS166/2 FingerprintType has no parameters.

This corresponds to GraphSim version ‘2.0.0’.

OpenEyeMACCSFingerprintType_v3

class chemfp.openeye_types.OpenEyeMACCSFingerprintType_v3
OEGraphSim implementation of the 166 MACCS keys, version 3

See https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#maccs .

The OpenEye-MACCS166/3 FingerprintType has no parameters.

This corresponds to GraphSim version ‘2.2.0’, with fixes for bits 91 and 92.

290 Chapter 8. chemfp API

https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-circular
https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-circular
https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#maccs
https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#maccs

chemfp Documentation, Release 3.4

OpenEyePathFingerprintType_v2

class chemfp.openeye_types.OpenEyePathFingerprintType_v2
OEGraphSim fingerprint based on path-based enumeration, version 2

See https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-path

The OpenEye-Path/2 FingerprintType parameters are:

• numbits - the number of bits in the fingerprint (default: 4096)

• minbonds - the minimum number of bonds (default: 0)

• maxbonds - the maximum number of bonds (default: 5)

• atype - the atom type (default: “Default”)

• btype - the bond type (default: “Default”)

The atype is either 0 or a ‘|’ separated string containing one or more of the following: Aromatic-
ity, AtomicNumber, Chiral, EqHBondAcceptor, EqHBondDonor, EqHalogen, FormalCharge, HCount,
HvyDegree, Hybridization, InRing, EqAromatic,

The btype is either 0 or a ‘|’ separated string containing one or more of the following: BondOrder,
Chiral, InRing.

OpenEyeTreeFingerprintType_v2

class chemfp.openeye_types.OpenEyeTreeFingerprintType_v2
OEGraphSim fingerprint based on tree fingerprints, version 2

See https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-tree

The OpenEye-Tree/2 FingerprintType parameters are:

• numbits - the number of bits in the fingerprint (default: 4096)

• minbonds - minimum number of bonds in the tree

• maxbonds - maximum number of bonds in the tree

• atype - the atom type (default: “Default”)

• btype - the bond type (default: “Default”)

The atype is either 0 or a ‘|’ separated string containing one or more of the following: Aromatic-
ity, AtomicNumber, Chiral, EqHBondAcceptor, EqHBondDonor, EqHalogen, FormalCharge, HCount,
HvyDegree, Hybridization, InRing, EqAromatic,

The btype is either 0 or a ‘|’ separated string containing one or more of the following: BondOrder,
Chiral, InRing.

OpenEyeMoleculeScreenFingerprintType_v1

class chemfp.openeye_types.OpenEyeMoleculeScreenFingerprintType_v1
OEChem molecule screen using OESubSearchScreenType::Molecule

See http://https://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemClasses/OESubSearchScreen.
html This OpenEyeMoleculeScreenFingerprintType_v1 FingerprintType takes no parameters. Call-
ing the fingerprinter with a QMol returns the query screen, calling with an OEMol returns a target
screen.

8.2. chemfp.types - fingerprint families and types 291

https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-path
https://docs.eyesopen.com/toolkits/cpp/graphsimtk/fingerprint.html#section-fingerprint-tree
http://https://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemClasses/OESubSearchScreen.html
http://https://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemClasses/OESubSearchScreen.html

chemfp Documentation, Release 3.4

OpenEyeSMARTSScreenFingerprintType_v1

class chemfp.openeye_types.OpenEyeSMARTSScreenFingerprintType_v1
OEChem SMARTS screen using OESubSearchScreenType::SMARTS

See http://https://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemClasses/OESubSearchScreen.
html This OpenEyeSMARTSScreenFingerprintType_v1 FingerprintType takes no parameters. Call-
ing the fingerprinter with a QMol returns the query screen, calling with an OEMol returns a target
screen.

OpenEyeMDLScreenFingerprintType_v1

class chemfp.openeye_types.OpenEyeMDLScreenFingerprintType_v1
OEChem MDL screen using OESubSearchScreenType::MDL

See http://https://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemClasses/OESubSearchScreen.
html This OpenEyeMDLScreenFingerprintType_v1 FingerprintType takes no parameters. Calling
the fingerprinter with a QMol returns the query screen, calling with an OEMol returns a target screen.

SubstructOpenEyeFingerprinter_v1

class chemfp.openeye_patterns.SubstructOpenEyeFingerprinter_v1
chemfp’s Substruct fingerprint implementation for OEChem, version 1

WARNING: these fingerprints have not been validated.

The Substruct fingerprints are CACTVS/PubChem-like fingerprints designed for use across multiple
toolkits.

The ChemFP-Substruct-OpenEye/1 FingerprintType has no parameters.

RDMACCSOpenEyeFingerprinter_v1

class chemfp.openeye_patterns.RDMACCSOpenEyeFingerprinter_v1
chemfp’s RDMACCS fingerprint implementation for OEChem, version 1

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but
designed to be (slightly) more portable across multiple chemistry toolkits.

This version does not define key 44.

The RDMACSS-OpenEye/1 FingerprintType has no parameters.

RDMACCSOpenEyeFingerprinter_v2

class chemfp.openeye_patterns.RDMACCSOpenEyeFingerprinter_v2
chemfp’s RDMACCS fingerprint implementation for OEChem, version 2

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but
designed to be (slightly) more portable across multiple chemistry toolkits.

This version defines key 44.

The RDMACSS-OpenEye/2 FingerprintType has no parameters.

292 Chapter 8. chemfp API

http://https://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemClasses/OESubSearchScreen.html
http://https://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemClasses/OESubSearchScreen.html
http://https://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemClasses/OESubSearchScreen.html
http://https://docs.eyesopen.com/toolkits/cpp/oechemtk/OEChemClasses/OESubSearchScreen.html

chemfp Documentation, Release 3.4

8.2.5 RDKit fingerprints

RDKit implements six fingerprint families, and chemfp implements two fingerprint families based on RDKit.
These are:

• RDKit-Fingerprint - exhaustive enumeration of linear and branched trees

• RDKit-MACCS166 - The RDKit implementation of the MACCS keys

• RDKit-Morgan - EFCP-like circular fingerprints

• RDKit-AtomPair - atom pair fingerprints

• RDKit-Torsion - topological-torsion fingerprints

• RDKit-Pattern - substructure screen fingerprint

• RDMACCS-RDKit - a chemfp implementation of the 166 MACCS keys

• ChemFP-Substruct-RDKit - an experimental chemfp implementation of the PubChem keys

Note: chemfp-2.0 implements both RDMACCS-RDKit/1 and RDMACCS-RDKit/2. Version 1 did not have
a definition for key 44.

RDKitFingerprintType_v1

class chemfp.rdkit_types.RDKitFingerprintType_v1
RDKit’s Daylight-like fingerprint based on linear path and branched tree enumeration, version 1

See http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#RDKFingerprint

The RDKit-Fingerprint/1 FingerprintType parameters are:

• fpSize - number of bits in the fingerprint (default: 2048)

• minPath - minimum number of bonds (default: 1)

• maxPath - maximum number of bonds (default: 7)

• nBitsPerHash - number of bits to set for each path hash (default: 2)

• useHs - include information about the number of hydrogens on each atom? (default: True)

Note: this version is only available in older (pre-2014) versions of RDKit

RDKitFingerprintType_v2

class chemfp.rdkit_types.RDKitFingerprintType_v2
RDKit’s Daylight-like fingerprint based on linear path and branched tree enumeration, version 2

See http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#RDKFingerprint

The RDKit-Fingerprint/2 FingerprintType parameters are:

• fpSize - number of bits in the fingerprint (default: 2048)

• minPath - minimum number of bonds (default: 1)

• maxPath - maximum number of bonds (default: 7)

• nBitsPerHash - number of bits to set for each path hash (default: 2)

• useHs - include information about the number of hydrogens on each atom? (default: True)

• branchedPaths - include both branched and unbranched paths (default: True)

8.2. chemfp.types - fingerprint families and types 293

http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#RDKFingerprint
http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#RDKFingerprint

chemfp Documentation, Release 3.4

• useBondOrder - use both bond orders in the path hashes (default: True)

• fromAtoms - a comma-separated list of atom indices which must be part of the path enumeration

RDKitMACCSFingerprintType_v1

class chemfp.rdkit_types.RDKitMACCSFingerprintType_v1
RDKit’s implementation of the 166 MACCS keys, version 1

See http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#
GetMACCSKeysFingerprint

The RDKit-MACCS166/1 fingerprints have no parameters.

This version of RDKit does not support MACCS key 44 (“OTHER”).

RDKitMACCSFingerprintType_v2

class chemfp.rdkit_types.RDKitMACCSFingerprintType_v2
RDKit’s implementation of the 166 MACCS keys, version 2

See http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#
GetMACCSKeysFingerprint

The RDKit-MACCS166/1 fingerprints have no parameters. RDKit version added this version in late
2014.

RDKitMorganFingerprintType_v1

class chemfp.rdkit_types.RDKitMorganFingerprintType_v1
RDKit Morgan (ECFP-like) fingerprints, version 1

See http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#
GetMorganFingerprintAsBitVect

The RDKit-Morgan/1 FingerprintType parameters are:

• fpSize - number of bits in the fingerprint (default: 2048)

• radius - radius for the Morgan algorithm (default: 2)

• useFeatures - use chemical-feature invariants (default: 0)

• useChirality - use chirality information (default: 0)

• useBondTypes - include bond type information (default: 1)

• includeRedundantEnvironments - if set, the check for redundant atom environments
will not be done (added in RDKit 2020-3) (default: 0)

• fromAtoms - a comma-separated list of atom indices to use as centers

RDKitAtomPairFingerprint_v1

class chemfp.rdkit_types.RDKitAtomPairFingerprint_v1
RDKit atom pair fingerprints, version 1”

See http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#
GetHashedAtomPairFingerprintAsBitVect

294 Chapter 8. chemfp API

http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMACCSKeysFingerprint
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMACCSKeysFingerprint
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMACCSKeysFingerprint
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMACCSKeysFingerprint
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMorganFingerprintAsBitVect
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetMorganFingerprintAsBitVect
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetHashedAtomPairFingerprintAsBitVect
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetHashedAtomPairFingerprintAsBitVect

chemfp Documentation, Release 3.4

The RDKit-AtomPair/1 FingerprintType parameters are:

• fpSize - number of bits in the fingerprint (default: 2048)

• minLength - minimum bond count for a pair (default: 1)

• maxLength - maximum bond count for a pair (default: 30)

Note: this version is only available in older (pre-2012) versions of RDKit

RDKitAtomPairFingerprint_v2

class chemfp.rdkit_types.RDKitAtomPairFingerprint_v2
RDKit atom pair fingerprints, version 2”

See http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#
GetHashedAtomPairFingerprintAsBitVect

The RDKit-AtomPair/2 FingerprintType parameters are:

• fpSize - number of bits in the fingerprint (default: 2048)

• minLength - minimum bond count for a pair (default: 1 bond)

• maxLength - maximum bond count for a pair (default: 30, max: 63)

• nBitsPerEntry - number of bits to use in simulating counts (default: 4)

• includeChirality - if set, chirality will be used in the atom invariants (default: 0)

• use2D - if 1, use a 2D distance matrix, if 0 use the 3D matrix from the first set of
conformers, or return an empty fingerprint if no conformers (default: 1)

• fromAtoms - a comma-separated list of atom indices which must be in the pair

RDKitTorsionFingerprintType_v1

class chemfp.rdkit_types.RDKitTorsionFingerprintType_v1
RDKit torsion fingerprints, version 1

See http://www.rdkit.org/Python_Docs/rdkit.Chem.AtomPairs.Torsions-module.html

An implementation of Topological-torsion fingerprints, as described in: R. Nilakantan, N. Bauman, J. S.
Dixon, R. Venkataraghavan; “Topological Torsion: A New Molecular Descriptor for SAR Applications.
Comparison with Other Descriptors” JCICS 27, 82-85 (1987).

The RDKit-Torsion/1 FingerprintType parameters are:

• fpSize - number of bits in the fingerprint (default: 2048)

• targetSize - number of bonds per torsion (default: 4)

Note: this version is only available in older (pre-2014) versions of RDKit

RDKitTorsionFingerprintType_v2

class chemfp.rdkit_types.RDKitTorsionFingerprintType_v2
RDKit torsion fingerprints, version 2

See http://www.rdkit.org/Python_Docs/rdkit.Chem.AtomPairs.Torsions-module.html

8.2. chemfp.types - fingerprint families and types 295

http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetHashedAtomPairFingerprintAsBitVect
http://rdkit.org/Python_Docs/rdkit.Chem.rdMolDescriptors-module.html#GetHashedAtomPairFingerprintAsBitVect
http://www.rdkit.org/Python_Docs/rdkit.Chem.AtomPairs.Torsions-module.html
http://www.rdkit.org/Python_Docs/rdkit.Chem.AtomPairs.Torsions-module.html

chemfp Documentation, Release 3.4

An implementation of Topological-torsion fingerprints, as described in: R. Nilakantan, N. Bauman, J. S.
Dixon, R. Venkataraghavan; “Topological Torsion: A New Molecular Descriptor for SAR Applications.
Comparison with Other Descriptors” JCICS 27, 82-85 (1987).

The RDKit-Torsion/2 FingerprintType parameters are:

• fpSize - number of bits in the fingerprint (default: 2048)

• targetSize - number of bonds per torsion (default: 4)

• nBitsPerEntry - number of bits to set per entry (default: 4)

• includeChirality - include chirality information (default: 0)

• fromAtoms - a comma-separated list of atom indices which must be part of the torsion

RDKitPatternFingerprint_v1

class chemfp.rdkit_types.RDKitPatternFingerprint_v1
RDKit’s experimental substructure screen fingerprint, version 1

See http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint

The RDKit-Pattern/1 fingerprint has no parameters.

RDKitPatternFingerprint_v2

class chemfp.rdkit_types.RDKitPatternFingerprint_v2
RDKit’s experimental substructure screen fingerprint, version 2

See http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint

The RDKit-Pattern/2 fingerprint has no parameters.

RDKitPatternFingerprint_v3

class chemfp.rdkit_types.RDKitPatternFingerprint_v3
RDKit’s experimental substructure screen fingerprint, version 3

See http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint

The RDKit-Pattern/3 fingerprint has no parameters. This version was released 2017.03.1.

RDKitSECFPFingerprintType_v1

class chemfp.rdkit_types.RDKitSECFPFingerprintType_v1
SECFP fingerprints

The SMILES Extended Connectivity Fingerprint, as described in: Probst, D., Reymond,
J. A probabilistic molecular fingerprint for big data settings. J Cheminform 10,
66 (2018). https://doi.org/10.1186/s13321-018-0321-8 https://jcheminf.biomedcentral.com/
articles/10.1186/s13321-018-0321-8

These are circular fingerprints which encode the circular region as a fragment SMILES, which is then
hashed to produce the fingerprint bits.

The RDKit-SECFP/1 FingerprintType parameters are:

• fpSize - number of bits in the fingerprint (default: 2048)

296 Chapter 8. chemfp API

http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint
http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint
http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#PatternFingerprint
https://doi.org/10.1186/s13321-018-0321-8
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0321-8
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0321-8

chemfp Documentation, Release 3.4

• radius - analogous to the radius for the Morgan algorithm (default: 3)

• rings - include ring membership (default: 1)

• isomeric - use isomeric SMILES (default: 0)

• kekulize - Kekulize the molecule and use Kekule SMILES (default: 1)

• min_radius - minimum radius for the Morgan algorithm (default: 1)

RDKitAvalonFingerprintType_v1

class chemfp.rdkit_types.RDKitAvalonFingerprintType_v1
Avalon fingerprints

The Avalon Cheminformatics toolkit is available from https://sourceforge.net/projects/avalontoolkit/
. It is not part of the core RDKit distribution. Instead, RDKit has a compile-time option to download
and include it as part of the build process.

The Avalon fingerprint are described in the supplemental information for “QSAR - How Good Is It
in Practice? Comparison of Descriptor Sets on an Unbiased Cross Section of Corporate Data Sets”,
Peter Gedeck, Bernhard Rohde, and Christian Bartels, J. Chem. Inf. Model., 2006, 46 (5), pp 1924-
1936, DOI: 10.1021/ci050413p. The supplemental information is available from http://pubs.acs.org/
doi/suppl/10.1021/ci050413p

It uses a set of feature classes which “have been fine-tuned to provide good screen-out for the
set of substructure queries encounted at Novartis while limiting redundancy.” The classes are
ATOM_COUNT, ATOM_SYMBOL_PATH, AUGMENTED_ATOM, AUGMENTED_BOND,
HCOUNT_PAIR, HCOUNT_PATH, RING_PATH, BOND_PATH, HCOUNT_CLASS_PATH,
ATOM_CLASS_PATH, RING_PATTERN, RING_SIZE_COUNTS, DEGREE_PATHS,
CLASS_SPIDERS, FEATURE_PAIRS and ALL_PATTERNS.

SubstructRDKitFingerprintType_v1

class chemfp.rdkit_patterns.SubstructRDKitFingerprintType_v1
chemfp’s Substruct fingerprint implementation for RDKit, version 1

WARNING: these fingerprints have not been validated.

The Substruct fingerprints are CACTVS/PubChem-like fingerprints designed for use across multiple
toolkits.

The ChemFP-Substruct-RDKit/1 FingerprintType has no parameters.

RDMACCSRDKitFingerprinter_v1

class chemfp.rdkit_patterns.RDMACCSRDKitFingerprinter_v1
chemfp’s RDMACCS fingerprint implementation for RDKit, version 1

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but
designed to be (slightly) more portable across multiple chemistry toolkits.

This version does not define key 44.

The RDMACSS-RDKit/1 FingerprintType has no parameters.

8.2. chemfp.types - fingerprint families and types 297

https://sourceforge.net/projects/avalontoolkit/
http://pubs.acs.org/doi/suppl/10.1021/ci050413p
http://pubs.acs.org/doi/suppl/10.1021/ci050413p

chemfp Documentation, Release 3.4

RDMACCSRDKitFingerprinter_v2

class chemfp.rdkit_patterns.RDMACCSRDKitFingerprinter_v2
chemfp’s RDMACCS fingerprint implementation for RDKit, version 2

The RDMACSS keys are MACCS-166-like fingerprints based on RDKit’s MACCS116 definition, but
designed to be (slightly) more portable across multiple chemistry toolkits.

This version defines key 44.

The RDMACSS-RDKit/2 FingerprintType has no parameters.

8.3 chemfp.arena module

There should be no reason for you to import this module yourself. It contains the FingerprintArena
implementation. FingerprintArena instances are returned as part of the public API but should not be
constructed directly. Instead, use chemfp.load_fingerprints() to create an arena.

8.3.1 FingerprintArena

class chemfp.arena.FingerprintArena

Store fingerprints in a contiguous block of memory for fast searches

A fingerprint arena implements the chemfp.FingerprintReader API.

A fingerprint arena stores all of the fingerprints in a continuous block of memory, so the
per-molecule overhead is very low.

The fingerprints can be sorted by popcount, so the fingerprints with no bits set come first,
followed by those with 1 bit, etc. If self.popcount_indices is a non-empty string then
the string contains information about the start and end offsets for all the fingerprints with
a given popcount. This information is used for the sublinear search methods.

The public attributes are:

metadata
chemfp.Metadata about the fingerprints

ids
list of identifiers, in index order

fingerprints
Added in version 3.3.

a FingerprintList list-like view of the fingerprints, in index order

Other attributes, which might be subject to change, and which I won’t fully explain, are:

• arena - a contiguous block of memory, which contains the fingerprints

• start_padding - number of bytes to the first fingerprint in the block

• end_padding - number of bytes after the last fingerprint in the block

• storage_size - number of bytes used to store a fingerprint

• num_bytes - number of bytes in each fingerprint (must be <= storage_size)

298 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• num_bits - number of bits in each fingerprint

• alignment - the fingerprint alignment

• start - the index for the first fingerprint in the arena/subarena

• end - the index for the last fingerprint in the arena/subarena

• arena_ids - all of the identifiers for the parent arena

The FingerprintArena is its own context manager, but it does nothing on context exit. The
derived FPBFingerprintArena may use a memory-mapped FPB file, which will be closed by
the context manager or by an explicit call to close().

__len__()
Number of fingerprint records in the FingerprintArena

__getitem__(i)
Return the (id, fingerprint) pair at index i

__iter__()
Iterate over the (id, fingerprint) contents of the arena

get_fingerprint_type()
Get the fingerprint type object based on the metadata’s type field

This uses self.metadata.type to get the fingerprint type string then calls chemfp.
get_fingerprint_type() to get and return a chemfp.types.FingerprintType instance.

This will raise a TypeError if there is no metadata, and a ValueError if the type field was invalid
or the fingerprint type isn’t available.

Returns a chemfp.types.FingerprintType

get_fingerprint(i)
Return the fingerprint at index i

Raises an IndexError if index i is out of range.

get_by_id(id)
Given the record identifier, return the (id, fingerprint) pair,

If the id is not present then return None.

get_index_by_id(id)
Given the record identifier, return the record index

If the id is not present then return None.

get_fingerprint_by_id(id)
Given the record identifier, return its fingerprint

If the id is not present then return None

save(destination, format=None, level=None)
Save the fingerprints to a given destination and format

The output format is based on the format. If the format is None then the format depends on the
destination file extension. If the extension isn’t recognized then the fingerprints will be saved in
“fps” format.

If the output format is “fps”, “fps.gz”, or “fps.zst” then destination may be a filename, a file
object, or None; None writes to stdout.

8.3. chemfp.arena module 299

chemfp Documentation, Release 3.4

If the output format is “fpb” then destination must be a filename or seekable file object. Chemfp
cannot save to compressed FPB files.

Parameters

• destination (a filename, file object, or None) – the output destination

• format (None, "fps", "fps.gz", "fps.zst", or "fpb") – the output format

• level (an integer, or "min", "default", or "max" for
compressor-specific values) – compression level when writing .gz or .zst
files

Returns None

iter_arenas(arena_size = 1000)
Base class for all chemfp objects holding fingerprint records

All FingerprintReader instances have a metadata attribute containing a Metadata and can be
iteratated over to get the (id, fingerprint) for each record.

copy(indices=None, reorder=None)
Create a new arena using either all or some of the fingerprints in this arena

By default this create a new arena. The fingerprint data block and ids may be shared with the
original arena, which makes this a shallow copy. If the original arena is a slice, or “sub-arena” of
an arena, then the copy will allocate new space to store just the fingerprints in the slice and use
its own list for the ids.

The indices parameter, if not None, is an iterable which contains the indicies of the fingerprint
records to copy. Duplicates are allowed, though discouraged.

If indices are specified then the default reorder value of None, or the value True, will reorder the
fingerprints for the new arena by popcount. This improves overall search performance. If reorder
is False then the new arena will preserve the order given by the indices.

If indices are not specified, then the default is to preserve the order type of the original
arena. Use reorder=True to always reorder the fingerprints in the new arena by popcount,
and reorder=False to always leave them in the current ordering.

>>> import chemfp
>>> arena = chemfp.load_fingerprints("pubchem_queries.fps")
>>> arena.ids[1], arena.ids[5], arena.ids[10], arena.ids[18]
(b'9425031', b'9425015', b'9425040', b'9425033')
>>> len(arena)
19
>>> new_arena = arena.copy(indices=[1, 5, 10, 18])
>>> len(new_arena)
4
>>> new_arena.ids
[b'9425031', b'9425015', b'9425040', b'9425033']
>>> new_arena = arena.copy(indices=[18, 10, 5, 1], reorder=False)
>>> new_arena.ids
[b'9425033', b'9425040', b'9425015', b'9425031']

Parameters

• indices (iterable containing integers, or None) – indicies of the records to
copy into the new arena

300 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• reorder (True to reorder, False to leave in input order, None for
default action) – describes how to order the fingerprints

to_numpy_array()
Added in version 3.4.

Get the fingerprint bytes in a chemfp arena as NumPy uint8 array.

A chemfp arena stores fingerprints in a contiguous byte string. This function returns a 2D NumPy
array which is a view of that string. The array has len(arena) rows and arena.storage_size
columns.

The storage size may be larger than the minimum number of bytes in the fingerprint because
of zero padding used to improve performance. For example, the 166-bit MACCS keys uses 24
bytes of storage when only 21 bytes are needed, because then chemfp can use the fast POPCNT
instruction when computing the Tanimoto.

To remove extra padding bytes, use NumPy indexing to copy the fingerprint bytes to a new array:

arr[:,0:arena.num_bytes]

The last column of this new array may contain padding bits if the number of bits in a fingerprint
is not a multiple of 8.

Warning: Do not attempt to access the contents of a NumPy view of a FPBFingerprintArena
(the arena from an FPB file) after the FPB file has been closed as that will likely cause a
segmentation fault or other severe failure.

Returns a NumPy array of type uint8

to_numpy_bitarray(bitlist=None)
Added in version 3.4.

Get the fingerprint bits in a chemfp arena as NumPy uint8 array.

This function returns a 2D NumPy array with len(arena) rows and one column for each bit. The
default returns arena.num_bits columns, where column 0 is the first bit, etc. Use bitlist to specify
the indicies of which columns to return. Negative indices are supported; -1 is the last bit, -2 is
the second to last. Out of range indices raise an IndexError.

Parameters bitlist (iterable of integers) – bit column indices to use (default:
all bits)

Returns a NumPy array of type uint8

count_tanimoto_hits_fp(query_fp, threshold=0.7)
Count the fingerprints which are sufficiently similar to the query fingerprint

Return the number of fingerprints in the arena which are at least threshold similar to the query
fingerprint query_fp.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns integer count

8.3. chemfp.arena module 301

chemfp Documentation, Release 3.4

threshold_tanimoto_search_fp(query_fp, threshold=0.7)
Find the fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this arena which are at least threshold similar to the query fingerprint
query_fp. The hits are returned as a SearchResult, in arbitrary order.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns a SearchResult

knearest_tanimoto_search_fp(query_fp, k=3, threshold=0.7)
Find the k-nearest fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this arena which are at least threshold similar to the query fingerprint,
and of those, select the top k hits. The hits are returned as a SearchResult, sorted from highest
score to lowest.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns a SearchResult

count_tversky_hits_fp(query_fp, threshold=0.7, alpha=1.0, beta=1.0)
Count the fingerprints which are sufficiently similar to the query fingerprint

Return the number of fingerprints in the arena which are at least threshold similar to the query
fingerprint query_fp.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns integer count

threshold_tversky_search_fp(query_fp, threshold=0.7, alpha=1.0, beta=1.0)
Find the fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this arena which are at least threshold similar to the query fingerprint
query_fp. The hits are returned as a SearchResult, in arbitrary order.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns a SearchResult

knearest_tversky_search_fp(query_fp, k=3, threshold=0.7, alpha=1.0, beta=1.0)
Find the k-nearest fingerprints which are sufficiently similar to the query fingerprint

302 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

Find all of the fingerprints in this arena which are at least threshold similar to the query fingerprint,
and of those, select the top k hits. The hits are returned as a SearchResult, sorted from highest
score to lowest.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns a SearchResult

8.3.2 FingerprintList

class chemfp.arena.FingerprintList
Added in version 3.3.

A read-only list-like view of the arena fingerprints

This implements the standard Python list API, including indexing and iteration.

Note: fingerprint searches like “fp in fingerprint_list” and “fingerprint_list.index(fp)” are not fast.

8.4 chemfp.search module

The following functions and classes are in the chemfp.search module.

There are three main classes of functions. The ones ending with *_fp use a query fingerprint to search a
target arena. The ones ending with *_arena use a query arena to search a target arena. The ones ending
with *_symmetric use arena to search itself, except that a fingerprint is not tested against itself.

These functions share the same name with very similar functions in the top-level chemfp module. My
apologies for any confusion. The top-level functions are designed to work with both arenas and iterators as
the target. They give a simple search API, and automatically process in blocks, to give a balanced trade-off
between performance and response time for the first results.

The functions in this module only work with arena as the target. By default it searches the entire arena
before returning. If you want to process portions of the arena then you need to specify the range yourself.

8.4.1 count_tanimoto_hits_fp

chemfp.search.count_tanimoto_hits_fp(query_fp, target_arena, threshold=0.7)
Count the number of hits in target_arena at least threshold similar to the query_fp

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(chemfp.search.count_tanimoto_hits_fp(query_fp, targets, threshold=0.1))

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena – the target arena

8.4. chemfp.search module 303

chemfp Documentation, Release 3.4

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns an integer count

8.4.2 count_tanimoto_hits_arena

chemfp.search.count_tanimoto_hits_arena(query_arena, target_arena, threshold=0.7)
For each fingerprint in query_arena, count the number of hits in target_arena at least threshold similar
to it

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tanimoto_hits_arena(queries, targets, threshold=0.1)
print(counts[:10])

The result is implementation specific. You’ll always be able to get its length and do an index lookup
to get an integer count. Currently it’s a ctypes array of longs, but it could be an array.array or Python
list in the future.

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns an array of counts

8.4.3 count_tanimoto_hits_symmetric

chemfp.search.count_tanimoto_hits_symmetric(arena, threshold=0.7, batch_size=100)
For each fingerprint in the arena, count the number of other fingerprints at least threshold similar to it

A fingerprint never matches itself.

The computation can take a long time. Python won’t check check for a ^C until the function finishes.
This can be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. I can’t detect any performance
difference between the current value and a larger value, so it seems rather pointless to have. Let me
know if it’s useful to keep as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tanimoto_hits_symmetric(arena, threshold=0.2)
print(counts[:10])

The result object is implementation specific. You’ll always be able to get its length and do an index
lookup to get an integer count. Currently it’s a ctype array of longs, but it could be an array.array or
Python list in the future.

Parameters

304 Chapter 8. chemfp API

https://docs.python.org/2/library/ctypes.html#arrays
https://docs.python.org/2/library/array.html

chemfp Documentation, Release 3.4

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns an array of counts

8.4.4 partial_count_tanimoto_hits_symmetric

chemfp.search.partial_count_tanimoto_hits_symmetric(counts, arena, threshold=0.7,
query_start=0, query_end=None,
target_start=0, target_end=None)

Compute a portion of the symmetric Tanimoto counts

For most cases, use chemfp.search.count_tanimoto_hits_symmetric() instead of this function!

This function is only useful for thread-pool implementations. In that case, set the number of OpenMP
threads to 1.

counts is a contiguous array of integers. It should be initialized to zeros, and reused for successive calls.

The function adds counts for counts[query_start:query_end] based on computing the upper-triangle
portion contained in the rectangle query_start:query_end and target_start:target_end* and using
symmetry to fill in the lower half.

You know, this is pretty complicated. Here’s the bare minimum example of how to use it correctly to
process 10 rows at a time using up to 4 threads:

import chemfp
import chemfp.search
from chemfp import futures
import array

chemfp.set_num_threads(1) # Globally disable OpenMP

arena = chemfp.load_fingerprints("targets.fps") # Load the fingerprints
n = len(arena)
counts = array.array("i", [0]*n)

with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):

executor.submit(chemfp.search.partial_count_tanimoto_hits_symmetric,
counts, arena, threshold=0.2,
query_start=row, query_end=min(row+10, n))

print(counts)

Parameters

• counts (a contiguous block of integer) – the accumulated Tanimoto counts

• arena (a chemfp.arena.FingerprintArena) – the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• query_start (an integer) – the query start row

8.4. chemfp.search module 305

chemfp Documentation, Release 3.4

• query_end (an integer, or None to mean the last query row) – the query
end row

• target_start (an integer) – the target start row

• target_end (an integer, or None to mean the last target row) – the target
end row

Returns None

8.4.5 count_tversky_hits_fp

chemfp.search.count_tversky_hits_fp(query_fp, target_arena, threshold=0.7, alpha=1.0,
beta=1.0)

Count the number of hits in target_arena least threshold similar to the query_fp (Tversky)

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(chemfp.search.count_tversky_hits_fp(query_fp, targets, threshold=0.1))

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena – the target arena

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns an integer count

8.4.6 count_tversky_hits_arena

chemfp.search.count_tversky_hits_arena(query_arena, target_arena, threshold=0.7, alpha=1.0,
beta=1.0)

For each fingerprint in query_arena, count the number of hits in target_arena at least threshold similar
to it

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tversky_hits_arena(queries, targets, threshold=0.1,

alpha=0.5, beta=0.5)
print(counts[:10])

The result is implementation specific. You’ll always be able to get its length and do an index lookup
to get an integer count. Currently it’s a ctypes array of longs, but it could be an array.array or Python
list in the future.

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

306 Chapter 8. chemfp API

https://docs.python.org/2/library/ctypes.html#arrays
https://docs.python.org/2/library/array.html

chemfp Documentation, Release 3.4

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns an array of counts

8.4.7 count_tversky_hits_symmetric

chemfp.search.count_tversky_hits_symmetric(arena, threshold=0.7, alpha=1.0, beta=1.0,
batch_size=100)

For each fingerprint in the arena, count the number of other fingerprints at least threshold similar to it

A fingerprint never matches itself.

The computation can take a long time. Python won’t check check for a ^C until the function finishes.
This can be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. I can’t detect any performance
difference between the current value and a larger value, so it seems rather pointless to have. Let me
know if it’s useful to keep as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("targets.fps")
counts = chemfp.search.count_tversky_hits_symmetric(

arena, threshold=0.2, alpha=0.5, beta=0.5)
print(counts[:10])

The result object is implementation specific. You’ll always be able to get its length and do an index
lookup to get an integer count. Currently it’s a ctype array of longs, but it could be an array.array or
Python list in the future.

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns an array of counts

8.4.8 partial_count_tversky_hits_symmetric

chemfp.search.partial_count_tversky_hits_symmetric(counts, arena, threshold=0.7, al-
pha=1.0, beta=1.0, query_start=0,
query_end=None, target_start=0,
target_end=None)

Compute a portion of the symmetric Tversky counts

For most cases, use chemfp.search.count_tversky_hits_symmetric() instead of this function!

This function is only useful for thread-pool implementations. In that case, set the number of OpenMP
threads to 1.

counts is a contiguous array of integers. It should be initialized to zeros, and reused for successive calls.

The function adds counts for counts[query_start:query_end] based on computing the upper-triangle
portion contained in the rectangle query_start:query_end and target_start:target_end* and using
symmetry to fill in the lower half.

8.4. chemfp.search module 307

chemfp Documentation, Release 3.4

You know, this is pretty complicated. Here’s the bare minimum example of how to use it correctly to
process 10 rows at a time using up to 4 threads:

import chemfp
import chemfp.search
from chemfp import futures
import array

chemfp.set_num_threads(1) # Globally disable OpenMP

arena = chemfp.load_fingerprints("targets.fps") # Load the fingerprints
n = len(arena)
counts = array.array("i", [0]*n)

with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):

executor.submit(chemfp.search.partial_count_tversky_hits_symmetric,
counts, arena, threshold=0.2, alpha=0.5, beta=0.5,
query_start=row, query_end=min(row+10, n))

print(counts)

Parameters

• counts (a contiguous block of integer) – the accumulated Tversky counts

• arena (a chemfp.arena.FingerprintArena) – the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• query_start (an integer) – the query start row

• query_end (an integer, or None to mean the last query row) – the query
end row

• target_start (an integer) – the target start row

• target_end (an integer, or None to mean the last target row) – the target
end row

Returns None

8.4.9 threshold_tanimoto_search_fp

chemfp.search.threshold_tanimoto_search_fp(query_fp, target_arena, threshold=0.7)
Search for fingerprint hits in target_arena which are at least threshold similar to query_fp

The hits in the returned chemfp.search.SearchResult are in arbitrary order.

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(list(chemfp.search.threshold_tanimoto_search_fp(query_fp, targets,␣
↪→threshold=0.15)))

Parameters

308 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• query_fp (a byte string) – the query fingerprint

• target_arena (a chemfp.arena.FingerprintArena) – the target arena

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns a chemfp.search.SearchResult

8.4.10 threshold_tanimoto_search_arena

chemfp.search.threshold_tanimoto_search_arena(query_arena, target_arena, threshold=0.7)
Search for the hits in the target_arena at least threshold similar to the fingerprints in query_arena

The hits in the returned chemfp.search.SearchResults are in arbitrary order.

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.threshold_tanimoto_search_arena(queries, targets,␣
↪→threshold=0.5)
for query_id, query_hits in zip(queries.ids, results):

if len(query_hits) > 0:
print(query_id, "->", ", ".join(query_hits.get_ids()))

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns a chemfp.search.SearchResults

8.4.11 threshold_tanimoto_search_symmetric

chemfp.search.threshold_tanimoto_search_symmetric(arena, threshold=0.7, in-
clude_lower_triangle=True,
batch_size=100)

Search for the hits in the arena at least threshold similar to the fingerprints in the arena

When include_lower_triangle is True, compute the upper-triangle similarities, then copy the results
to get the full set of results. When include_lower_triangle is False, only compute the upper triangle.

The hits in the returned chemfp.search.SearchResults are in arbitrary order.

The computation can take a long time. Python won’t check check for a ^C until the function finishes.
This can be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. Let me know if it really is useful for
you to have as a user-defined parameter.

Example:

8.4. chemfp.search module 309

chemfp Documentation, Release 3.4

arena = chemfp.load_fingerprints("queries.fps")
full_result = chemfp.search.threshold_tanimoto_search_symmetric(arena, threshold=0.
↪→2)
upper_triangle = chemfp.search.threshold_tanimoto_search_symmetric(

arena, threshold=0.2, include_lower_triangle=False)
assert sum(map(len, full_result)) == sum(map(len, upper_triangle))*2

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• include_lower_triangle (boolean) – if False, compute only the upper triangle,
otherwise use symmetry to compute the full matrix

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns a chemfp.search.SearchResults

8.4.12 partial_threshold_tanimoto_search_symmetric

chemfp.search.partial_threshold_tanimoto_search_symmetric(results, arena, thresh-
old=0.7, query_start=0,
query_end=None, tar-
get_start=0, target_end=None,
results_offset=0)

Compute a portion of the symmetric Tanimoto search results

For most cases, use chemfp.search.threshold_tanimoto_search_symmetric() instead of this func-
tion!

This function is only useful for thread-pool implementations. In that case, set the number of OpenMP
threads to 1.

results is a chemfp.search.SearchResults instance which is at least as large as the arena. It should
be reused for successive updates.

The function adds hits to results[query_start:query_end], based on computing the upper-triangle por-
tion contained in the rectangle query_start:query_end and target_start:target_end.

It does not fill in the lower triangle. To get the full matrix, call fill_lower_triangle.

You know, this is pretty complicated. Here’s the bare minimum example of how to use it correctly to
process 10 rows at a time using up to 4 threads:

import chemfp
import chemfp.search
from chemfp import futures
import array

chemfp.set_num_threads(1)

arena = chemfp.load_fingerprints("targets.fps")
n = len(arena)
results = chemfp.search.SearchResults(n, n, arena.ids)

(continues on next page)

310 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

(continued from previous page)

with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):

executor.submit(chemfp.search.partial_threshold_tanimoto_search_symmetric,
results, arena, threshold=0.2,
query_start=row, query_end=min(row+10, n))

chemfp.search.fill_lower_triangle(results)

The hits in the chemfp.search.SearchResults are in arbitrary order.

Parameters

• results (a chemfp.search.SearchResults instance) – the intermediate search re-
sults

• arena (a chemfp.arena.FingerprintArena) – the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• query_start (an integer) – the query start row

• query_end (an integer, or None to mean the last query row) – the query
end row

• target_start (an integer) – the target start row

• target_end (an integer, or None to mean the last target row) – the target
end row

• results_offset – use results[results_offset] as the base for the results

• results_offset – an integer

Returns None

8.4.13 fill_lower_triangle

chemfp.search.fill_lower_triangle(results)
Duplicate each entry of results to its transpose

This is used after the symmetric threshold search to turn the upper-triangle results into a full matrix.

Parameters results (a chemfp.search.SearchResults) – search results

8.4.14 threshold_tversky_search_fp

chemfp.search.threshold_tversky_search_fp(query_fp, target_arena, threshold=0.7, alpha=1.0,
beta=1.0)

Search for fingerprint hits in target_arena which are at least threshold similar to query_fp

The hits in the returned chemfp.search.SearchResult are in arbitrary order.

Example:

8.4. chemfp.search module 311

chemfp Documentation, Release 3.4

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(list(chemfp.search.threshold_tversky_search_fp(

query_fp, targets, threshold=0.15, alpha=0.5, beta=0.5)))

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena (a chemfp.arena.FingerprintArena) – the target arena

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns a chemfp.search.SearchResult

8.4.15 threshold_tversky_search_arena

chemfp.search.threshold_tversky_search_arena(query_arena, target_arena, threshold=0.7, al-
pha=1.0, beta=1.0)

Search for the hits in the target_arena at least threshold similar to the fingerprints in query_arena

The hits in the returned chemfp.search.SearchResults are in arbitrary order.

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.threshold_tversky_search_arena(

queries, targets, threshold=0.5, alpha=0.5, beta=0.5)
for query_id, query_hits in zip(queries.ids, results):

if len(query_hits) > 0:
print(query_id, "->", ", ".join(query_hits.get_ids()))

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns a chemfp.search.SearchResults

8.4.16 threshold_tversky_search_symmetric

chemfp.search.threshold_tversky_search_symmetric(arena, threshold=0.7, alpha=1.0,
beta=1.0, include_lower_triangle=True,
batch_size=100)

Search for the hits in the arena at least threshold similar to the fingerprints in the arena

When include_lower_triangle is True, compute the upper-triangle similarities, then copy the results
to get the full set of results. When include_lower_triangle is False, only compute the upper triangle.

The hits in the returned chemfp.search.SearchResults are in arbitrary order.

312 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

The computation can take a long time. Python won’t check check for a ^C until the function finishes.
This can be irritating. Instead, process only batch_size rows at a time before checking for a ^C

Note: the batch_size may disappear in future versions of chemfp. Let me know if it really is useful for
you to have as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("queries.fps")
full_result = chemfp.search.threshold_tversky_search_symmetric(

arena, threshold=0.2, alpha=0.5, beta=0.5)
upper_triangle = chemfp.search.threshold_tversky_search_symmetric(

arena, threshold=0.2, alpha=0.5, beta=0.5, include_lower_triangle=False)
assert sum(map(len, full_result)) == sum(map(len, upper_triangle))*2

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• include_lower_triangle (boolean) – if False, compute only the upper triangle,
otherwise use symmetry to compute the full matrix

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns a chemfp.search.SearchResults

8.4.17 partial_threshold_tversky_search_symmetric

chemfp.search.partial_threshold_tversky_search_symmetric(results, arena, thresh-
old=0.7, alpha=1.0,
beta=1.0, query_start=0,
query_end=None, tar-
get_start=0, target_end=None,
results_offset=0)

Compute a portion of the symmetric Tversky search results

For most cases, use chemfp.search.threshold_tversky_search_symmetric() instead of this func-
tion!

This function is only useful for thread-pool implementations. In that case, set the number of OpenMP
threads to 1.

results is a chemfp.search.SearchResults instance which is at least as large as the arena. It should
be reused for successive updates.

The function adds hits to results[query_start:query_end], based on computing the upper-triangle por-
tion contained in the rectangle query_start:query_end and target_start:target_end.

It does not fill in the lower triangle. To get the full matrix, call fill_lower_triangle.

You know, this is pretty complicated. Here’s the bare minimum example of how to use it correctly to
process 10 rows at a time using up to 4 threads:

import chemfp
import chemfp.search
from chemfp import futures

(continues on next page)

8.4. chemfp.search module 313

chemfp Documentation, Release 3.4

(continued from previous page)

import array

chemfp.set_num_threads(1)

arena = chemfp.load_fingerprints("targets.fps")
n = len(arena)
results = chemfp.search.SearchResults(n, n, arena.ids)

with futures.ThreadPoolExecutor(max_workers=4) as executor:
for row in xrange(0, n, 10):

executor.submit(chemfp.search.partial_threshold_tversky_search_symmetric,
results, arena, threshold=0.2, alpha=0.5, beta=0.5,
query_start=row, query_end=min(row+10, n))

chemfp.search.fill_lower_triangle(results)

The hits in the chemfp.search.SearchResults are in arbitrary order.

Parameters

• counts (a SearchResults instance) – the intermediate search results

• arena (a chemfp.arena.FingerprintArena) – the fingerprints.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• query_start (an integer) – the query start row

• query_end (an integer, or None to mean the last query row) – the query
end row

• target_start (an integer) – the target start row

• target_end (an integer, or None to mean the last target row) – the target
end row

• results_offset – use results[results_offset] as the base for the results

• results_offset – an integer

Returns None

8.4.18 knearest_tanimoto_search_fp

chemfp.search.knearest_tanimoto_search_fp(query_fp, target_arena, k=3, threshold=0.7)
Search for k-nearest hits in target_arena which are at least threshold similar to query_fp

The hits in the chemfp.search.SearchResults are ordered by decreasing similarity score.

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(list(chemfp.search.knearest_tanimoto_search_fp(query_fp, targets, k=3,␣
↪→threshold=0.0)))

Parameters

314 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• query_fp (a byte string) – the query fingerprint

• target_arena (a chemfp.arena.FingerprintArena) – the target arena

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns a chemfp.search.SearchResult

8.4.19 knearest_tanimoto_search_arena

chemfp.search.knearest_tanimoto_search_arena(query_arena, target_arena, k=3, thresh-
old=0.7)

Search for the k nearest hits in the target_arena at least threshold similar to the fingerprints in
query_arena

The hits in the chemfp.search.SearchResults are ordered by decreasing similarity score.

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.knearest_tanimoto_search_arena(queries, targets, k=3,␣
↪→threshold=0.5)
for query_id, query_hits in zip(queries.ids, results):

if len(query_hits) >= 2:
print(query_id, "->", ", ".join(query_hits.get_ids()))

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns a chemfp.search.SearchResults

8.4.20 knearest_tanimoto_search_symmetric

chemfp.search.knearest_tanimoto_search_symmetric(arena, k=3, threshold=0.7,
batch_size=100)

Search for the k-nearest hits in the arena at least threshold similar to the fingerprints in the arena

The hits in the SearchResults are ordered by decreasing similarity score.

The computation can take a long time. Python won’t check check for a ^C until the function finishes.
This can be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. Let me know if it really is useful for
you to keep as a user-defined parameter.

Example:

8.4. chemfp.search module 315

chemfp Documentation, Release 3.4

arena = chemfp.load_fingerprints("queries.fps")
results = chemfp.search.knearest_tanimoto_search_symmetric(arena, k=3, threshold=0.
↪→8)
for (query_id, hits) in zip(arena.ids, results):

print(query_id, "->", ", ".join(("%s %.2f" % hit) for hit in hits.get_ids_and_
↪→scores()))

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• include_lower_triangle (boolean) – if False, compute only the upper triangle,
otherwise use symmetry to compute the full matrix

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns a chemfp.search.SearchResults

8.4.21 knearest_tversky_search_fp

chemfp.search.knearest_tversky_search_fp(query_fp, target_arena, k=3, threshold=0.7, al-
pha=1.0, beta=1.0)

Search for k-nearest hits in target_arena which are at least threshold similar to query_fp

The hits in the chemfp.search.SearchResults are ordered by decreasing similarity score.

Example:

query_id, query_fp = chemfp.load_fingerprints("queries.fps")[0]
targets = chemfp.load_fingerprints("targets.fps")
print(list(chemfp.search.knearest_tversky_search_fp(

query_fp, targets, k=3, threshold=0.0, alpha=0.5, beta=0.5)))

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena – the target arena

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns a chemfp.search.SearchResults

8.4.22 knearest_tversky_search_arena

chemfp.search.knearest_tversky_search_arena(query_arena, target_arena, k=3, threshold=0.7,
alpha=1.0, beta=1.0)

Search for the k nearest hits in the target_arena at least threshold similar to the fingerprints in
query_arena

316 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

The hits in the chemfp.search.SearchResults are ordered by decreasing similarity score.

Example:

queries = chemfp.load_fingerprints("queries.fps")
targets = chemfp.load_fingerprints("targets.fps")
results = chemfp.search.knearest_tversky_search_arena(

queries, targets, k=3, threshold=0.5, alpha=0.5, beta=0.5)
for query_id, query_hits in zip(queries.ids, results):

if len(query_hits) >= 2:
print(query_id, "->", ", ".join(query_hits.get_ids()))

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – The query fingerprints.

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

Returns a chemfp.search.SearchResults

8.4.23 knearest_tversky_search_symmetric

chemfp.search.knearest_tversky_search_symmetric(arena, k=3, threshold=0.7, alpha=1.0,
beta=1.0, batch_size=100)

Search for the k-nearest hits in the arena at least threshold similar to the fingerprints in the arena

The hits in the SearchResults are ordered by decreasing similarity score.

The computation can take a long time. Python won’t check check for a ^C until the function finishes.
This can be irritating. Instead, process only batch_size rows at a time before checking for a ^C.

Note: the batch_size may disappear in future versions of chemfp. Let me know if it really is useful for
you to keep as a user-defined parameter.

Example:

arena = chemfp.load_fingerprints("queries.fps")
results = chemfp.search.knearest_tversky_search_symmetric(

arena, k=3, threshold=0.8, alpha=0.5, beta=0.5)
for (query_id, hits) in zip(arena.ids, results):

print(query_id, "->", ", ".join(("%s %.2f" % hit) for hit in hits.get_ids_and_
↪→scores()))

Parameters

• arena (a chemfp.arena.FingerprintArena) – the set of fingerprints

• k (positive integer) – the number of nearest neighbors to find.

• threshold (float between 0.0 and 1.0, inclusive) – The minimum score
threshold.

• include_lower_triangle (boolean) – if False, compute only the upper triangle,
otherwise use symmetry to compute the full matrix

8.4. chemfp.search module 317

chemfp Documentation, Release 3.4

• batch_size (integer) – the number of rows to process before checking for a ^C

Returns a chemfp.search.SearchResults

8.4.24 contains_fp

chemfp.search.contains_fp(query_fp, target_arena)
Find the target fingerprints which contain the query fingerprint bits as a subset

A target fingerprint contains a query fingerprint if all of the on bits of the query fingerprint are also
on bits of the target fingerprint. This function returns a chemfp.search.SearchResult containing all
of the target fingerprints in target_arena that contain the query_fp.

The SearchResult scores are all 0.0.

There is currently no direct way to limit the arena search range. Instead create a subarena by using
Python’s slice notation on the arena then search the subarena.

Parameters

• query_fp (a byte string) – the query fingerprint

• target_arena (a chemfp.arena.FingerprintArena) – The target fingerprints.

Returns a SearchResult instance

8.4.25 contains_arena

chemfp.search.contains_arena(query_arena, target_arena)
Find the target fingerprints which contain the query fingerprints as a subset

A target fingerprint contains a query fingerprint if all of the on bits of the query fingerprint are
also on bits of the target fingerprint. This function returns a chemfp.search.SearchResults where
SearchResults[i] contains all of the target fingerprints in target_arena that contain the fingerprint for
entry query_arena [i].

The SearchResult scores are all 0.0.

There is currently no direct way to limit the arena search range, though you can create and search a
subarena by using Python’s slice notation.

Parameters

• query_arena (a chemfp.arena.FingerprintArena) – the query fingerprints

• target_arena (a chemfp.arena.FingerprintArena) – the target fingerprints

Returns a chemfp.search.SearchResults instance, of the same size as query_arena

8.4.26 SearchResults

class chemfp.search.SearchResults

Search results for a list of query fingerprints against a target arena

This acts like a list of SearchResult elements, with the ability to iterate over each search
results, look them up by index, and get the number of scores.

In addition, there are helper methods to iterate over each hit and to get the hit indicies,
scores, and identifiers directly as Python lists, sort the list contents, and more.

318 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

__len__()
The number of rows in the SearchResults

__iter__()
Iterate over each SearchResult hit

__getitem__(i)
Get the i-th SearchResult

shape
Read-only attribute.

the tuple (number of rows, number of columns)

The number of columns is the size of the target arena.

iter_indices()
For each hit, yield the list of target indices

iter_ids()
For each hit, yield the list of target identifiers

iter_scores()
For each hit, yield the list of target scores

iter_indices_and_scores()
For each hit, yield the list of (target index, score) tuples

iter_ids_and_scores()
For each hit, yield the list of (target id, score) tuples

clear_all()
Remove all hits from all of the search results

count_all(min_score=None, max_score=None, interval=”[]”)
Count the number of hits with a score between min_score and max_score

Using the default parameters this returns the number of hits in the result.

The default min_score of None is equivalent to -infinity. The default max_score of None is
equivalent to +infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed
interval, where min_score <= score <= max_score. The interval “()” uses the open interval
where min_score < score < max_score. The half-open/half-closed intervals “(]” and “[)” are also
supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns an integer count

cumulative_score_all(min_score=None, max_score=None, interval=”[]”)
The sum of all scores in all rows which are between min_score and max_score

8.4. chemfp.search module 319

chemfp Documentation, Release 3.4

Using the default parameters this returns the sum of all of the scores in all of the results. With
a specified range this returns the sum of all of the scores in that range. The cumulative score is
also known as the raw score.

The default min_score of None is equivalent to -infinity. The default max_score of None is
equivalent to +infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed
interval, where min_score <= score <= max_score. The interval “()” uses the open interval
where min_score < score < max_score. The half-open/half-closed intervals “(]” and “[)” are also
supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns a floating point count

reorder_all(order=”decreasing-score”)
Reorder the hits for all of the rows based on the requested order.

The available orderings are:

• increasing-score - sort by increasing score

• decreasing-score - sort by decreasing score

• increasing-index - sort by increasing target index

• decreasing-index - sort by decreasing target index

• move-closest-first - move the hit with the highest score to the first position

• reverse - reverse the current ordering

Parameters ordering (string) – the name of the ordering to use

to_csr(dtype=None)
Return the results as a SciPy compressed sparse row matrix.

The returned matrix has the same shape as the SearchResult instance and can be passed into, for
example, a scikit-learn clustering algorithm.

By default the scores are stored with the dtype is “float64”.

This method requires that SciPy (and NumPy) be installed.

Parameters dtype (string or NumPy type) – a NumPy numeric data type

8.4.27 SearchResult

class chemfp.search.SearchResult

Search results for a query fingerprint against a target arena.

The results contains a list of hits. Hits contain a target index, score, and optional target ids.
The hits can be reordered based on score or index.

320 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

__len__()
The number of hits

__iter__()
Iterate through the pairs of (target index, score) using the current ordering

clear()
Remove all hits from this result

get_indices()
The list of target indices, in the current ordering.

get_ids()
The list of target identifiers (if available), in the current ordering

iter_ids()
Iterate over target identifiers (if available), in the current ordering

get_scores()
The list of target scores, in the current ordering

get_ids_and_scores()
The list of (target identifier, target score) pairs, in the current ordering

Raises a TypeError if the target IDs are not available.

get_indices_and_scores()
The list of (target index, score) pairs, in the current ordering

reorder(ordering=”decreasing-score”)
Reorder the hits based on the requested ordering.

The available orderings are:

• increasing-score - sort by increasing score

• decreasing-score - sort by decreasing score

• increasing-index - sort by increasing target index

• decreasing-index - sort by decreasing target index

• move-closest-first - move the hit with the highest score to the first position

• reverse - reverse the current ordering

Parameters ordering (string) – the name of the ordering to use

count(min_score=None, max_score=None, interval=”[]”)
Count the number of hits with a score between min_score and max_score

Using the default parameters this returns the number of hits in the result.

The default min_score of None is equivalent to -infinity. The default max_score of None is
equivalent to +infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed
interval, where min_score <= score <= max_score. The interval “()” uses the open interval
where min_score < score < max_score. The half-open/half-closed intervals “(]” and “[)” are also
supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

8.4. chemfp.search module 321

chemfp Documentation, Release 3.4

• max_score (a float, or None for +infinity) – the maximum score in the
range.

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns an integer count

cumulative_score(min_score=None, max_score=None, interval=”[]”)
The sum of the scores which are between min_score and max_score

Using the default parameters this returns the sum of all of the scores in the result. With a specified
range this returns the sum of all of the scores in that range. The cumulative score is also known
as the raw score.

The default min_score of None is equivalent to -infinity. The default max_score of None is
equivalent to +infinity.

The interval parameter describes the interval end conditions. The default of “[]” uses a closed
interval, where min_score <= score <= max_score. The interval “()” uses the open interval
where min_score < score < max_score. The half-open/half-closed intervals “(]” and “[)” are also
supported.

Parameters

• min_score (a float, or None for -infinity) – the minimum score in the
range.

• max_score (a float, or None for +infinity) – the maximum score in the
range.

• interval (one of "[]", "()", "(]", "[)") – specify if the end points are
open or closed.

Returns a floating point value

format_ids_and_scores_as_bytes(ids=None, precision=4)
Added in version 3.3.

Format the ids and scores as the byte string needed for simsearch output

If there are no hits then the result is the empty string b”“, otherwise it returns a byte string
containing the tab-seperated ids and scores, in the order ids[0], scores[0], ids[1], scores[1], …

If the ids is not specified then the ids come from self.get_ids(). If no ids are available, a ValueError
is raised. The ids must be a list of Unicode strings.

The precision sets the number of decimal digits to use in the score output. It must be an integer
value between 1 and 10, inclusive.

This function is 3-4x faster than the Python equivalent, which is roughly:

ids = ids if (ids is not None) else self.get_ids()
formatter = ("%s\t%." + str(precision) + "f").encode("ascii")
return b"\t".join(formatter % pair for pair in zip(ids, self.get_scores()))

Parameters

• ids (a list of Unicode strings, or None to use the default) – the iden-
tifiers to use for each hit.

• precision (an integer from 1 to 10, inclusive) – the precision to use for
each score

322 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

Returns a byte string

8.5 chemfp.bitops module

The following functions from the chemfp.bitops module provide low-level bit operations on byte and hex
fingerprints.

chemfp.bitops.byte_contains(sub_fp, super_fp)
Return 1 if the on bits of sub_fp are also 1 bits in super_fp, that is, if super_fp contains sub_fp.

chemfp.bitops.byte_contains_bit(fp, bit_index)
Return True if the the given bit position is on, otherwise False

chemfp.bitops.byte_difference(fp1, fp2)
Return the absolute difference (xor) between the two byte strings, fp1 ^ fp2

chemfp.bitops.byte_from_bitlist(fp[, num_bits=1024])
Convert a list of bit positions into a byte fingerprint, including modulo folding

chemfp.bitops.byte_hex_tanimoto(fp1, fp2)
Compute the Tanimoto similarity between the byte fingerprint fp1 and the hex fingerprint fp2. Return
a float between 0.0 and 1.0, or raise a ValueError if fp2 is not a hex fingerprint

chemfp.bitops.byte_hex_tversky(fp1, fp2, alpha=1.0, beta=1.0)
Compute the Tversky index between the byte fingerprint fp1 and the hex fingerprint fp2. Return a
float between 0.0 and 1.0, or raise a ValueError if fp2 is not a hex fingerprint

chemfp.bitops.byte_intersect(fp1, fp2)
Return the intersection of the two byte strings, fp1 & fp2

chemfp.bitops.byte_intersect_popcount(fp1, fp2)
Return the number of bits set in the instersection of the two byte fingerprints fp1 and fp2

chemfp.bitops.byte_popcount(fp)
Return the number of bits set in the byte fingerprint fp

chemfp.bitops.byte_tanimoto(fp1, fp2)
Compute the Tanimoto similarity between the two byte fingerprints fp1 and fp2

chemfp.bitops.byte_to_bitlist(bitlist)
Return a sorted list of the on-bit positions in the byte fingerprint

chemfp.bitops.byte_tversky(fp1, fp2, alpha=1.0, beta=1.0)
Compute the Tversky index between the two byte fingerprints fp1 and fp2

chemfp.bitops.byte_union(fp1, fp2)
Return the union of the two byte strings, fp1 | fp2

chemfp.bitops.hex_contains(sub_fp, super_fp)
Return 1 if the on bits of sub_fp are also on bits in super_fp, otherwise 0. Return -1 if either string
is not a hex fingerprint

chemfp.bitops.hex_contains_bit(fp, bit_index)
Return True if the the given bit position is on, otherwise False.

This function does not validate that the hex fingerprint is actually in hex.

chemfp.bitops.hex_difference(fp1, fp2)
Return the absolute difference (xor) between the two hex strings, fp1 ^ fp2. Raises a ValueError for
non-hex fingerprints.

8.5. chemfp.bitops module 323

chemfp Documentation, Release 3.4

chemfp.bitops.hex_from_bitlist(fp[, num_bits=1024])
Convert a list of bit positions into a hex fingerprint, including modulo folding

chemfp.bitops.hex_intersect(fp1, fp2)
Return the intersection of the two hex strings, fp1 & fp2. Raises a ValueError for non-hex fingerprints.

chemfp.bitops.hex_intersect_popcount(fp1, fp2)
Return the number of bits set in the intersection of the two hex fingerprints fp1 and fp2, or raise a
ValueError if either string is a non-hex string

chemfp.bitops.hex_isvalid(s)
Return 1 if the string s is a valid hex fingerprint, otherwise 0

chemfp.bitops.hex_popcount(fp)
Return the number of bits set in a hex fingerprint fp, or -1 for non-hex strings

chemfp.bitops.hex_tanimoto(fp1, fp2)
Compute the Tanimoto similarity between two hex fingerprints. Return a float between 0.0 and 1.0,
or raise a ValueError if either string is not a hex fingerprint

chemfp.bitops.hex_tversky(fp1, fp2, alpha=1.0, beta=1.0)
Compute the Tversky index between two hex fingerprints. Return a float between 0.0 and 1.0, or raise
a ValueError if either string is not a hex fingerprint

chemfp.bitops.hex_to_bitlist(bitlist)
Return a sorted list of the on-bit positions in the hex fingerprint

chemfp.bitops.hex_union(fp1, fp2)
Return the union of the two hex strings, fp1 | fp2. Raises a ValueError for non-hex fingerprints.

chemfp.bitops.hex_encode(s)
Encode the byte string or ASCII string to hex. Returns a text string.

chemfp.bitops.hex_encode_as_bytes(s)
Encode the byte string or ASCII string to hex. Returns a byte string.

chemfp.bitops.hex_decode(s)
Decode the hex-encoded value to a byte string

8.6 chemfp.encodings

Decode different fingerprint representations into chemfp form. (Currently only decoders are available. Future
released may include encoders.)

The chemfp fingerprints are stored as byte strings, with the bytes in least-significant bit order (bit #0 is
stored in the first/left-most byte) and with the bits in most-significant bit order (bit #0 is stored in the
first/right-most bit of the first byte).

Other systems use different encodings. These include:

• the ‘0 and ‘1’ characters, as in ‘00111101’

• hex encoding, like ‘3d’

• base64 encoding, like ‘SGVsbG8h’

• CACTVS’s variation of base64 encoding

plus variations of different LSB and MSB orders.

This module decodes most of the fingerprint encodings I have come across. The fingerprint decoders return
a 2-ple of the bit length and the chemfp fingerprint. The bit length is None unless the bit length is known

324 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

exactly, which currently is only the case for the binary and CACTVS fingerprints. (The hex and other
encoders must round the fingerprints up to a multiple of 8 bits.)

8.6.1 from_binary_lsb

chemfp.encodings.from_binary_lsb(text)
Convert a string like ‘00010101’ (bit 0 here is off) into ‘xa8’

The encoding characters ‘0’ and ‘1’ are in LSB order, so bit 0 is the left-most field. The result is a
2-ple of the fingerprint length and the decoded chemfp fingerprint

>>> from_binary_lsb('00010101')
(8, b'\xa8')
>>> from_binary_lsb('11101')
(5, b'\x17')
>>> from_binary_lsb('00000000000000010000000000000')
(29, b'\x00\x80\x00\x00')
>>>

8.6.2 from_binary_msb

chemfp.encodings.from_binary_msb(text)
Convert a string like ‘10101000’ (bit 0 here is off) into ‘xa8’

The encoding characters ‘0’ and ‘1’ are in MSB order, so bit 0 is the right-most field.

>>> from_binary_msb(b'10101000')
(8, b'\xa8')
>>> from_binary_msb(b'00010101')
(8, b'\x15')
>>> from_binary_msb(b'00111')
(5, b'\x07')
>>> from_binary_msb(b'00000000000001000000000000000')
(29, b'\x00\x80\x00\x00')
>>>

8.6.3 from_base64

chemfp.encodings.from_base64(text)
Decode a base64 encoded fingerprint string

The encoded fingerprint must be in chemfp form, with the bytes in LSB order and the bits in MSB
order.

>>> from_base64("SGk=")
(None, b'Hi')
>>> from binascii import hexlify
>>> hexlify(from_base64("SGk=")[1])
b'4869'
>>>

8.6. chemfp.encodings 325

chemfp Documentation, Release 3.4

8.6.4 from_hex

chemfp.encodings.from_hex(text)
Decode a hex encoded fingerprint string

The encoded fingerprint must be in chemfp form, with the bytes in LSB order and the bits in MSB
order.

>>> from_hex(b'10f2')
(None, b'\x10\xf2')
>>>

Raises a ValueError if the hex string is not a multiple of 2 bytes long or if it contains a non-hex
character.

8.6.5 from_hex_msb

chemfp.encodings.from_hex_msb(text)
Decode a hex encoded fingerprint string where the bits and bytes are in MSB order

>>> from_hex_msb(b'10f2')
(None, b'\xf2\x10')
>>>

Raises a ValueError if the hex string is not a multiple of 2 bytes long or if it contains a non-hex
character.

8.6.6 from_hex_lsb

chemfp.encodings.from_hex_lsb(text)
Decode a hex encoded fingerprint string where the bits and bytes are in LSB order

>>> from_hex_lsb(b'102f')
(None, b'\x08\xf4')
>>>

Raises a ValueError if the hex string is not a multiple of 2 bytes long or if it contains a non-hex
character.

8.6.7 from_cactvs

chemfp.encodings.from_cactvs(text)
Decode a 881-bit CACTVS-encoded fingerprint used by PubChem

>>> from_cactvs(b"AAADceB7sQAEAAAAAAAAAAAAAAAAAWAAAAAwAAAAAAAAAAABwAAAHwIYAAAADA" +
... b"rBniwygJJqAACqAyVyVACSBAAhhwIa+CC4ZtgIYCLB0/CUpAhgmADIyYcAgAAO" +
... b"AAAAAAABAAAAAAAAAAIAAAAAAAAAAA==")

(continues on next page)

326 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

(continued from previous page)

(881, b'\x07\xde\x8d\x00␣
↪→\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x06\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\xf8@\x18\x00\x00\x000P\x83y4L\x01IV\x00\x00U\xc0\xa4N*\x00I␣
↪→\x00\x84\xe1@X\x1f\x04\x1df\x1b\x10\x06D\x83\xcb\x0f)
↪→%\x10\x06\x19\x00\x13\x93\xe1\x00\x01\x00p\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00
↪→')
>>>

For format details, see ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.
txt

8.6.8 from_daylight

chemfp.encodings.from_daylight(text)
Decode a Daylight ASCII fingerprint

>>> from_daylight(b"I5Z2MLZgOKRcR...1")
(None, b'PyDaylight')

See the implementation for format details.

8.6.9 from_on_bit_positions

chemfp.encodings.from_on_bit_positions(text, num_bits=1024, separator=” ”)
Decode from a list of integers describing the location of the on bits

>>> from_on_bit_positions("1 4 9 63", num_bits=32)
(32, b'\x12\x02\x00\x80')
>>> from_on_bit_positions("1,4,9,63", num_bits=64, separator=",")
(64, b'\x12\x02\x00\x00\x00\x00\x00\x80')

The text contains a sequence of non-negative integer values separated by the separator text. Bit
positions are folded modulo num_bits.

This is often used to convert sparse fingerprints into a dense fingerprint.

Note: if you have a list of bit position as integer values then you probably want to use chemfp.bitops.
byte_from_bitlist().

8.7 chemfp.fps_io module

This module is part of the private API. Do not import it directly.

The function chemfp.open() returns an FPSReader if the source is an FPS file. The function chemfp.
open_fingerprint_writer() returns an FPSWriter if the destination is an FPS file.

8.7.1 FPSReader

class chemfp.fps_io.FPSReader

8.7. chemfp.fps_io module 327

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

chemfp Documentation, Release 3.4

FPS file reader

This class implements the chemfp.FingerprintReader API. It is also its own a context
manager, which automatically closes the file when the manager exists.

The public attributes are:

metadata
a chemfp.Metadata instance with information about the fingerprint type

location
a chemfp.io.Location instance with parser location and state information

closed
True if the file is open, else False

The FPSReader.location only tracks the “lineno” variable.

__iter__()
Iterate through the (id, fp) pairs

iter_arenas(arena_size=1000)
iterate through arena_size fingerprints at a time, as subarenas

Iterate through arena_size fingerprints at a time, returned as chemfp.arena.FingerprintArena
instances. The arenas are in input order and not reordered by popcount.

This method helps trade off between performance and memory use. Working with arenas is often
faster than processing one fingerprint at a time, but if the file is very large then you might run
out of memory, or get bored while waiting to process all of the fingerprint before getting the first
answer.

If arena_size is None then this makes an iterator which returns a single arena containing all of
the fingerprints.

Parameters arena_size (positive integer, or None) – The number of fingerprints
to put into each arena.

Returns an iterator of chemfp.arena.FingerprintArena instances

save(destination, format=None, level=None)
Save the fingerprints to a given destination and format

The output format is based on the format. If the format is None then the format depends on the
destination file extension. If the extension isn’t recognized then the fingerprints will be saved in
“fps” format.

If the output format is “fps”, “fps.gz”, or “fps.zst” then destination may be a filename, a file
object, or None; None writes to stdout.

If the output format is “fpb” then destination must be a filename or seekable file object. Chemfp
cannot save to compressed FPB files.

Parameters

• destination (a filename, file object, or None) – the output destination

• format (None, "fps", "fps.gz", "fps.zst", or "fpb") – the output format

• level (an integer, or "min", "default", or "max" for
compressor-specific values) – compression level when writing .gz or .zst
files

Returns None

328 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

get_fingerprint_type()
Get the fingerprint type object based on the metadata’s type field

This uses self.metadata.type to get the fingerprint type string then calls chemfp.
get_fingerprint_type() to get and return a chemfp.types.FingerprintType instance.

This will raise a TypeError if there is no metadata, and a ValueError if the type field was invalid
or the fingerprint type isn’t available.

Returns a chemfp.types.FingerprintType

close()
Close the file

count_tanimoto_hits_fp(query_fp, threshold=0.7)
Count the fingerprints which are sufficiently similar to the query fingerprint

Return the number of fingerprints in the reader which are at least threshold similar to the query
fingerprint query_fp.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns integer count

count_tanimoto_hits_arena(queries, threshold=0.7)
Count the fingerprints which are sufficiently similar to each query fingerprint

Returns a list containing a count for each query fingerprint in the queries arena. The count is the
number of fingerprints in the reader which are at least threshold similar to the query fingerprint.

The order of results is the same as the order of the queries.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns list of integer counts, one for each query

count_tversky_hits_fp(query_fp, threshold=0.7, alpha=1.0, beta=1.0)
Count the fingerprints which are sufficiently similar to the query fingerprint

Return the number of fingerprints in the reader which are at least threshold similar to the query
fingerprint query_fp.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns integer count

threshold_tanimoto_search_fp(query_fp, threshold=0.7)
Find the fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this reader which are at least threshold similar to the query fingerprint
query_fp. The hits are returned as a SearchResult, in arbitrary order.

8.7. chemfp.fps_io module 329

chemfp Documentation, Release 3.4

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns a SearchResult

threshold_tanimoto_search_arena(queries, threshold=0.7)
Find the fingerprints which are sufficiently similar to each of the query fingerprints

For each fingerprint in the queries arena, find all of the fingerprints in this arena which are at least
threshold similar. The hits are returned as a SearchResults, where the hits in each SearchResult
is in arbitrary order.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns a SearchResults

threshold_tversky_search_fp(query_fp, threshold=0.7, alpha=1.0, beta=1.0)
Find the fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this reader which are at least threshold similar to the query fingerprint
query_fp. The hits are returned as a SearchResult, in arbitrary order.

Parameters

• query_fp (byte string) – query fingerprint

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns a SearchResult

knearest_tanimoto_search_fp(query_fp, k=3, threshold=0.7)
Find the k-nearest fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this reader which are at least threshold similar to the query finger-
print, and of those, select the top k hits. The hits are returned as a SearchResult, sorted from
highest score to lowest.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns a SearchResult

knearest_tanimoto_search_arena(queries, k=3, threshold=0.7)
Find the k-nearest fingerprints which are sufficiently similar to each of the query fingerprints

For each fingerprint in the queries arena, find the fingerprints in this reader which are at least
threshold similar to the query fingerprint, and of those, select the top k hits. The hits are returned
as a SearchResults, where the hits in each SearchResult are sorted by similarity score.

Parameters

• queries (a FingerprintArena) – query fingerprints

330 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns a SearchResults

knearest_tversky_search_fp(query_fp, k=3, threshold=0.7, alpha=1.0, beta=1.0)
Find the k-nearest fingerprints which are sufficiently similar to the query fingerprint

Find all of the fingerprints in this reader which are at least threshold similar to the query finger-
print, and of those, select the top k hits. The hits are returned as a SearchResult, sorted from
highest score to lowest.

Parameters

• queries (a FingerprintArena) – query fingerprints

• threshold (float between 0.0 and 1.0, inclusive) – minimum similarity
threshold (default: 0.7)

Returns a SearchResult

8.7.2 FPSWriter

class chemfp.fps_io.FPSWriter

Write fingerprints in FPS format.

This is a subclass of chemfp.FingerprintWriter.

Instances have the following attributes:

• metadata - a chemfp.Metadata instance

• format - the string ‘fps’

• closed - False when the file is open, else True

• location - a chemfp.io.Location instance

An FPSWriter is its own context manager, and will close the output file on context exit.

The Location instance supports the “recno”, “output_recno”, and “lineno” properties.

write_fingerprint(id, fp)
Write a single fingerprint record with the given id and fp

Parameters

• id (string) – the record identifier

• fp (bytes) – the fingerprint

write_fingerprints(id_fp_pairs)
Write a sequence of fingerprint records

Parameters id_fp_pairs – An iterable of (id, fingerprint) pairs.

close()
Close the writer

This will set self.closed to False.

8.7. chemfp.fps_io module 331

chemfp Documentation, Release 3.4

8.8 chemfp.fpb_io module

This module is part of the private API. Do not import directly.

The function chemfp.open_fingerprint_writer() returns an OrderedFPBWriter if the destination is an
FPB file and reorder is True, or an InputOrderFPBWriter if reorder is False.

8.8.1 OrderedFPBWriter

class chemfp.fpb_io.OrderedFPBWriter

Fingerprint writer for FPB files where the input fingerprint order is preserved

This is a subclass of chemfp.FingerprintWriter.

Instances have the following public attributes:

metadata
a chemfp.Metadata instance

format
the string ‘fpb’

closed
False when the file is open, else True

Other attributes (like “alignment”, “include_hash”, “include_popc”, “max_spool_size”,
and “tmpdir”) are undocumented and subject to change in the future. Let me know if they
are useful.

An OrderedFPBWriter is also is own context manager, and will close the writer on context
exit.

write_fingerprint(id, fp)
Write a single fingerprint record with the given id and fp to the destination

Parameters

• id (string) – the record identifier

• fp (bytes) – the fingerprint

write_fingerprints(id_fp_iter)
Write a sequence of (id, fingerprint) pairs to the destination

Parameters id_fp_pairs – An iterable of (id, fingerprint) pairs.

close()
Close the output writer

8.8.2 InputOrderFPBWriter

class chemfp.fpb_io.InputOrderFPBWriter

Fingerprint writer for FPB files which preserves the input fingerprint order

This is a subclass of chemfp.FingerprintWriter.

Instances have the following public attributes:

metadata
a chemfp.Metadata instance

332 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

format
the string ‘fpb’

closed
False when the file is open, else True

Other attributes (like “alignment”, “include_hash”, “include_popc”, “max_spool_size”,
and “tmpdir”) are undocumented and subject to change in the future. Let me know if they
are useful.

An InputOrderFPBWriter is also is own context manager, and will close the writer on context
exit.

write_fingerprint(id, fp)
Write a single fingerprint record with the given id and fp to the destination

Parameters

• id (string) – the record identifier

• fp (bytes) – the fingerprint

write_fingerprints(id_fp_iter)
Write a sequence of (id, fingerprint) pairs to the destination

Parameters id_fp_pairs – An iterable of (id, fingerprint) pairs.

close()
Close the output writer

This will set self.closed to False

8.9 chemfp toolkit API

Open Babel, OEChem and RDKit have different ways to read and write molecules. The chemfp toolkit
API is a common wrapper API for structure I/O. The chemfp functions work with native toolkit molecules;
chemfp does not have a common molecule API. (For that, use Cinfony.)

While the API is the same across openbabel_toolkit, openbabel_toolkit, rdkit_toolkit, and the
text_toolkit, there are some differences in how they work. For example, each of the toolkits has it
own set of reader and writer arguments. The details are available in the documentation, and this chapter
acts as a pointer to the specific toolkit documentation.

8.9.1 name

chemfp.toolkit.name

The string “openbabel”, “openeye”, “rdkit”, or “text”.

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

8.9.2 software

chemfp.toolkit.software

A string like “OpenBabel/2.4.1”, “OEChem/20170208”, “RDKit/2016.09.3” or “chemfp/3.1”.

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

8.9. chemfp toolkit API 333

http://code.google.com/p/cinfony/

chemfp Documentation, Release 3.4

8.10 is_licensed

chemfp.toolkit.is_licensed()

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Check if the toolkit is licensed.

8.11 get_formats

chemfp.toolkit.get_formats(include_unavailable=False)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Return a list of structure formats.

8.12 get_input_formats

chemfp.toolkit.get_input_formats()

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Return a list of input structure formats.

8.13 get_output_formats

chemfp.toolkit.get_output_formats()

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Return a list of output structure formats.

8.14 get_format

chemfp.toolkit.get_format(format)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get a named format.

8.15 get_input_format

chemfp.toolkit.get_input_format(format)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get a named input format.

334 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.16 get_output_format

chemfp.toolkit.get_output_format(format)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get a named output format.

8.17 get_input_format_from_source

chemfp.toolkit.get_input_format_from_source(source=None, format=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get an format given an input source.

8.18 get_output_format_from_destination

chemfp.toolkit.get_output_format_from_destination(destination=None, format=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get an format given an output destination.

8.19 read_molecules

chemfp.toolkit.read_molecules(source=None, format=None, id_tag=None, reader_args=None,
errors=”strict”, location=None”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Read molecules from a structure file.

8.20 read_molecules_from_string

chemfp.toolkit.read_molecules_from_string(content, format, id_tag=None, reader_args=None,
errors=”strict”, location=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Read molecules from structure data stored in a string.

8.21 read_ids_and_molecules

chemfp.toolkit.read_ids_and_molecules(source=None, format=None, id_tag=None,
reader_args=None, errors=”strict”, location=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Read ids and molecules from a structure file.

8.16. get_output_format 335

chemfp Documentation, Release 3.4

8.22 read_ids_and_molecules_from_string

chemfp.toolkit.read_ids_and_molecules_from_string(content, format, id_tag=None,
reader_args=None, errors=”strict”,
location=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Read ids and molecules from structure data stored in a string.

8.23 make_id_and_molecule_parser

chemfp.toolkit.make_id_and_molecule_parser(format, id_tag=None, reader_args=None, er-
rors=”strict”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Make a specialized function which returns the id and molecule given a structure record.

8.24 parse_molecule

chemfp.toolkit.parse_molecule(content, format, id_tag=None, reader_args=None, er-
rors=”strict”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Parse a structure record into a molecule.

8.25 parse_id_and_molecule

chemfp.toolkit.parse_id_and_molecule(content, format, id_tag=None, reader_args=None, er-
rors=”strict”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Parse a structure record into an id and molecule.

8.26 create_string

chemfp.toolkit.create_string(mol, format, id=None, writer_args=None, errors=”strict”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Convert a molecule into a Unicode string containg a structure record.

8.27 create_bytes

chemfp.toolkit.create_bytes(mol, format, id=None, writer_args=None, errors=”strict”)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Convert a molecule into a byte string containing a structure record.

336 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.28 open_molecule_writer

chemfp.toolkit.open_molecule_writer(destination=None, format=None, writer_args=None, er-
rors=”strict”, location=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Create an output molecule writer, for writing to a file.

8.29 open_molecule_writer_to_string

chemfp.toolkit.open_molecule_writer_to_string(format, writer_args=None, errors=”strict”,
location=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Create an output molecule writer, for writing to a Unicode string.

8.30 open_molecule_writer_to_bytes

chemfp.toolkit.open_molecule_writer_to_bytes(format, writer_args=None, errors=”strict”, lo-
cation=None)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Create an output molecule writer, for writing to a byte string.

8.31 copy_molecule

chemfp.toolkit.copy_molecule(mol)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Make a copy of a toolkit molecule.

8.32 add_tag

chemfp.toolkit.add_tag(mol, tag, value)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Add an SD tag to the molecule.

8.33 get_tag

chemfp.toolkit.get_tag(mol, tag)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get an SD tag for a molecule.

8.28. open_molecule_writer 337

chemfp Documentation, Release 3.4

8.34 get_tag_pairs

chemfp.toolkit.get_tag_pairs()

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get the list of tag name and tag value pairs.

8.35 get_id

chemfp.toolkit.get_id(mol)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Get the molecule id.

8.36 set_id

chemfp.toolkit.set_id(mol, id)

[openbabel_toolkit] [openeye_toolkit] [rdkit_toolkit] [text_toolkit]

Set the molecule id.

8.37 chemfp.base_toolkit

The chemfp.base_toolkit module contains a few objects which are shared by the different toolkit. There
should be no reason for you to import the module yourself.

8.37.1 molecule I/O file metadata

The metadata attribute of the toolkit readers and writers is a FormatMetadata instance. It contains infor-
mation about the structure file.

Note that this is not the same as the fingerprint chemfp.Metadata instance, which contains information
about the fingerprint file.

8.37.2 FormatMetadata

class chemfp.base_toolkit.FormatMetadata

Information about the reader or writer

The public attributes are:

filename
the source or destination filename, the string “<string>” for string-based I/O, or None
if not known

record_format
the normalized record format name. All SMILES formats are “smi”, and this does not
contain compression information

338 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

args
the final reader_args or writer_args, after all processing, and as used by the reader and
writer

__repr__()
Return a string like ‘FormatMeta(filename=”cmpds.sdf.gz”, record_format=”sdf”, args={})’

8.38 Toolkit readers

The toolkit readers read from structure files. There are several different variations, depending on the function
used to read the file. All of the readers are subclasses of chemfp.base_toolkit.BaseMoleculeReader.

Function Returned reader
chemfp.toolkit.read_molecules() chemfp.base_toolkit.

MoleculeReader
chemfp.toolkit.read_molecules_from_string() chemfp.base_toolkit.

MoleculeReader
chemfp.toolkit.read_ids_and_molecules() chemfp.base_toolkit.

IdAndMoleculeReader
chemfp.toolkit.read_ids_and_molecules_from_string() chemfp.base_toolkit.

IdAndMoleculeReader
chemfp.text_toolkit.read_sdf_records() chemfp.base_toolkit.RecordReader
chemfp.text_toolkit.read_sdf_records_from_string() chemfp.base_toolkit.RecordReader
chemfp.text_toolkit.read_sdf_ids_and_records() chemfp.base_toolkit.

IdAndRecordReader
chemfp.text_toolkit.read_sdf_ids_and_records_from_string()chemfp.base_toolkit.

IdAndRecordReader
chemfp.text_toolkit.read_sdf_ids_and_values() chemfp.base_toolkit.

IdAndRecordReader
chemfp.text_toolkit.read_sdf_ids_and_values_from_string()chemfp.base_toolkit.

IdAndRecordReader

All of the readers have the same API. The major difference is that some readers return a single object during
iteration while the others (those with an “And” in the name) return a pair of objects.

8.38.1 BaseMoleculeReader

class chemfp.base_toolkit.BaseMoleculeReader

Base class for the toolkit readers

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

Readers are iterators, so iter(reader) returns itself. next(reader) returns either a single object
or a pair of objects depending on reader.

8.38. Toolkit readers 339

chemfp Documentation, Release 3.4

Readers are also a context manager, and call self.close() during exit.

close()
Close the reader

If the reader wasn’t previously closed then close it. This will set the location properties to their
final values, close any files that the reader may have opened, and set self.closed to False.

class chemfp.base_toolkit.MoleculeReader
Read structures from a file and iterate over the toolkit molecules

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

Note: the toolkit implementation is free to reuse a molecule instead of returning a new one each time.

class chemfp.base_toolkit.IdAndMoleculeReader
Read structures from a file and iterate over the (id, toolkit molecule) pairs

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

Note: the toolkit implementation is free to reuse a molecule instead of returning a new one each time.

class chemfp.base_toolkit.RecordReader
Read and iterate over records as strings

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

class chemfp.base_toolkit.IdAndRecordReader
Read records from file and iterate over the (id, record string) pairs

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

340 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

closed
False if the reader is open, otherwise True

8.39 Toolkit writers

The chemfp.open_molecule_writer() function returns a chemfp.base_toolkit.MoleculeWriter, and
chemfp.open_molecule_writer_to_string() returns a chemfp.base_toolkit.MoleculeStringWriter.
The two classes implement the chemfp.base_toolkit.BaseMoleculeWriter API, and MoleculeWriter-
ToString also implements getvalue().

8.39.1 BaseMoleculeWriter

class chemfp.base_toolkit.BaseMoleculeWriter

The base molecule writer API, implemented by MoleculeWriter and
MoleculeStringWriter

The public attributes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

The writer is a context manager, which calls self.close() when the manager exits.

write_molecule(mol)
Write a toolkit molecule

Parameters mol (a toolkit molecule) – the molecule to write

write_molecules(mols)
Write a sequence of molecules

Parameters mols (a toolkit molecule iterator) – the molecules to write

write_id_and_molecule(id, mol)
Write an identifier and toolkit molecule

If id is None then the output uses the molecule’s own id/title. Specifying the id may modify the
molecule’s id/title, depending on the format and toolkit.

Parameters

• id (string, or None) – the identifier to use for the molecule

• mol (a toolkit molecule) – the molecule to write

write_ids_and_molecules(ids_and_mols)
Write a sequence of (id, molecule) pairs

This function works well with chemfp.toolkit.read_ids_and_molecules(), for example, to
convert an SD file to SMILES file, and use an alternate id_tag to specify an alternative identifier.

Parameters mols (a (id string, toolkit molecule) iterator) – the molecules to
write

8.39. Toolkit writers 341

chemfp Documentation, Release 3.4

close()
Close the writer

If the reader wasn’t previously closed then close it. This will set the location properties to their
final values, close any files that the writer may have opened, and set self.closed to False.

class chemfp.base_toolkit.MoleculeWriter
A BaseMoleculeWriter which writes molecules to a file.

The public attributetes are:

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

The writer is a context manager, which calls self.close() when the manager exits.

class chemfp.base_toolkit.MoleculeStringWriter

A BaseMoleculeWriter which writes molecules to a string.

This class implements the chemfp.base_toolkit.BaseMoleculeWriter API.

metadata
a chemfp.base_toolkit.FormatMetadata instance

location
a chemfp.io.Location instance

closed
False if the reader is open, otherwise True

The writer is a context manager, which calls self.close() when the manager exits.

getvalue()
Get the string containing all of the written record.

This function can also be called after the writer is closed.

Returns a string

8.39.2 Format

class chemfp.base_toolkit.Format

Information about a toolkit format.

Use chemfp.toolkit.get_format() and related functions to return a Format instance.

The public properties are:

__repr__()
Return a string like ‘Format(“openeye/sdf.gz”)’

prefix
Read-only attribute.

Return the prefix to turn an unqualified parameter into a fully qualified parameter

Returns a string like “rdkit.smi” or “openbabel.sdf”

342 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

is_input_format
Read-only attribute.

Return True if this toolkit can read molecules in this format

is_output_format
Read-only attribute.

Return True if this toolkit can write molecules in this format

is_available
Read-only attribute.

Return True if this version of the toolkit understands this format

For example, if your version of RDKit does not support InChI then this would return False for
the “inchi” and “inchikey” formats.

supports_io
Read-only attribute.

Return True if this format support reading or writing records

This will return False for formats like “smistring” and “inchikeystring” because those are are not
record-based formats.

Note: I don’t like this name. I may change it to is_record_format. Let me know if you have
ideas, or if changing the name will be a problem.

get_reader_args_from_text_settings(reader_settings)
Process the reader_settings and return the reader_args for this format.

This function exists to help convert string settings, eg, from the command-line or a configuration,
into usable reader_args.

Setting names may be fully-qualified names like “rdkit.sdf.sanitize”, partially qualified names like
“rdkit.*.sanitize” or “openeye.smi.delimiter”, or unqualified names like “delimiter”. The qualifiers
act as a namespace so the settings can be specified without needing to know the actual toolkit or
format.

The function turns the format-appropriate qualified names into unqualified ones and converts the
string values into usable Python objects. For example:

>>> from chemfp import rdkit_toolkit as T
>>> fmt = T.get_format("smi")
>>> fmt.get_reader_args_from_text_settings({"rdkit.*.sanitize": "true",
↪→"delimiter": "to-eol"})
{'delimiter': 'to-eol', 'sanitize': True}

Parameters reader_settings (a dictionary with string keys and values) – the
reader settings

Returns a dictionary of unqualified argument names as keys and processed Python
values as values

get_writer_args_from_text_settings(writer_settings)
Process writer_settings and return the writer_args for this format.

This function exists to help convert string settings, eg, from the command-line or a configuration,
into usable writer_args.

8.39. Toolkit writers 343

chemfp Documentation, Release 3.4

Setting names may be fully-qualified names like “rdkit.sdf.kekulize”, partially qualified names
like “rdkit.*.delimiter” or “openeye.smi.delimiter”, or unqualified names like “delimiter”. The
qualifiers act as a namespace so the settings can be specified without needing to know the actual
toolkit or format.

The function turns the format-appropriate qualified names into unqualified ones and converts the
string values into usable Python objects. For example:

>>> from chemfp import rdkit_toolkit as T
>>> fmt = T.get_format("smi")
>>> fmt.get_writer_args_from_text_settings({"rdkit.*.kekuleSmiles": "true",
↪→"canonical": "false"})
{'kekuleSmiles': True, 'canonical': False}

Parameters writer_settings (a dictionary with string keys and values) – the
writer settings

Returns a dictionary of unqualified argument names as keys and processed Python
values as values

get_default_reader_args()
Return a dictionary of the default reader arguments

The keys are unqualified (ie, without dots).

>>> from chemfp import openbabel_toolkit as T
>>> fmt = T.get_format("smi")
>>> fmt.get_default_reader_args()
{'has_header': False, 'delimiter': None, 'options': None}

Returns a dictionary of string keys and Python objects for values

get_default_writer_args()
Return a dictionary of the default writer arguments

The keys are unqualified (ie, without dots).

>>> from chemfp import openbabel_toolkit as T
>>> fmt = T.get_format("smi")
>>> fmt.get_default_writer_args()
{'explicit_hydrogens': False, 'isomeric': True, 'delimiter': None,
'options': None, 'canonicalization': 'default'}

Returns a dictionary of string keys and Python objects for values

get_unqualified_reader_args(reader_args)
Convert possibly qualified reader args into unqualified reader args for this format

The reader_args dictionary can be confusing because of the priority rules in how to resolve
qualifiers, and because it can include irrelevant parameters, which are ignored.

The get_unqualified_reader_args function applies the qualifier resolution algorithm and removes
irrelevant parameters to return a dictionary containing the equivalent unqualified reader args
dictionary for this format.

344 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

>>> from chemfp import rdkit_toolkit as T
>> fmt = T.get_format("smi")
>>> fmt.get_unqualified_reader_args({"rdkit.*.delimiter": "tab", "smi.sanitize
↪→": False, "X": "Y"})
{'delimiter': 'tab', 'has_header': False, 'sanitize': False}
>>> fmt = T.get_format("can")
>>> fmt.get_unqualified_reader_args({"rdkit.*.delimiter": "tab", "smi.sanitize
↪→": False, "X": "Y"})
{'delimiter': 'tab', 'has_header': False, 'sanitize': True}

Parameters reader_args reader arguments, which can contain qualified and unqual-
ified arguments

Returns a dictionary of reader arguments, containing only unqualified arguments ap-
propriate for this format.

get_unqualified_writer_args(writer_args)
Convert possibly qualified writer args into unqualified writer args for this format

The writer_args dictionary can be confusing because of the priority rules in how to resolve qual-
ifiers, and because it can include irrelevant parameters, which are ignored.

The get_unqualified_writer_args function applies the qualifier resolution algorithm and removes
irrelevant parameters to return a dictionary containing the equivalent unqualified writer args
dictionary for this format.

>>> from chemfp import rdkit_toolkit as T
>>> fmt = T.get_format("smi")
>>> fmt.get_unqualified_writer_args({"rdkit.*.delimiter": "tab", "smi.
↪→kekuleSmiles": True, "X": "Y"})
{'isomericSmiles': True, 'delimiter': 'tab', 'kekuleSmiles': True,
↪→'allBondsExplicit': False, 'canonical': True}
>>> fmt = T.get_format("can")
>>> fmt.get_unqualified_writer_args({"rdkit.*.delimiter": "tab", "smi.
↪→kekuleSmiles": True, "X": "Y"})
{'isomericSmiles': False, 'delimiter': 'tab', 'kekuleSmiles': False,
↪→'allBondsExplicit': False, 'canonical': True}

Parameters writer_args writer arguments, which can contain qualified and unquali-
fied arguments

Returns a dictionary of writer arguments, containing only unqualified arguments ap-
propriate for this format.

8.40 chemfp.openbabel_toolkit module

The chemfp toolkit layer for Open Babel.

8.40.1 name

chemfp.openbabel_toolkit.name

8.40. chemfp.openbabel_toolkit module 345

chemfp Documentation, Release 3.4

The string “openbabel”.

8.40.2 software

chemfp.openbabel_toolkit.software

A string like “OpenBabel/2.4.1”, where the second part of the string comes from OBReleaseVersion.

8.40.3 is_licensed (openbabel_toolkit)

chemfp.openbabel_toolkit.is_licensed()
Return True - Open Babel is always licensed

Returns True

8.40.4 get_formats (openbabel_toolkit)

chemfp.openbabel_toolkit.get_formats(include_unavailable=False)
Get the list of structure formats that Open Babel supports

If include_unavailable is True then also include Open Babel formats which aren’t available
to this specific version of Open Babel.

Parameters include_unavailable (True or False) – include unavailable for-
mats?

Returns a list of chemfp.base_toolkit.Format objects

8.40.5 get_input_formats (openbabel_toolkit)

chemfp.openbabel_toolkit.get_input_formats()
Get the list of supported Open Babel input formats

Returns a list of chemfp.base_toolkit.Format objects

8.40.6 get_output_formats (openbabel_toolkit)

chemfp.openbabel_toolkit.get_output_formats()
Get the list of supported Open Babel output formats

Returns a list of chemfp.base_toolkit.Format objects

8.40.7 get_format (openbabel_toolkit)

chemfp.openbabel_toolkit.get_format(format_name)
Get the named format, or raise a ValueError

This will raise a ValueError if Open Babel does not implement the format format_name or
that format is not available.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

346 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.40.8 get_input_format (openbabel_toolkit)

chemfp.openbabel_toolkit.get_input_format(format_name)
Get the named input format, or raise a ValueError

This will raise a ValueError if Open Babel does not implement the format format_name or
that format is not an input format.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

8.40.9 get_output_format (openbabel_toolkit)

chemfp.openbabel_toolkit.get_output_format(format_name)
Get the named format, or raise a ValueError

This will raise a ValueError if Open Babel does not implement the format format_name or
that format is not an output format.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

8.40.10 get_input_format_from_source (openbabel_toolkit)

chemfp.openbabel_toolkit.get_input_format_from_source(source=None, for-
mat=None)

Get the most appropriate format given the available source and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same
attributes. If it’s a string then use it to create a Format object.

If format is None, use the source to auto-detect the format. If auto-detection is not possible,
assume it’s an uncompressed SMILES file.

Parameters

• source (a filename (as a string), a file object, or None to read
from stdin) – the structure data source.

• format (a Format(-like) object, string, or None) – format informa-
tion, if known.

Returns a chemfp.base_toolkit.Format object

8.40.11 get_output_format_from_destination (openbabel_toolkit)

chemfp.openbabel_toolkit.get_output_format_from_destination(destination=None,
format=None)

Get the most appropriate format given the available destination and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same
attributes. If it’s a string then use it to create a Format object.

If format is None, use the destination to auto-detect the format. If auto-detection is not
possible, assume it’s an uncompressed SMILES file.

8.40. chemfp.openbabel_toolkit module 347

chemfp Documentation, Release 3.4

Parameters

• destination (a filename (as a string), a file object, or None to
read from stdin) – the structure data source.

• format (a Format(-like) object, string, or None) – format informa-
tion, if known.

Returns a chemfp.base_toolkit.Format object

8.40.12 read_molecules (openbabel_toolkit)

chemfp.openbabel_toolkit.read_molecules(source=None, format=None,
id_tag=None, reader_args=None, er-
rors=”strict”, location=None, encod-
ing=”utf8”, encoding_errors=”strict”)

Return an iterator that reads OBMol molecules from a structure file

Iterate through the format structure records in source. If format is None then auto-detect
the format based on the source. For SD files, use id_tag to get the record id from the given
SD tag instead of the title line. (read_molecules() will ignore the id_tag. It exists to make
it easier to switch between reader functions.)

Note: the reader will clear and reuse the OBMol instance. Make a copy if you want to keep
the molecule around.

The reader_args dictionary parameters depend on the format. Every Open Babel format
supports an “options” entry, which is passed to SetOptions(). See that documentation for
details. Some formats support additional parameters:

• SMILES and InChI

– delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

– has_header - True or False

• SDF

– implementation - if “openbabel” or None, use the Open Babel record parser; if
“chemfp”, use chemfp’s own record parser, which has better location tracking

The errors parameter specifies how to handle errors. “strict” raises an exception, “report”
sends a message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default
Location will be created.

See chemfp.openbabel_toolkit.read_ids_and_molecules() if you want (id, OBMol)
pairs instead of just the molecules.

Parameters

• source (a filename, file object, or None to read from stdin) –
the structure source

• format (a format name string, or Format object, or None to
auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

348 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating OBMol molecules

8.40.13 read_molecules_from_string (openbabel_toolkit)

chemfp.openbabel_toolkit.read_molecules_from_string(content, format,
id_tag=None,
reader_args=None, er-
rors=”strict”, loca-
tion=None)

Return an iterator that reads OBMol molecules from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
openbabel_toolkit.read_molecules() for details about the other parameters. See
chemfp.openbabel_toolkit.read_ids_and_molecules_from_string() if you want to
read (id, OBMol) pairs instead of just molecules.

Note: the reader will clear and reuse the OBMol instance. Make a copy if you want to keep
the molecule around.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating OBMol molecules

8.40.14 read_ids_and_molecules (openbabel_toolkit)

chemfp.openbabel_toolkit.read_ids_and_molecules(source=None, for-
mat=None, id_tag=None,
reader_args=None, er-
rors=”strict”, location=None,
encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads (id, OBMol molecule) pairs from a structure file

See chemfp.openbabel_toolkit.read_molecules() for full parameter details. The major
difference is that this returns an iterator of (id, OBMol) pairs instead of just the molecules.

8.40. chemfp.openbabel_toolkit module 349

chemfp Documentation, Release 3.4

Note: the reader will clear and reuse the OBMol instance. Make a copy if you want to keep
the molecule around.

Parameters

• source (a filename, file object, or None to read from stdin) –
the structure source

• format (a format name string, or Format object, or None to
auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, OBMol)
pairs

8.40.15 read_ids_and_molecules_from_string (openbabel_toolkit)

chemfp.openbabel_toolkit.read_ids_and_molecules_from_string(content, format,
id_tag=None,
reader_args=None,
errors=”strict”,
location=None)

Return an iterator that reads (id, OBMol) pairs from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
openbabel_toolkit.read_molecules() for details about the other parameters. See
chemfp.openbabel_toolkit.read_molecules_from_string() if you just want to read the
OBMol molecules instead of (id, OBMol) pairs.

Note: the reader will clear and reuse the OBMol instance. Make a copy if you want to keep
the molecule around.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

350 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, OBMol)
pairs

8.40.16 make_id_and_molecule_parser (openbabel_toolkit)

chemfp.openbabel_toolkit.make_id_and_molecule_parser(format, id_tag=None,
reader_args=None, er-
rors=”strict”)

Create a specialized function which takes a record and returns an (id, OBMol) pair

The returned function is optimized for reading many records from individual strings be-
cause it only does parameter validation once. The function will reuse the OBMol for suc-
cessive calls, so make a copy if you want to keep it around. However, I haven’t really
noticed much of a performance difference between this and chemfp.openbabel_toolkit.
parse_id_and_molecule() so I suggest you use that function directly instead of making a
specialized function. (Let me know if making a specialized function is useful.)

See chemfp.openbabel_toolkit.read_molecules() for details about the other parame-
ters.

Parameters

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns a function of the form parser(record string) -> (id, OBMol)

8.40.17 parse_molecule (openbabel_toolkit)

chemfp.openbabel_toolkit.parse_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from the content string and return an OBMol molecule.

content is a string containing a single structure record in format format. (Additional
records are ignored). See chemfp.openbabel_toolkit.read_molecules() for details about
the other parameters. See chemfp.openbabel_toolkit.parse_id_and_molecule() if you
want the (id, OBMol) pair instead of just the molecule.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

8.40. chemfp.openbabel_toolkit module 351

chemfp Documentation, Release 3.4

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns an OBMol molecule

8.40.18 parse_id_and_molecule (openbabel_toolkit)

chemfp.openbabel_toolkit.parse_id_and_molecule(content, format, id_tag=None,
reader_args=None, er-
rors=”strict”)

Parse the first structure record from content and return the (id, OBMol) pair.

content is a string containing a single structure record in format format. (Additional records
are ignored). See chemfp.openbabel_toolkit.read_molecules() for details about the
other parameters.

See chemfp.openbabel_toolkit.read_molecules() for details about the other parame-
ters. See chemfp.openbabel_toolkit.parse_molecule() if just want the OBMol molecule
and not the the (id, OBMol) pair.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns an (id, OBMol molecule) pair

8.40.19 create_string (openbabel_toolkit)

chemfp.openbabel_toolkit.create_string(mol, format, id=None, writer_args=None,
errors=”strict”)

Convert an OBMol into a structure record in the given format as a Unicode string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly
modify the molecule, so may not be thread-safe.

Parameters

• mol (an Open Babel molecule) – the molecule to use for the output

• format (a format name string, or Format object) – the output struc-
ture format

• id (a string, or None to use the molecule's own id) – an alternate
record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

352 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns a Unicode string

8.40.20 create_bytes (openbabel_toolkit)

chemfp.openbabel_toolkit.create_bytes(mol, format, id=None, writer_args=None, er-
rors=”strict”, level=None)

Convert an OBMol into a structure record in the given format as a byte string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly
modify the molecule, so may not be thread-safe.

Parameters

• mol (an Open Babel molecule) – the molecule to use for the output

• format (a format name string, or Format object) – the output struc-
ture format

• id (a string, or None to use the molecule's own id) – an alternate
record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats

Returns a byte string

8.40.21 open_molecule_writer (openbabel_toolkit)

chemfp.openbabel_toolkit.open_molecule_writer(destination=None, format=None,
writer_args=None, errors=”strict”,
location=None, encoding=”utf8”,
encoding_errors=”strict”,
level=None)

Return a MoleculeWriter which can write Open Babel molecules to a destination.

A chemfp.base_toolkit.MoleculeWriter has the methods write_molecule,
write_molecules, and write_ids_and_molecules, which are ways to write an OB-
Mol molecule, an OBMol molecule iterator, or an (id, OBMol molecule) pair iterator to a
file.

Molecules are written to destination. The output format can be a string like “sdf.gz” or
“smi”, a chemfp.base_toolkit.Format, or Format-like object with “name” and “compres-
sion” attributes, or None to auto-detect based on the destination. If auto-detection is not
possible, the output will be written as uncompressed SMILES.

The writer_args dictionary parameters depend on the format. Every format supports an
options entry, which is passed to Open Babel’s SetOptions(). See the Open Babel docu-
mentation for details. Some formats supports additional parameters:

• SMILES

8.40. chemfp.openbabel_toolkit module 353

chemfp Documentation, Release 3.4

– delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

– isomeric - True to write isomeric SMILES, False or default is non-isomeric

– canonicalization - True, “default”, or None uses Open Babel’s own canonicalization
algorithm; False or “none” to use no canonicalization; “universal” generates a uni-
versal SMILES; “anticanonical” generates a SMILES with randomly assigned atom
classes; “inchified” uses InChI-fied SMILES

• InChI and InChIKey

– delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

– include_id - True or default to include the id as the second column; False has no id
column

• SDF

– always_v3000 - True to always write V3000 files; False or default to write V3000
files only if needed.

– include_atom_class - True to include atom class; False or default does not

– include_hcount - True to include hcount; False or default does not

The errors parameter specifies how to handle errors. “strict” raises an exception, “report”
sends a message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default
Location will be created.

Parameters

• destination (a filename, file object, or None to write to
stdout) – the structure destination

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats
(does not affect Open Babel)

Returns a chemfp.base_toolkit.MoleculeWriter expecting Open Babel
molecules

8.40.22 open_molecule_writer_to_string (openbabel_toolkit)

chemfp.openbabel_toolkit.open_molecule_writer_to_string(format,
writer_args=None,
errors=”strict”, loca-
tion=None)

Return a MoleculeStringWriter which can write Open Babel molecule records to a string.

354 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

See chemfp.openbabel_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get the
output as a Unicode string.

Parameters

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting Open Babel
molecules

8.40.23 open_molecule_writer_to_bytes (openbabel_toolkit)

chemfp.openbabel_toolkit.open_molecule_writer_to_bytes(format,
writer_args=None,
errors=”strict”, loca-
tion=None, level=None)

Return a MoleculeStringWriter which can write Open Babel molecule records to a byte
string

See chemfp.openbabel_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get the
output as a byte string.

Parameters

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats
(does not affect Open Babel)

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting Open Babel
molecules

8.40. chemfp.openbabel_toolkit module 355

chemfp Documentation, Release 3.4

8.40.24 copy_molecule (openbabel_toolkit)

chemfp.openbabel_toolkit.copy_molecule(mol)
Return a new OBMol molecule which is a copy of the given Open Babel molecule

Parameters mol (an Open Babel molecule) – the molecule to copy

Returns a new OBMol instance

8.40.25 add_tag (openbabel_toolkit)

chemfp.openbabel_toolkit.add_tag(mol, tag, value)
Add an SD tag value to the Open Babel molecule

Raises a KeyError if the tag is a special internal Open Babel name.

Parameters

• mol (an Open Babel molecule) – the molecule

• tag (string) – the SD tag name

• value (string) – the text for the tag

Returns None

8.40.26 get_tag (openbabel_toolkit)

chemfp.openbabel_toolkit.get_tag(mol, tag)
Get the named SD tag value, or None if it doesn’t exist

Parameters

• mol (an Open Babel molecule) – the molecule

• tag (string) – the SD tag name

Returns a string, or None

8.40.27 get_tag_pairs (openbabel_toolkit)

chemfp.openbabel_toolkit.get_tag_pairs(mol)
Get a list of all SD tag (name, value) pairs for the molecule

Parameters mol (an Open Babel molecule) – the molecule

Returns a list of (string name, string value) pairs

8.40.28 get_id (openbabel_toolkit)

chemfp.openbabel_toolkit.get_id(mol)
Get the molecule’s id using Open Babel’s GetTitle()

Parameters mol (an Open Babel molecule) – the molecule

Returns a string

356 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.40.29 set_id (openbabel_toolkit)

chemfp.openbabel_toolkit.set_id(mol, id)
Set the molecule’s id using Open Babel’s SetTitle()

Parameters

• mol (an Open Babel molecule) – the molecule

• id (string) – the new id

Returns None

8.41 chemfp.openeye_toolkit module

The chemfp toolkit layer for OpenEye.

8.41.1 name

chemfp.openeye_toolkit.name

The string “openeye”.

8.41.2 software

chemfp.openeye_toolkit.software

A string like “OEChem/20170208”, where the second part of the string comes from OEChemGetVersion().

8.41.3 is_licensed (openeye_toolkit)

chemfp.openeye_toolkit.is_licensed()
Return True if the OEChem toolkit license is valid, otherwise False.

This does not check if the OEGraphSim license is valid. I haven’t yet figured out how I want
to handle that distinction. In the meanwhile you’ll need to use the OEChem API yourself.

Returns True or False

8.41.4 get_formats (openeye_toolkit)

chemfp.openeye_toolkit.get_formats(include_unavailable=False)
Get the list of structure formats that OEChem supports

If include_unavailable is True then also include OEChem formats which aren’t available to
this specific version of OEChem.

Parameters include_unavailable (True or False) – include unavailable for-
mats?

Returns a list of chemfp.base_toolkit.Format objects

8.41. chemfp.openeye_toolkit module 357

chemfp Documentation, Release 3.4

8.41.5 get_input_formats (openeye_toolkit)

chemfp.openeye_toolkit.get_input_formats()
Get the list of supported OEChem input formats

Returns a list of chemfp.base_toolkit.Format objects

8.41.6 get_output_formats (openeye_toolkit)

chemfp.openeye_toolkit.get_output_formats()
Get the list of supported OEChem output formats

Returns a list of chemfp.base_toolkit.Format objects

8.41.7 get_format (openeye_toolkit)

chemfp.openeye_toolkit.get_format(format)
Get the named format, or raise a ValueError

This will raise a ValueError if OEChem does not implement the format format_name or
that format is not available.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

8.41.8 get_input_format (openeye_toolkit)

chemfp.openeye_toolkit.get_input_format(format)
Get the named input format, or raise a ValueError

This will raise a ValueError if OEChem does not implement the format format_name or
that format is not an input format.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

8.41.9 get_output_format (openeye_toolkit)

chemfp.openeye_toolkit.get_output_format(format)
Get the named format, or raise a ValueError

This will raise a ValueError if OEChem does not implement the format format_name or
that format is not an output format.

Parameters format_name (a string) – the format name

Returns a chemfp.base_toolkit.Format object

358 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.41.10 get_input_format_from_source (openeye_toolkit)

chemfp.openeye_toolkit.get_input_format_from_source(source=None, for-
mat=None)

Get the most appropriate format given the available source and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same
attributes. If it’s a string then use it to create a Format object.

If format is None, use the source to auto-detect the format. If auto-detection is not possible,
assume it’s an uncompressed SMILES file.

Parameters

• source (a filename (as a string), a file object, or None to read
from stdin) – the structure data source.

• format (a Format(-like) object, string, or None) – format informa-
tion, if known.

Returns a chemfp.base_toolkit.Format object

8.41.11 get_output_format_from_destination (openeye_toolkit)

chemfp.openeye_toolkit.get_output_format_from_destination(destination=None,
format=None)

Get the most appropriate format given the available destination and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same
attributes. If it’s a string then use it to create a Format object.

If format is None, use the destination to auto-detect the format. If auto-detection is not
possible, assume it’s an uncompressed SMILES file.

Parameters

• destination (a filename (as a string), a file object, or None to
read from stdin) – the structure data source.

• format (a Format(-like) object, string, or None) – format informa-
tion, if known.

Returns a chemfp.base_toolkit.Format object

8.41.12 read_molecules (openeye_toolkit)

chemfp.openeye_toolkit.read_molecules(source=None, format=None, id_tag=None,
reader_args=None, errors=”strict”, lo-
cation=None, encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads OEGraphMol molecules from a structure file

Iterate through the format structure records in source. If format is None then auto-detect
the format based on the source. For SD files, use id_tag to get the record id from the given
SD tag instead of the title line. (read_molecules() will ignore the id_tag. It exists to make
it easier to switch between reader functions.)

8.41. chemfp.openeye_toolkit module 359

chemfp Documentation, Release 3.4

Note: the reader will clear and reuse the OEGraphMol instance. Make a copy if you want
to keep the molecule around.

The reader_args dictionary parameters depend on the format. Every OEChem format
supports:

• aromaticity - one of “default”, “openeye”, “daylight”, “tripos”, “mdl”, “mmff”, or None

• flavor - a number, string-encoded number, or flavor string

A “flavor string” is a “|” or “,” separated list of format-specific flavor terms. It can be a
simple as “Default”, or a more complex string like “Default|-ENDM|DELPHI” which for
the PDB reader starts with the default settings, removes the ENDM flavor, and adds the
CHARGE and RADIUS flavors.

The supported input flavor terms for each format are:

• SMILES - Canon, Strict, Default

• sdf - Default

• skc - Default

• mol2, mol2h - M2H, Default

• mmod - FormalCrg, Default

• pdb - ALL, ALTLOC, BondOrder, CHARGE, Connect, DATA, DELPHI, END, ENDM,
FORMALCHARGE, FormalCrg, ImplicitH, RADIUS, Rings, SecStruct, TER, Ter-
Mask, Default

• xyz - BondOrder, Connect, FormalCrg, ImplicitH, Rings, Default

• cdx - SuperAtoms, Default

• oeb - Default

You can also pass in a numeric value like 123 or a numeric string like “0”.

In addition, the SMILES record readers have limited support for the “delimiter” reader_arg:

• delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

Note: the first whitespace after the SMILES string will always be treated as a delimiter.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report”
sends a message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default
Location will be created.

See chemfp.openeye_toolkit.read_ids_and_molecules() if you want (id, OEGraphMol)
pairs instead of just the molecules.

Parameters

• source (a filename, file object, or None to read from stdin) –
the structure source

• format (a format name string, or Format object, or None to
auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader parameters passed to the underlying
toolkit

360 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating OEGraphMol
molecules

8.41.13 read_molecules_from_string (openeye_toolkit)

chemfp.openeye_toolkit.read_molecules_from_string(content, format, id_tag=None,
reader_args=None, er-
rors=”strict”, location=None)

Return an iterator that reads molecules from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
openeye_toolkit.read_molecules() for details about the other parameters. See chemfp.
openeye_toolkit.read_ids_and_molecules_from_string() if you want to read (id, OE-
GraphMol) pairs instead of just molecules.

Note: the reader will clear and reuse the OEGraphMol instance. Make a copy if you want
to keep the molecule around.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating OEGraphMol
molecules

8.41.14 read_ids_and_molecules (openeye_toolkit)

chemfp.openeye_toolkit.read_ids_and_molecules(source=None, format=None,
id_tag=None, reader_args=None,
errors=”strict”, location=None,
encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads (id, OEGraphMol molecule) pairs from a structure file

See chemfp.openeye_toolkit.read_molecules() for full parameter details. The major
difference is that this returns an iterator of (id, OEGraphMol) pairs instead of just the
molecules.

8.41. chemfp.openeye_toolkit module 361

chemfp Documentation, Release 3.4

Note: the reader will clear and reuse the OEGraphMol instance. Make a copy if you want
to keep the molecule around.

Parameters

• source (a filename, file object, or None to read from stdin) –
the structure source

• format (a format name string, or Format object, or None to
auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, OE-
GraphMol) pairs

8.41.15 read_ids_and_molecules_from_string (openeye_toolkit)

chemfp.openeye_toolkit.read_ids_and_molecules_from_string(content, format,
id_tag=None,
reader_args=None,
errors=”strict”,
location=None)

Return an iterator that reads (id, OEGraphMol) pairs from a string containing structure
records

content is a string containing 0 or more records in the format format. See chemfp.
openeye_toolkit.read_molecules() for details about the other parameters. See chemfp.
openeye_toolkit.read_molecules_from_string() if you just want to read the OEGraph-
Mol molecules instead of (id, OEGraphMol) pairs.

Note: the reader will clear and reuse the OEGraphMol instance. Make a copy if you want
to keep the molecule around.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

362 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, OE-
GraphMol) pairs

8.41.16 make_id_and_molecule_parser (openeye_toolkit)

chemfp.openeye_toolkit.make_id_and_molecule_parser(format, id_tag=None,
reader_args=None, er-
rors=”strict”)

Create a specialized function which takes a record and returns an (id, OEGraphMol) pair

The returned function is optimized for reading many records from individual strings be-
cause it only does parameter validation once. The function will reuse the OEGraphMol
for successive calls, so make a copy if you want to keep it around. However, I haven’t re-
ally noticed much of a performance difference between this and chemfp.openeye_toolkit.
parse_id_and_molecule() so I suggest you use that function directly instead of making a
specialized function. (Let me know if making a specialized function is useful.)

See chemfp.openeye_toolkit.read_molecules() for details about the other parameters.

Parameters

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns a function of the form parser(record string) -> (id, OEGraphMol)

8.41.17 parse_molecule (openeye_toolkit)

chemfp.openeye_toolkit.parse_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from the content string and return an OEGraphMol molecule.

content is a string containing a single structure record in format format. (Additional records
are ignored). See chemfp.openeye_toolkit.read_molecules() for details about the other
parameters. See chemfp.openeye_toolkit.parse_id_and_molecule() if you want the (id,
OEGraphMol) pair instead of just the molecule.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

8.41. chemfp.openeye_toolkit module 363

chemfp Documentation, Release 3.4

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns an OEGraphMol molecule

8.41.18 parse_id_and_molecule (openeye_toolkit)

chemfp.openeye_toolkit.parse_id_and_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from content and return the (id, OEGraphMol) pair.

content is a string containing a single structure record in format format. (Additional records
are ignored). See chemfp.openeye_toolkit.read_molecules() for details about the other
parameters.

See chemfp.openeye_toolkit.read_molecules() for details about the other parameters.
See chemfp.openeye_toolkit.parse_molecule() if just want the OEGraphMol molecule
and not the the (id, OEGraphMol) pair.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns an (id, OEGraphMol molecule) pair

8.41.19 create_string (openeye_toolkit)

chemfp.openeye_toolkit.create_string(mol, format, id=None, writer_args=None, er-
rors=”strict”)

Convert an OEChem molecule into a structure record in the given format as a Unicode
string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly
modify the molecule, so may not be thread-safe.

Parameters

• mol (an OEChem molecule) – the molecule to use for the output

• format (a format name string, or Format object) – the output struc-
ture format

• id (a string, or None to use the molecule's own id) – an alternate
record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

364 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns a string

8.41.20 create_bytes (openeye_toolkit)

chemfp.openeye_toolkit.create_bytes(mol, format, id=None, writer_args=None, er-
rors=”strict”, level=None)

Convert an OEChem molecule into a structure record in the given format as a byte string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly
modify the molecule, so may not be thread-safe.

Parameters

• mol (an OEChem molecule) – the molecule to use for the output

• format (a format name string, or Format object) – the output struc-
ture format

• id (a string, or None to use the molecule's own id) – an alternate
record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats

Returns a string

8.41.21 open_molecule_writer (openeye_toolkit)

chemfp.openeye_toolkit.open_molecule_writer(destination=None, format=None,
writer_args=None, errors=”strict”,
location=None, encoding=”utf8”, en-
coding_errors=”strict”, level=None)

Return a MoleculeWriter which can write OEChem molecules to a destination.

A chemfp.base_toolkit.MoleculeWriter has the methods write_molecule,
write_molecules, and write_ids_and_molecules, which are ways to write an OEChem
molecule, an OEChem molecule iterator, or an (id, OEChem molecule) pair iterator to a
file.

Molecules are written to destination. The output format can be a string like “sdf.gz” or
“smi”, a chemfp.base_toolkit.Format, or Format-like object with “name” and “compres-
sion” attributes, or None to auto-detect based on the destination. If auto-detection is not
possible, the output will be written as uncompressed SMILES.

The writer_args dictionary parameters depend on the format. Every OEChem format
supports:

• aromaticity - one of “default”, “openeye”, “daylight”, “tripos”, “mdl”, “mmff”, or None

• flavor - a number, string-encoded number, or flavor string

8.41. chemfp.openeye_toolkit module 365

chemfp Documentation, Release 3.4

A “flavor string” is a “|” or “,” separated list of format-specific flavor terms. It
can be as simple as “Default”, or a more complex string like DEFAULT|-AtomStereo|-
BondStero|Canonical to generate a canonical SMILES string without stereo information.

The supported output flavor terms for each format are:

• SMILES - AtomMaps, AtomStereo, BondStereo, Canonical, ExtBonds, Hydrogens, Im-
pHCount, Isotopes, Kekule, RGroups, SuperAtoms

• sdf - CurrentParity, MCHG, MDLParity, MISO, MRGP, MV30, NoParity, Default

• mol2, mol2h - AtomNames, AtomTypeNames, BondTypeNames, Hydrogens, Order-
Atoms, Substructure, Default

• sln - Default

• pdb - BONDS, BOTH, CHARGE, CurrentResidues, DELPHI, ELEMENT, FOR-
MALCHARGE, FormalCrg, HETBONDS, NoResidues, OEResidues, ORDERS, Or-
derAtoms, RADIUS, TER, Default

• xyz - Charges, Symbols, Default

• cdx - Default

• mopac - CHARGES, XYZ, Default

• mf - Title, Default

• oeb - Default

• inchi, inchikey - Chiral, FixedHLayer, Hydrogens, ReconnectedMetals, Stereo, Rela-
tiveStereo, RacemicStereo, Default

You can also pass in a numeric value like 123 or a numeric string like “0”.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report”
sends a message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default
Location will be created.

Parameters

• destination (a filename, file object, or None to write to
stdout) – the structure destination

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer parameters passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats
(does not affect OEChem)

Returns a chemfp.base_toolkit.MoleculeWriter expecting OEChem
molecules

366 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.41.22 open_molecule_writer_to_string (openeye_toolkit)

chemfp.openeye_toolkit.open_molecule_writer_to_string(format,
writer_args=None,
errors=”strict”, loca-
tion=None)

Return a MoleculeStringWriter which can write OEChem molecule records to a Unicode
string.

See chemfp.openeye_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get the
output string as a Unicode string.

Parameters

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting OEChem
molecules

8.41.23 open_molecule_writer_to_bytes (openeye_toolkit)

chemfp.openeye_toolkit.open_molecule_writer_to_bytes(format, writer_args=None,
errors=”strict”, loca-
tion=None, level=None)

Return a MoleculeStringWriter which can write OEChem molecule records to a byte string.

See chemfp.openeye_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get the
output string as a byte string.

Parameters

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats
(does not affect OEChem)

8.41. chemfp.openeye_toolkit module 367

chemfp Documentation, Release 3.4

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting OEChem
molecules

8.41.24 copy_molecule (openeye_toolkit)

chemfp.openeye_toolkit.copy_molecule(mol)
Return a new OEGraphMol which is a copy of the given OEChem molecule

Parameters mol (an Open Babel molecule) – the molecule to copy

Returns a new OBMol instance

8.41.25 add_tag (openeye_toolkit)

chemfp.openeye_toolkit.add_tag(mol, tag, value)
Add an SD tag value to the OEChem molecule

Parameters

• mol (an OEChem molecule) – the molecule

• tag (string) – the SD tag name

• value (string) – the text for the tag

Returns None

8.41.26 get_tag (openeye_toolkit)

chemfp.openeye_toolkit.get_tag(mol, tag)
Get the named SD tag value, or None if it doesn’t exist

Parameters

• mol (an OEChem molecule) – the molecule

• tag (string) – the SD tag name

Returns a string, or None

8.41.27 get_tag_pairs (openeye_toolkit)

chemfp.openeye_toolkit.get_tag_pairs(mol)
Get a list of all SD tag (name, value) pairs for the molecule

Parameters mol (an OEChem molecule) – the molecule

Returns a list of (string name, string value) pairs

8.41.28 get_id (openeye_toolkit)

chemfp.openeye_toolkit.get_id(mol)
Get the molecule’s id using OEChem’s GetTitle()

Parameters mol (an OEChem molecule) – the molecule

Returns a string

368 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.41.29 set_id (openeye_toolkit)

chemfp.openeye_toolkit.set_id(mol, id)
Set the molecule’s id using OEChem’s SetTitle()

Parameters

• mol (an OEChem molecule) – the molecule

• id (string) – the new id

Returns None

8.42 chemfp.rdkit_toolkit module

The chemfp toolkit layer for RDKit.

8.42.1 name

chemfp.rdkit_toolkit.name

The string “rdkit”.

8.42.2 software

chemfp.rdkit_toolkit.software

A string like “RDKit/2016.09.3”, where the second part of the string comes from rdkit.rdBase.rdkitVersion.

8.42.3 is_licensed (rdkit_toolkit)

chemfp.rdkit_toolkit.is_licensed()
Return True - RDKit is always licensed

Returns True

8.42.4 get_formats (rdkit_toolkit)

chemfp.rdkit_toolkit.get_formats(include_unavailable=False)
Get the list of structure formats that RDKit supports

If include_unavailable is True then also include RDKit formats which aren’t available to
this specific version of RDKit, such as the InChI formats if your RDKit installation wasn’t
compiled with InChI support.

Parameters include_unavailable (True or False) – include unavailable for-
mats?

Returns a list of Format objects

8.42. chemfp.rdkit_toolkit module 369

chemfp Documentation, Release 3.4

8.42.5 get_input_formats (rdkit_toolkit)

chemfp.rdkit_toolkit.get_input_formats()
Get the list of supported RDKit input formats

Returns a list of chemfp.base_toolkit.Format objects

8.42.6 get_output_formats (rdkit_toolkit)

chemfp.rdkit_toolkit.get_output_formats()
Get the list of supported RDKit output formats

Returns a list of chemfp.base_toolkit.Format objects

8.42.7 get_format (rdkit_toolkit)

chemfp.rdkit_toolkit.get_format(format)
Get the named format, or raise a ValueError

This will raise a ValueError if RDKit does not implement the format format_name or that
format is not available.

Parameters format_name (a string) – the format name

Returns a list of chemfp.base_toolkit.Format objects

8.42.8 get_input_format (rdkit_toolkit)

chemfp.rdkit_toolkit.get_input_format(format)
Get the named input format, or raise a ValueError

This will raise a ValueError if RDKit does not implement the format format_name or that
format is not an input format.

Parameters format_name (a string) – the format name

Returns a list of chemfp.base_toolkit.Format objects

8.42.9 get_output_format (rdkit_toolkit)

chemfp.rdkit_toolkit.get_output_format(format)
Get the named format, or raise a ValueError

This will raise a ValueError if RDKit does not implement the format format_name or that
format is not an output format.

Parameters format_name (a string) – the format name

Returns a list of chemfp.base_toolkit.Format objects

370 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.42.10 get_input_format_from_source (rdkit_toolkit)

chemfp.rdkit_toolkit.get_input_format_from_source(source=None, format=None)
Get the most appropriate format given the available source and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same
attributes. If it’s a string then use it to create a Format object.

If format is None, use the source to auto-detect the format. If auto-detection is not possible,
assume it’s an uncompressed SMILES file.

Parameters

• source (a filename (as a string), a file object, or None to read
from stdin) – the structure data source.

• format (a Format(-like) object, string, or None) – format informa-
tion, if known.

Returns a chemfp.base_toolkit.Format object

8.42.11 get_output_format_from_destination (rdkit_toolkit)

chemfp.rdkit_toolkit.get_output_format_from_destination(destination=None, for-
mat=None)

Get the most appropriate format given the available destination and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same
attributes. If it’s a string then use it to create a Format object.

If format is None, use the destination to auto-detect the format. If auto-detection is not
possible, assume it’s an uncompressed SMILES file.

Parameters

• destination (a filename (as a string), a file object, or None to
read from stdin) – The structure data source.

• format (a Format(-like) object, string, or None) – format informa-
tion, if known.

Returns a chemfp.base_toolkit.Format object

8.42.12 read_molecules (rdkit_toolkit)

chemfp.rdkit_toolkit.read_molecules(source=None, format=None, id_tag=None,
reader_args=None, errors=”strict”, lo-
cation=None, encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads RDKit molecules from a structure file

Iterate through the format structure records in source. If format is None then auto-detect
the format based on the source. For SD files, use id_tag to get the record id from the given
SD tag instead of the title line. (read_molecules() will ignore the id_tag. It exists to make
it easier to switch between reader functions.)

Note: the reader returns a new RDKit molecule each time.

8.42. chemfp.rdkit_toolkit module 371

chemfp Documentation, Release 3.4

The reader_args dictionary parameters depend on the format. These include:

• SMILES

– delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

– has_header - True or False

– sanitize - True or default sanitizes; False for unsanitized processing

• InChI

– delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

– sanitize - True or default sanitizes; False for unsanitized processing

– removeHs - True or default removes explicit hydrogens; False leaves them in the
structure

– logLevel - an integer log level

– treatWarningAsError - True raises an exception on error; False or default keeps
processing

• SDF

– sanitize - True or default sanitizes; False for unsanitized processing

– removeHs - True or default removes explicit hydrogens; False leaves them in the
structure

– strictParsing - True or default for strict parsing; False for lenient parsing

The errors parameter specifies how to handle errors. “strict” raises an exception, “report”
sends a message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default
Location will be created.

See chemfp.rdkit_toolkit.read_ids_and_molecules() if you want (id, molecule) pairs
instead of just the molecules.

Parameters

• source (a filename, file object, or None to read from stdin) –
the structure source

• format (a format name string, or Format object, or None to
auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader parameters passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating RDKit molecules

372 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.42.13 read_molecules_from_string (rdkit_toolkit)

chemfp.rdkit_toolkit.read_molecules_from_string(content, format, id_tag=None,
reader_args=None, er-
rors=”strict”, location=None)

Return an iterator that reads RDKit molecules from a string containing structure records

content is a string containing 0 or more records in the format format. See chemfp.
rdkit_toolkit.read_molecules() for details about the other parameters. See chemfp.
rdkit_toolkit.read_ids_and_molecules_from_string() if you want to read (id, RDKit)
pairs instead of just molecules.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.MoleculeReader iterating RDKit molecules

8.42.14 read_ids_and_molecules (rdkit_toolkit)

chemfp.rdkit_toolkit.read_ids_and_molecules(source=None, format=None,
id_tag=None, reader_args=None,
errors=”strict”, location=None,
encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads (id, RDKit molecule) pairs from a structure file

See chemfp.rdkit_toolkit.read_molecules() for full parameter details. The major dif-
ference is that this returns an iterator of (id, RDKit molecule) pairs instead of just the
molecules.

Parameters

• source (a filename, file object, or None to read from stdin) –
the structure source

• format (a format name string, or Format object, or None to
auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

8.42. chemfp.rdkit_toolkit module 373

chemfp Documentation, Release 3.4

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, RDKit
molecule) pairs

8.42.15 read_ids_and_molecules_from_string (rdkit_toolkit)

chemfp.rdkit_toolkit.read_ids_and_molecules_from_string(content, format,
id_tag=None,
reader_args=None,
errors=”strict”, loca-
tion=None)

Return an iterator that reads (id, RDKit molecule) pairs from a string containing structure
records

content is a string containing 0 or more records in the format format. See chemfp.
rdkit_toolkit.read_molecules() for details about the other parameters. See chemfp.
rdkit_toolkit.read_molecules_from_string() if you just want to read the RDKit
molecules instead of (id, molecule) pairs.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id, RDKit
molecule) pairs

8.42.16 make_id_and_molecule_parser (rdkit_toolkit)

chemfp.rdkit_toolkit.make_id_and_molecule_parser(format, id_tag=None,
reader_args=None, er-
rors=”strict”)

Create a specialized function which takes a record and returns an (id, RDKit molecule) pair

The returned function is optimized for reading many records from individual strings because
it only does parameter validation once. However, I haven’t really noticed much of a perfor-
mance difference between this and chemfp.rdkit_toolkit.parse_id_and_molecule() so
you can probably so I suggest you use that function directly instead of making a specialized
function. (Let me know if making a specialized function is useful.)

374 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

See chemfp.rdkit_toolkit.read_molecules() for details about the other parameters.

Parameters

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns a function of the form parser(record string) -> (id, RDKit
molecule)

8.42.17 parse_molecule (rdkit_toolkit)

chemfp.rdkit_toolkit.parse_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from the content string and return an RDKit molecule.

content is a string containing a single structure record in format format. (Additional records
are ignored). See chemfp.rdkit_toolkit.read_molecules() for details about the other
parameters. See chemfp.rdkit_toolkit.parse_id_and_molecule() if you want the (id,
RDKit molecule) pair instead of just the molecule.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns an RDKit molecule

8.42.18 parse_id_and_molecule (rdkit_toolkit)

chemfp.rdkit_toolkit.parse_id_and_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from content and return the (id, RDKit molecule) pair.

content is a string containing a single structure record in format format. (Additional records
are ignored). See chemfp.rdkit_toolkit.read_molecules() for details about the other
parameters.

See chemfp.rdkit_toolkit.read_molecules() for details about the other parameters. See
chemfp.rdkit_toolkit.parse_molecule() if just want the RDKit molecule and not the
the (id, RDKit molecule) pair.

8.42. chemfp.rdkit_toolkit module 375

chemfp Documentation, Release 3.4

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns an (id, RDKit molecule) pair

8.42.19 create_string (rdkit_toolkit)

chemfp.rdkit_toolkit.create_string(mol, format, id=None, writer_args=None, er-
rors=”strict”)

Convert an RDKit molecule into a structure record in the given format as a Unicode string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly
modify the molecule, so may not be thread-safe.

Parameters

• mol (an RDKit molecule) – the molecule to use for the output

• format (a format name string, or Format object) – the output struc-
ture format

• id (a string, or None to use the molecule's own id) – an alternate
record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns a Unicode string

8.42.20 create_bytes (rdkit_toolkit)

chemfp.rdkit_toolkit.create_bytes(mol, format, id=None, writer_args=None, er-
rors=”strict”, level=None)

Convert an RDKit molecule into a structure record in the given format as a byte string

If id is not None then use it instead of the molecule’s own title. Warning: this may briefly
modify the molecule, so may not be thread-safe.

Parameters

• mol (an RDKit molecule) – the molecule to use for the output

• format (a format name string, or Format object) – the output struc-
ture format

376 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• id (a string, or None to use the molecule's own id) – an alternate
record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats

Returns a byte string

8.42.21 open_molecule_writer (rdkit_toolkit)

chemfp.rdkit_toolkit.open_molecule_writer(destination=None, format=None,
writer_args=None, errors=”strict”,
location=None, encoding=”utf8”, encod-
ing_errors=”strict”, level=None)

Return a MoleculeWriter which can write RDKit molecules to a destination.

A chemfp.base_toolkit.MoleculeWriter has the methods write_molecule,
write_molecules, and write_ids_and_molecules, which are ways to write an RD-
Kit molecule, an RDKit molecule iterator, or an (id, RDKit molecule) pair iterator to a
file.

Molecules are written to destination. The output format can be a string like “sdf.gz” or
“smi”, a chemfp.base_toolkit.Format, or Format-like object with “name” and “compres-
sion” attributes, or None to auto-detect based on the destination. If auto-detection is not
possible, the output will be written as uncompressed SMILES.

The writer_args dictionary parameters depend on the format. These include:

• SMILES

– delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

– isomericSmiles - True to generate isomeric SMILES

– kekuleSmiles - True to generate SMILES in Kekule form

– canonical - True to generate a canonical SMILES

– allBondsExplicit - True to write explict ‘-‘ and ‘:’ bonds, even if they can be inferred;
default is False

– allHsExplicit - True to write explicit hydrogen counts; default is False

– cxsmiles - True to include CXSMILES annotations; default is False

InChI and InChIKey

• delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

• include_id - True or default to include the id as the second column; False has no id
column

• options - an options string passed to the underlying InChI library

• logLevel - an integer log level

• treatWarningAsError - True raises an exception on error; False or default keeps pro-
cessing

8.42. chemfp.rdkit_toolkit module 377

chemfp Documentation, Release 3.4

SDF

• includeStereo - True include stereo information; False or default does not

• kekulize - True or default creates the connection table with bonds in Kekeule form

• v3k - True to alway export in V3000 format

The errors parameter specifies how to handle errors. “strict” raises an exception, “report”
sends a message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default
Location will be created.

Parameters

• destination (a filename, file object, or None to write to
stdout) – the structure destination

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer parameters passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats

Returns a chemfp.base_toolkit.MoleculeWriter expecting RDKit molecules

8.42.22 open_molecule_writer_to_string (rdkit_toolkit)

chemfp.rdkit_toolkit.open_molecule_writer_to_string(format, writer_args=None,
errors=”strict”, loca-
tion=None)

Return a MoleculeStringWriter which can write molecule records in the given format to a
string.

See chemfp.rdkit_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get the
output as a Unicode string.

Parameters

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

378 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting RDKit
molecules

8.42.23 open_molecule_writer_to_bytes (rdkit_toolkit)

chemfp.rdkit_toolkit.open_molecule_writer_to_bytes(format, writer_args=None,
errors=”strict”, loca-
tion=None, level=None)

Return a MoleculeStringWriter which can write molecule records in the given format to a
text string.

See chemfp.rdkit_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get the
output as a byte string.

Parameters

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting RDKit
molecules

8.42.24 copy_molecule (rdkit_toolkit)

chemfp.rdkit_toolkit.copy_molecule(mol)
Return a new RDKit molecule which is a copy of the given molecule

Parameters mol (an RDKit molecule) – the molecule to copy

Returns a new RDKit Mol instance

8.42.25 add_tag (rdkit_toolkit)

chemfp.rdkit_toolkit.add_tag(mol, tag, value)
Add an SD tag value to the RDKit molecule

Parameters

• mol (an RDKit molecule) – the molecule

• tag (string) – the SD tag name

• value (string) – the text for the tag

Returns None

8.42. chemfp.rdkit_toolkit module 379

chemfp Documentation, Release 3.4

8.42.26 get_tag (rdkit_toolkit)

chemfp.rdkit_toolkit.get_tag(mol, tag)
Get the named SD tag value, or None if it doesn’t exist

Parameters

• mol (an RDKit molecule) – the molecule

• tag (string) – the SD tag name

Returns a string, or None

8.42.27 get_tag_pairs (rdkit_toolkit)

chemfp.rdkit_toolkit.get_tag_pairs(mol)
Get a list of all SD tag (name, value) pairs for the molecule

Parameters mol (an RDKit molecule) – the molecule

Returns a list of (string name, string value) pairs

8.42.28 get_id (rdkit_toolkit)

chemfp.rdkit_toolkit.get_id(mol)
Get the molecule’s id from RDKit’s _Name property

Parameters mol (an RDKit molecule) – the molecule

Returns a string

8.42.29 set_id (rdkit_toolkit)

chemfp.rdkit_toolkit.set_id(mol, id)
Set the molecule’s id as RDKit’s _Name property

Parameters

• mol (an RDKit molecule) – the molecule

• id (string) – the new id

Returns None

8.43 chemfp.text_toolkit module

The text_toolkit implements the chemfp toolkit API but where the “molecules” are simple TextRecord
instances which store the records as text strings. It does not use a back-end chemistry toolkit, and it cannot
convert between different chemistry representations.

The TextRecord is a base class. The actual records depend on the format, and will be one of:

• SDFRecord

• SmiRecord

• CanRecord

380 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• UsmRecord

• SmiStringRecord

• CanStringRecord

• UsmStringRecord

The text toolkit will let you “convert” between the different SMILES formats, but it doesn’t actually change
the SMILES string. The SMILES records have the attributes id, record and smiles.

The toolkit also knows a bit about the SD format. The SDF records have the attributes id, id_bytes and
record, and there are methods to get SD tag values and add a tag to the end of the tag data block.

The text_toolkit also supports a few SDF-specific I/O functions to read SDF records directly as a string
instead of wrapped in a TextRecord.

The record types also have the attributes encoding and encoding_errors which affect how the record bytes
are parsed.

8.43.1 name

chemfp.text_toolkit.name

The string “text”

8.43.2 software

chemfp.text_toolkit.software

A string like “chemfp/3.0”.

8.43.3 is_licensed (text_toolkit)

chemfp.text_toolkit.is_licensed()
Return True - chemfp’s text toolkit is always licensed

Returns True

8.43.4 get_formats (text_toolkit)

chemfp.text_toolkit.get_formats(include_unavailable=False)
Get the list of structure formats that chemfp’s text toolkit supports

This version of chemfp will always support the structure formats available to chemfp so
‘include_unavailable’ does not affect anything. (It may affect other toolkits.)

Parameters include_unavailable – include unavailable formats?

Value include_unavailable True or False

Returns a list of chemfp.base_toolkit.Format objects

8.43. chemfp.text_toolkit module 381

chemfp Documentation, Release 3.4

8.43.5 get_input_formats (text_toolkit)

chemfp.text_toolkit.get_input_formats()
Get the list of supported chemfp text toolkit input formats

Returns a list of chemfp.base_toolkit.Format objects

8.43.6 get_output_formats (text_toolkit)

chemfp.text_toolkit.get_output_formats()
Get the list of supported chemfp text toolkit output formats

Returns a list of chemfp.base_toolkit.Format objects

8.43.7 get_format (text_toolkit)

chemfp.text_toolkit.get_format(format_name)
Get the named format, or raise a ValueError

This will raise a ValueError for unknown format names.

Parameters format_name – the format name

Value format_name a string

Returns a chemfp.base_toolkit.Format object

8.43.8 get_input_format (text_toolkit)

chemfp.text_toolkit.get_input_format(format_name)
Get the named input format, or raise a ValueError

This will raise a ValueError for unknown format names or if that format is not an input
format.

Parameters format_name – the format name

Value format_name a string

Returns a chemfp.base_toolkit.Format object

8.43.9 get_output_format (text_toolkit)

chemfp.text_toolkit.get_output_format(format_name)
Get the named format, or raise a ValueError

This will raise a ValueError for unknown format names or if that format is not an output
format.

Parameters format_name – the format name

Value format_name a string

Returns a chemfp.base_toolkit.Format object

382 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.43.10 get_input_format_from_source (text_toolkit)

chemfp.text_toolkit.get_input_format_from_source(source=None, format=None)
Get the most appropriate format given the available source and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same
attributes. If it’s a string then use it to create a Format object.

If format is None, use the source to auto-detect the format. If auto-detection is not possible,
assume it’s an uncompressed SMILES file.

Parameters

• source (A filename (as a string), a file object, or None to read
from stdin) – The structure data source.

• format (A Format(-like) object, string, or None) – Format informa-
tion, if known.

Returns a chemfp.base_toolkit.Format object

8.43.11 get_output_format_from_destination (text_toolkit)

chemfp.text_toolkit.get_output_format_from_destination(destination=None, for-
mat=None)

Get the most appropriate format given the available destination and format information

If format is a chemfp.base_toolkit.Format then return it. If it’s a Format-like object with
“name” and “compression” attributes use it to make a real Format object with the same
attributes. If it’s a string then use it to create a Format object.

If format is None, use the destination to auto-detect the format. If auto-detection is not
possible, assume it’s an uncompressed SMILES file.

Parameters

• destination (A filename (as a string), a file object, or None to
read from stdin) – The structure data source.

• format (A Format(-like) object, string, or None) – format informa-
tion, if known.

Returns A chemfp.base_toolkit.Format object

8.43.12 read_molecules (text_toolkit)

chemfp.text_toolkit.read_molecules(source=None, format=None, id_tag=None,
reader_args=None, errors=”strict”, lo-
cation=None, encoding=”utf8”, encod-
ing_errors=”strict”)

Return an iterator that reads TextRecord instances from a structure file

Iterate through the format structure records in source. If format is None then auto-detect
the format based on the source. For SD files, use id_tag to get the record id from the given
SD tag instead of the title line. (read_molecules() will ignore the id_tag. It exists to make
it easier to switch between reader functions.)

Only the SMILES formats use the reader_args dictionary. The supported parameters are:

8.43. chemfp.text_toolkit module 383

chemfp Documentation, Release 3.4

• delimiter - one of “tab”, “space”, “to-eol”, the space or tab characters, or None

• has_header - True or False

The errors parameter specifies how to handle errors. “strict” raises an exception, “report”
sends a message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default
Location will be created.

See read_ids_and_molecules() if you want (id, TextRecord) pairs instead of just the
molecules.

Parameters

• source (a filename, file object, or None to read from stdin) –
the structure source

• format (a format name string, or Format object, or None to
auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader parameters passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

• encoding (string (typically 'utf8' or 'latin1')) – the byte encoding

• encoding_errors (string (typically 'strict', 'ignore', or
'replace')) – how to handle decoding failure

Returns a chemfp.base_toolkit.MoleculeReader iterating TextRecord
molecules

8.43.13 read_molecules_from_string (text_toolkit)

chemfp.text_toolkit.read_molecules_from_string(content, format, id_tag=None,
reader_args=None, er-
rors=”strict”, location=None)

Return an iterator that reads TextRecord instances from a string containing structure
records

content is a string containing 0 or more records in the format format. See read_molecules()
for details about the other parameters. See read_ids_and_molecules_from_string() if
you want to read (id, TextRecord) pairs instead of just molecules.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

384 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

• encoding (string (typically 'utf8' or 'latin1')) – the byte encoding

• encoding_errors (string (typically 'strict', 'ignore', or
'replace')) – how to handle decoding failure

Returns a chemfp.base_toolkit.MoleculeReader iterating TextRecord
molecules

8.43.14 read_ids_and_molecules (text_toolkit)

chemfp.text_toolkit.read_ids_and_molecules(source=None, format=None,
id_tag=None, reader_args=None,
errors=”strict”, location=None, encod-
ing=”utf8”, encoding_errors=”strict”)

Return an iterator that reads (id, TextRecord) pairs from a structure file

See chemfp.text_toolkit.read_molecules() for full parameter details. The major differ-
ence is that this returns an iterator of (id, TextRecord) pairs instead of just the molecules.

Parameters

• source (a filename, file object, or None to read from stdin) –
the structure source

• format (a format name string, or Format object, or None to
auto-detect) – the input structure format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

• encoding (string (typically 'utf8' or 'latin1')) – the byte encoding

• encoding_errors (string (typically 'strict', 'ignore', or
'replace')) – how to handle decoding failure

Returns a chemfp.text_toolkit.IdAndMoleculeReader iterating (id,
TextRecord) pairs

8.43. chemfp.text_toolkit module 385

chemfp Documentation, Release 3.4

8.43.15 read_ids_and_molecules_from_string (text_toolkit)

chemfp.text_toolkit.read_ids_and_molecules_from_string(content, format,
id_tag=None,
reader_args=None,
errors=”strict”, loca-
tion=None)

Return an iterator that reads (id, TextRecord) pairs from a string containing structure
records

content is a string containing 0 or more records in the format format. See chemfp.
rdkit_toolkit.read_molecules() for details about the other parameters. See chemfp.
rdkit_toolkit.read_molecules_from_string() if you just want to read the TextRecord
molecules instead of (id, TextRecord) pairs.

Parameters

• content (a string) – the string containing structure records

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

• encoding (string (typically 'utf8' or 'latin1')) – the byte encoding

• encoding_errors (string (typically 'strict', 'ignore', or
'replace')) – how to handle decoding failure

Returns a chemfp.base_toolkit.IdAndMoleculeReader iterating (id,
TextRecord) pairs

8.43.16 make_id_and_molecule_parser (text_toolkit)

chemfp.text_toolkit.make_id_and_molecule_parser(format, id_tag=None,
reader_args=None, er-
rors=”strict”)

Create a specialized function which takes a record and returns an (id, TextRecord) pair

The returned function is optimized for reading many records from individual strings because
it only does parameter validation once. However, I haven’t really noticed much of a perfor-
mance difference between this and chemfp.text_toolkit.parse_id_and_molecule() so I
suggest you use that function directly instead of making a specialized function. (Let me
know if making a specialized function is useful.)

See chemfp.text_toolkit.read_molecules() for details about the other parameters. The
specific TextRecord subclass returned depends on the format.

Parameters

386 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns a function of the form parser(record string) -> (id, text_record)

8.43.17 parse_molecule (text_toolkit)

chemfp.text_toolkit.parse_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from the content string and return a TextRecord.

content is a string containing a single structure record in format format. (Additional records
are ignored). See chemfp.text_toolkit.read_molecules() for details about the other
parameters. See chemfp.text_toolkit.parse_id_and_molecule() if you want the (id,
TextRecord) pair instead of just the text record.

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• encoding (string (typically 'utf8' or 'latin1')) – the byte encoding

• encoding_errors (string (typically 'strict', 'ignore', or
'replace')) – how to handle decoding failure

Returns a TextRecord

8.43.18 parse_id_and_molecule (text_toolkit)

chemfp.text_toolkit.parse_id_and_molecule(content, format, id_tag=None,
reader_args=None, errors=”strict”)

Parse the first structure record from content and return the (id, TextRecord) pair.

content is a string containing a single structure record in format format. (Additional records
are ignored). See chemfp.rdkit_toolkit.read_molecules() for details about the other
parameters.

See chemfp.rdkit_toolkit.read_molecules() for details about the other parameters. See
chemfp.rdkit_toolkit.parse_molecule() if just want the TextRecord and not the the
(id, TextRecord) pair.

8.43. chemfp.text_toolkit module 387

chemfp Documentation, Release 3.4

Parameters

• content (a string) – the string containing a structure record

• format (a format name string, or Format object) – the input structure
format

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (a dictionary) – reader arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• encoding (string (typically 'utf8' or 'latin1')) – the byte encoding

• encoding_errors (string (typically 'strict', 'ignore', or
'replace')) – how to handle decoding failure

Returns an (id, TextRecord molecule) pair

8.43.19 create_string (text_toolkit)

chemfp.text_toolkit.create_string(mol, format, id=None, writer_args=None, er-
rors=”strict”)

Convert a TextRecord into a structure record in the given format as a Unicode string

If id is not None then use it instead of the molecule’s own id.

Parameters

• mol (a TextRecord) – the molecule to use for the output

• format (a format name string, or Format object) – the output struc-
ture format

• id (a string, or None to use the molecule's own id) – an alternate
record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

Returns a Unicode string

8.43.20 create_bytes (text_toolkit)

chemfp.text_toolkit.create_bytes(mol, format, id=None, writer_args=None, er-
rors=”strict”, level=None)

Convert a TextRecord into a structure record in the given format as a byte string

If id is not None then use it instead of the molecule’s own id.

Parameters

• mol (a TextRecord) – the molecule to use for the output

• format (a format name string, or Format object) – the output struc-
ture format

388 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• id (a string, or None to use the molecule's own id) – an alternate
record id

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats

Returns a byte string

8.43.21 open_molecule_writer (text_toolkit)

chemfp.text_toolkit.open_molecule_writer(destination=None, format=None,
writer_args=None, errors=”strict”,
location=None, encoding=”utf8”, encod-
ing_errors=”strict”, level=None)

Return a MoleculeWriter which can write TextRecord instances to a destination.

A chemfp.base_toolkit.MoleculeWriter has the methods write_molecule,
write_molecules, and write_ids_and_molecules, which are ways to write an
TextRecord, an TextRecord iterator, or an (id, TextRecord) pair iterator to a file.

TextRecords are written to destination. The output format can be a string like “sdf.gz” or
“smi”, a chemfp.base_toolkit.Format, or Format-like object with “name” and “compres-
sion” attributes, or None to auto-detect based on the destination. If auto-detection is not
possible, the output will be written as uncompressed SMILES.

That said, the text toolkit doesn’t know how to convert between SMILES and SDF formats,
and will raise an exception if you try.

The writer_args is only used for the “smi”, “can”, and “usm” output formats. The only
supported parameter is:

* delimiter - one of "tab", "space", "to-eol", the space or tab characters,
↪→ or None

The errors parameter specifies how to handle errors. “strict” raises an exception, “report”
sends a message to stderr and goes to the next record, and “ignore” goes to the next record.

The location parameter takes a chemfp.io.Location instance. If None then a default
Location will be created.

Parameters

• destination (a filename, file object, or None to write to
stdout) – the structure destination

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

8.43. chemfp.text_toolkit module 389

chemfp Documentation, Release 3.4

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

• encoding (string (typically 'utf8' or 'latin1')) – the byte encoding

• encoding_errors (string (typically 'strict', 'ignore', or
'replace')) – how to handle decoding failure

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats

Returns a chemfp.base_toolkit.MoleculeWriter expecting TextRecord in-
stances

8.43.22 open_molecule_writer_to_string (text_toolkit)

chemfp.text_toolkit.open_molecule_writer_to_string(format, writer_args=None,
errors=”strict”, loca-
tion=None)

Return a MoleculeStringWriter which can write TextRecord instances to a string.

See chemfp.text_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get the
output as a Unicode string.

Parameters

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting
TextRecord instances

8.43.23 open_molecule_writer_to_bytes (text_toolkit)

chemfp.text_toolkit.open_molecule_writer_to_bytes(format, writer_args=None, er-
rors=”strict”, location=None,
level=None)

Return a MoleculeStringWriter which can write TextRecord instances to a string.

See chemfp.text_toolkit.open_molecule_writer() for full parameter details.

Use the writer’s chemfp.base_toolkit.MoleculeStringWriter.getvalue() to get the
output as a byte string.

Parameters

• format (a format name string, or Format(-like) object, or None
to auto-detect) – the output structure format

390 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• writer_args (a dictionary) – writer arguments passed to the underlying
toolkit

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
writer state information

• level (None, a positive integer, or one of the strings 'min',
'default', or 'max') – compression level to use for compressed formats

Returns a chemfp.base_toolkit.MoleculeStringWriter expecting
TextRecord instances

8.43.24 copy_molecule (text_toolkit)

chemfp.text_toolkit.copy_molecule(mol)
Return a new TextRecord which is a copy of the given TextRecord

Parameters mol (a TextRecord) – the text record

Returns a new TextRecord

8.43.25 add_tag (text_toolkit)

chemfp.text_toolkit.add_tag(mol, tag, value)
Add an SD tag value to the TextRecord

If the mol is in “sdf” format then this will modify mol.record to append the new tag and
value to the end of the tag block. The other tags will not be modified, including tags with
the same tag name.

Parameters

• mol (a TextRecord) – the text record

• tag (string) – the SD tag name

• value (string) – the text for the tag

Returns None

8.43.26 get_tag (text_toolkit)

chemfp.text_toolkit.get_tag(mol, tag)
Get the named SD tag value, or None if it doesn’t exist

If the mol is in “sdf” format then this will return the corresponding tag value from mol.
record, or None if the tag does not exist.

If the record is in any other format then it will return None.

Parameters

• mol (a TextRecord) – the molecule

• tag (string) – the SD tag name

Returns a string, or None

8.43. chemfp.text_toolkit module 391

chemfp Documentation, Release 3.4

8.43.27 get_tag_pairs (text_toolkit)

chemfp.text_toolkit.get_tag_pairs(mol)
Get a list of all SD tag (name, value) pairs for the TextRecord

If the mol is in “sdf” format then this will return the list of (tag, value) pairs in mol.record,
where the tag and value are strings.

If the record is in any other format then it will return an empty list.

Parameters mol (a TextRecord) – the molecule

Returns a list of (tag name, tag value) pairs

8.43.28 get_id (text_toolkit)

chemfp.text_toolkit.get_id(mol)
Get the molecule’s id from the TextRecord’s id field

This is toolkit-portable way to get mol.id.

Parameters mol (a TextRecord) – the molecule

Returns a string

8.43.29 set_id (text_toolkit)

chemfp.text_toolkit.set_id(mol, id)
Set the TextRecord’s id to the new id

This is the toolkit-portable way to write mol.id = id.

Note: this does not modify mol.record. Use chemfp.text_toolkit.create_string() or
similar text_toolkit functions to get the record text with a new identifier.

Parameters

• mol (a TextRecord) – the molecule

• id (string) – the new id

Returns None

8.43.30 read_sdf_records (text_toolkit)

chemfp.text_toolkit.read_sdf_records(source=None, reader_args=None, compres-
sion=None, errors=”strict”, location=None,
block_size=327680)

Return an iterator that reads each record from an SD file as a string.

Iterate through the records in source, which must be in SD format. If compression is None or
“auto” then auto-detect the compression type based on source, and default to uncompressed
when it can’t be determined. Use “gz” when the input is gzip compressed, and “none” or
“” if uncompressed.

The reader_args parameter is currently unused. It exists for future compatability.

The errors parameter specifies how to handle errors. “strict” raises an exception, “report”
sends a message to stderr and goes to the next record, and “ignore” goes to the next record.

392 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

The location parameter takes a chemfp.io.Location instance. If None then a default
Location will be created.

The block_size parameter is the number of bytes to read from the SD file. The current
implementation reads a block, iterates through the records in the block, then prepends any
remaining text to the start of the next block. You shouldn’t need to change this parameter,
but if you do, please let me know.

Note: to prevent accidental memory consumption if the input is in the wrong format, a
complete record must be found within the first 327680 bytes or 5*block_size bytes, whichever
is larger.

The parser has only a basic understanding of the SD format. It knows how to handle the
counts line, the SKP property, and even tag data with the value ‘$$$$’. It is not a full
validator and it does not know chemistry.

WARNING: the parser does not yet handle the MS Windows newline convention.

See read_sdf_ids_and_records() if you want (id, record) pairs, and
read_sdf_ids_and_values() if you want (id, tag data) pairs. See
read_sdf_ids_and_records_from_string() to read from a string instead of a file
or file-like object.

Parameters

• source (a filename, file object, or None to read from stdin) –
the SDF source

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data content
compression method

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.RecordReader() iterating over the records as
a string

8.43.31 read_sdf_ids_and_records (text_toolkit)

chemfp.text_toolkit.read_sdf_ids_and_records(source=None, id_tag=None,
reader_args=None, compres-
sion=None, errors=”strict”, lo-
cation=None, encoding=”utf8”,
encoding_errors=”strict”,
block_size=327680)

Return an iterator that reads the (id, record string) pairs from an SD file

See read_sdf_records() for most parameter details. That function iterates over the
records, while this one iterates over the (id, record) pairs. By default the id comes from the
title line. Use id_tag to get the record id from the given SD tag instead.

See read_sdf_ids_and_values() if you want to read an identifier and tag value, or two
tag values, instead of returning the full record.

Parameters

8.43. chemfp.text_toolkit module 393

chemfp Documentation, Release 3.4

• source (a filename, file object, or None to read from stdin) –
the SDF source

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data content
compression method

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndRecordReader iterating (id, record
string) pairs

8.43.32 read_sdf_ids_and_values (text_toolkit)

chemfp.text_toolkit.read_sdf_ids_and_values(source=None, id_tag=None,
value_tag=None, reader_args=None,
compression=None, errors=”strict”,
location=None, encoding=”utf8”,
encoding_errors=”strict”,
block_size=327680)

Return an iterator that reads the (id, tag value string) pairs from an SD file

See read_sdf_records() for most parameter details. That function iterates over the
records, while this one iterates over the (id, tag value) pairs.

By default this uses the title line for both the id and tag value strings. Use id_tag and
value_tag, respectively, to use a given tag value instead. If a tag doesn’t exist then None
will be used.

Parameters

• source (a filename, file object, or None to read from stdin) –
the SDF source

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• value_tag (string, or None to use the record title) – SD tag con-
taining the value

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data content
compression method

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndRecordReader iterating (id, value string)
pairs

394 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.43.33 read_sdf_records_from_string (text_toolkit)

chemfp.text_toolkit.read_sdf_records_from_string(content, reader_args=None,
compression=None, er-
rors=”strict”, location=None,
block_size=327680)

Return an iterator that reads each record from a string containing SD records

See read_sdf_records_from_string() for the parameter details. The main difference is
that this function reads from content, which is a string containing 0 or more SDF records.

If content is a (Unicode) string then it must only contain ASCII characters, the records will
be returned as strings, and the compression option is not supported. If content is a byte
string then the records will be returned as byte strings, and compression is supported.

See read_sdf_ids_and_records_from_string() to read (id, record) pairs and
read_sdf_ids_and_values_from_string() to read (id, tag value) pairs.

Parameters

• content (string or bytes) – a string containing zero or more SD records

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data content
compression method

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.RecordReader iterating over each record as a
string

8.43.34 read_sdf_ids_and_records_from_string (text_toolkit)

chemfp.text_toolkit.read_sdf_ids_and_records_from_string(content=None,
id_tag=None,
reader_args=None,
compression=None,
errors=”strict”,
location=None, en-
coding=”utf8”, encod-
ing_errors=”strict”,
block_size=327680)

Return an iterator that reads the (id, record) pairs from a string containing SD records

This function reads the records from content, which is a string containing 0 or more SDF
records. It iterates over the (id, record) pairs. By default the id comes from the first line of
the SD record. Use id_tag to use a given tag value instead. See read_sdf_records() for
details about the other parameters.

If content is a (Unicode) string then it must only contain ASCII characters, the records
will be returned as strings, the compression option is not supported, and the encoding and
encoding_errors parameters are ignored.

If content is a byte string then the records will be returned as byte strings, compression is
supported, and the encoding and encoding_errors parameters are used to parse the id.

8.43. chemfp.text_toolkit module 395

chemfp Documentation, Release 3.4

Parameters

• content (string or bytes) – a string containing zero or more SD records

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• reader_args (currently ignored) – currently ignored

• compression (one of "auto", "none", "", or "gz") – the data content
compression method

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndRecordReader iterating over the (id,
record string) pairs

8.43.35 read_sdf_ids_and_values_from_string (text_toolkit)

chemfp.text_toolkit.read_sdf_ids_and_values_from_string(content=None,
id_tag=None,
value_tag=None,
compression=None,
reader_args=None,
errors=”strict”, lo-
cation=None, encod-
ing=”utf8”, encod-
ing_errors=”strict”,
block_size=327680)

Return an iterator that reads the (id, value) pairs from a string containing SD records

This function reads the records from content, which is a string containing 0 or more SDF
records. It iterates over the (id, value) pairs, which by default both contain the title line.
Use id_tag and value_tag, respectively, to use a given tag value instead. If a tag doesn’t
exist then None will be used.

If content is a (Unicode) string then it must only contain ASCII characters, the compression
option is not supported, and the encoding and encoding_errors parameters are ignored.

If content is a byte string then the records will be returned as byte strings, compression is
supported, and the encoding and encoding_errors parameters are used to parse the id and
value.

See read_sdf_records() for details about the other parameters.

Parameters

• content (string or bytes) – a string containing zero or more SD records

• id_tag (string, or None to use the record title) – SD tag containing
the record id

• value_tag (string, or None to use the record title) – SD tag con-
taining the value

• reader_args (currently ignored) – currently ignored

396 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• compression (one of "auto", "none", "", or "gz") – the data content
compression method

• errors (one of "strict", "report", or "ignore") – specify how to
handle errors

• location (a chemfp.io.Location object, or None) – object used to track
parser state information

Returns a chemfp.base_toolkit.IdAndRecordReader iterating over the (id,
value) pairs

8.43.36 get_sdf_tag (text_toolkit)

chemfp.text_toolkit.get_sdf_tag(sdf_record, tag)
Return the value for a named tag in an SDF record string

Get the value for the tag named tag from the string sdf_record containing an SD record.

Parameters

• sdf_record (string) – an SD record

• tag (string) – a tag name

Returns the corresponding tag value as a string, or None

8.43.37 add_sdf_tag (text_toolkit)

chemfp.text_toolkit.add_sdf_tag(sdf_record, tag, value)
Add an SD tag value to an SD record string

This will append the new tag and value to the end of the tag data block in the sdf_record
string.

Parameters

• sdf_record (string) – an SD record

• tag (string) – a tag name

• value (string) – the new tag value

Returns a new SD record string with the new tag and value

8.43.38 get_sdf_tag_pairs (text_toolkit)

chemfp.text_toolkit.get_sdf_tag_pairs(sdf_record)
Return the (tag, value) entries in the SDF record string

Parse the sdf_record and return the tag data as a list of (tag, value) pairs. The type of the
returned strings will be the same as the type of the input sdf_record string.

Parameters sdf_record (string) – an SDF record

Returns a list of (tag, value) pairs

8.43. chemfp.text_toolkit module 397

chemfp Documentation, Release 3.4

8.43.39 get_sdf_id (text_toolkit)

chemfp.text_toolkit.get_sdf_id(sdf_record)
Return the id for the SDF record string

The id is the first line of the sdf_record. A future version of this function may support an
id_tag parameter. Let me know if that would be useful.

The returned id string will have the same type as the input sdf_record.

Parameters sdf_record (string) – an SD record

Returns the first line of the SD record

8.43.40 set_sdf_id (text_toolkit)

chemfp.text_toolkit.set_sdf_id(sdf_record, id)
Set the id of the SDF record string to a new value

Set the first line of sdf_record to the new id, which must not contain a newline.

The sdf_record and the id must have the same string type.

Parameters

• sdf_record (string) – an SDF record

• id (string) – the new id

8.44 chemfp._text_toolkit module (private)

As you might have infered from the leading “_” in “_text_toolkit”, this is not a public module. There is
no reason for you to import it directly, the module name is subject to change, and even the location of the
classes is also subject to change. The reason why I even bring it up is because the chemfp.text_toolkit
returns class instances from this module, so you might well wonder about them.

8.44.1 TextRecord

class chemfp._text_toolkit.TextRecord

Base class for the text_toolkit ‘molecules’, which work with the records as text.

The chemfp.text_toolkit implements the toolkit API, but it doesn’t know chemistry.
Instead of returning real molecule objects, with atoms and bonds, it returns TextRecord
subclass instances that hold the record as a text string.

As an implementation detail (which means its subject to change) there is a subclass for each
of the support formats.

• SDFRecord - holds “sdf” records

• SmiRecord - holds “smi” records (the full line from a “smi” SMILES file)

• CanRecord - holds “can” records (the full line from a “can” SMILES file)

• UsmRecord - holds “usm” records (the full line from a “usm” SMILES file)

• SmiStringRecord - holds “smistring” records (only the “smistring” SMILES string; no
id)

398 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

• CanStringRecord - holds “canstring” records (only the “canstring” SMILES string; no
id)

• UsmStringRecord - holds “usmstring” records (only the “usmstring” SMILES string; no
id)

All of the classes have the following attributes: .. py:attribute:: id

The record identifier as a Unicode string, or None if there is no identifier

id_bytes
The record identifier as a byte string, or None if there is no identifier

record
The record, as a string. For the smistring, canstring, and usmstring formats, this is only
the SMILES string.

record_format
One of “sdf”, “smi”, “can”, “usm”, “smistring”, “canstring”, or “usmstring”.

The SMILES classes have an attribute:

smiles
The SMILES string component of the record.

add_tag(tag, value)
Add an SD tag value to the TextRecord

This methods does nothing if the record is not an “sdf” record.

Parameters

• tag (string) – the SD tag name

• value (string) – the text for the tag

Returns None

get_tag(tag)
Get the named SD tag value, or None if it doesn’t exist or is not an “sdf” record.

Parameters tag (byte or Unicode string) – the SD tag name

Returns a Unicode string, or None

get_tag_as_bytes(tag)
Get the named SD tag value, or None if it doesn’t exist or is not an “sdf” record.

Parameters tag (byte string) – the SD tag name

Returns a byte string, or None

get_tag_pairs()
Get a list of all SD tag (name, value) pairs for the TextRecord using Unicode strings

This function returns an empty list if the record is not an “sdf” record.

Returns a list of (Unicode string name, Unicode string value) pairs

get_tag_pairs_as_bytes()
Get a list of all SD tag (name, value) pairs for the TextRecord using byte strings

This function returns an empty list if the record is not an “sdf” record.

Returns a list of (byte string name, byte string value) pairs

8.44. chemfp._text_toolkit module (private) 399

chemfp Documentation, Release 3.4

copy()
Return a new record which is a copy of the given record

8.44.2 SDFRecord

class chemfp._text_toolkit.SDFRecord
Holds an SDF record. See chemfp._text_toolkit.TextRecord for API details

8.44.3 SmiRecord

class chemfp._text_toolkit.SmiRecord
Holds an “smi” record. See chemfp._text_toolkit.TextRecord for API details

8.44.4 CanRecord

class chemfp._text_toolkit.CanRecord
Holds an “can” record. See chemfp._text_toolkit.TextRecord for API details

8.44.5 UsmRecord

class chemfp._text_toolkit.UsmRecord
Holds an “usm” record. See chemfp._text_toolkit.TextRecord for API details

8.44.6 SmiStringRecord

class chemfp._text_toolkit.SmiStringRecord
Holds an “smistring” record. See chemfp._text_toolkit.TextRecord for API details

8.44.7 CanStringRecord

class chemfp._text_toolkit.CanStringRecord
Holds an “canstring” record. See chemfp._text_toolkit.TextRecord for API details

8.44.8 UsmStringRecord

class chemfp._text_toolkit.UsmStringRecord
Holds an “usmstring” record. See chemfp._text_toolkit.TextRecord for API details

8.45 chemfp.io module

This module implements a single public class, Location, which tracks parser state information, including
the location of the current record in the file. The other functions and classes are undocumented, should not
be used, and may change in future releases.

400 Chapter 8. chemfp API

chemfp Documentation, Release 3.4

8.45.1 Location

class chemfp.io.Location

Get location and other internal reader and writer state information

A Location instance gives a way to access information like the current record number, line
number, and molecule object.:

>>> import chemfp
>>> with chemfp.read_molecule_fingerprints("RDKit-MACCS166",
... "ChEBI_lite.sdf.gz", id_tag="ChEBI ID") as␣
↪→reader:
... for id, fp in reader:
... if id == "CHEBI:3499":
... print("Record starts at line", reader.location.lineno)
... print("Record byte range:", reader.location.offsets)
... print("Number of atoms:", reader.location.mol.GetNumAtoms())
... break
...
[08:18:12] S group MUL ignored on line 103
Record starts at line 3599
Record byte range: (138171, 141791)
Number of atoms: 36

The supported properties are:

• filename - a string describing the source or destination

• lineno - the line number for the start of the file

• mol - the toolkit molecule for the current record

• offsets - the (start, end) byte positions for the current record

• output_recno - the number of records written successfully

• recno - the current record number

• record - the record as a text string

• record_format - the record format, like “sdf” or “can”

Most of the readers and writers do not support all of the properties. Unsupported properties
return a None. The filename is a read/write attribute and the other attributes are read-only.

If you don’t pass a location to the readers and writers then they will create a new one based
on the source or destination, respectively. You can also pass in your own Location, created
as Location(filename) if you have an actual filename, or Location.from_source(source)
or Location.from_destination(destination) if you have a more generic source or desti-
nation.

__init__(filename=None)
Use filename as the location’s filename

from_source(cls, source)
Create a Location instance based on the source

If source is a string then it’s used as the filename. If source is None then the location filename
is “<stdin>”. If source is a file object then its name attribute is used as the filename, or None if
there is no attribute.

8.45. chemfp.io module 401

chemfp Documentation, Release 3.4

from_destination(cls, destination)
Create a Location instance based on the destination

If destination is a string then it’s used as the filename. If destination is None then the location
filename is “<stdout>”. If destination is a file object then its name attribute is used as the
filename, or None if there is no attribute.

__repr__()
Return a string like ‘Location(“<stdout>”)’

first_line
Read-only attribute.

The first line of the current record

filename
Read/write attribute.

A string which describes the source or destination. This is usually the source or destination
filename but can be a string like “<stdin>” or “<stdout>”.

mol
Read-only attribute.

The molecule object for the current record

offsets
Read-only attribute.

The (start, end) byte offsets, starting from 0

start is the record start byte position and end is one byte past the last byte of the record.

output_recno
Read-only attribute.

The number of records actually written to the file or string.

The value recno - output_recno is the number of records sent to the writer but which had an
error and could not be written to the output.

recno
Read-only attribute.

The current record number

For writers this is the number of records sent to the writer, and output_recno is the number of
records sucessfully written to the file or string.

record
Read-only attribute.

The current record as an uncompressed text string

record_format
Read-only attribute.

The record format name

where()
Return a human readable description about the current reader or writer state.

The description will contain the filename, line number, record number, and up to the first 40
characters of the first line of the record, if those properties are available.

402 Chapter 8. chemfp API

CHAPTER 9

What’s New / CHANGELOG

9.1 What’s new in 3.4 (24 June 2020)

This is summary of the changes since chemfp 3.3. For more details, see the individual intermediate changelog
entries below.

9.1.1 J. Cheminf. publication

There is a two year gap between the 3.3 and 3.4 releases. More than six months of that time went to writing
the paper “The chemfp project” for the Journal of Cheminformatics, which covers all of the major aspects
of chemfp.

Dalke, Andrew. The chemfp project. J. Cheminformatics 11, 76 (2019). https://doi.org/10.1186/
s13321-019-0398-8 https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0398-8

Towards the end of writing the paper I realized there was an improvement to the basic search algorithm.
The naive Tanimoto calculation test against a threshold requires a floating-point division. I had replaced
that with a faster comparison using integer multiplication. The newest version replaces that with a simple
comparison of the popcount to an expected minimum value.

This increases the MACCS search performance by roughly 15%. For larger fingerprint lengths the improve-
ment is only a few percent at best, which is expected as chemfp is mostly memory bandwidth bound, not
CPU bound.

9.1.2 New licensing options

Pre-compiled chemfp distributions for Linux-based operating systems are now available at no cost under the
“Chemfp Base License Agreement”. Most of the chemfp features are available for internal use, except that:

• fingerprint arenas may not be larger than 50,000 fingerprints;

• in-memory arena searches may not have more than 50,000 queries or targets;

403

https://doi.org/10.1186/s13321-019-0398-8
https://doi.org/10.1186/s13321-019-0398-8
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0398-8

chemfp Documentation, Release 3.4

• FPS searches may not have more than 20 queries;

• Tversky search is disabled;

• writing FPB files is disabled.

These features can be enabled with a valid license key, set via the environment variable CHEMFP_LICENSE.
Email sales@dalkescientific.com to request a evaluation license or to purchase a license. Source distributions
are also available.

To download the pre-compiled package for “manylinux” use:

python -m pip install chemfp -i https://chemfp.com/packages/

See LICENSE from the distribution or https://chemfp.com/BaseLicense.txt for full details.

9.1.3 Chemistry toolkit changes

RDKit: Added support for the “SECFP” SMILES-based circular fingerprints from the Rey-
mond group. Added RDKit-Fingerprint branchedPaths and useBondOrder options. Added
RDKit-Morgan includeRedundantEnvironments option. Added RDKit-AtomPair nBitsPerEntry,
includeRedundantEnvironments, and use2D options. Added RDKit-Torsion nBitsPerEntry and
includeChirality options.

RDKit (continued): New SMILES output option cxsmiles to include extra annotations. New SDF input
option includeTags to disable importing SD tags. New SDF output option v3k to always use v3000 format.
Added support for RDKit’s Mol2, PDB, Maestro, XYZ, HELM, and FASTA parsers. Added a new “sequence”
format to handle just the 1D sequence string.

Open Babel: Added support for 3.0. Added support for ECFP fingerprints, with family
names: OpenBabel-ECFP0, OpenBabel-ECFP2, OpenBabel-ECFP4, OpenBabel-ECFP6, OpenBabel-ECFP8,
OpenBabel-ECFP10. Open Babel 3.0 includes new formats, which were automatically supported by chemfp.

OpenEye: Added support for OEChem’s OEZ, CIF, mmCIF, PDB, FASTA, and CSV parsers. Added
a new “sequence” format to handle just the 1D sequence string. Added experimental support
for substructure screens, with the family names OpenEye-MoleculeScreen, OpenEye-MDLScreen, and
OpenEye-SMARTSScreen.

9.1.4 Tool changes

Simsearch now accepts a structure input, either as a command-line argument or from a filename. It will use
the fingerprint type from the target data set or a user-specified fingerprint type to convert the structures
into fingerprints.

Added a --help-format option to rdkit2fps, ob2fps and oe2fps which shows all available input formats and
their reader options.

9.1.5 I/O changes

Added support for Zstandard compression everywhere that gzip compression is supported. Use the filename
or format extension “.zst” to indicate that compression type. Chemfp’s RDKit toolkit adapater also supports
Zstandard, but not the Open Babel and OpenEye adapters.

Note: Zstandard compression requires the third-party “zstandard” Python package be installed.

Improved the gzip reader performance by about 15%. Improved the FPS reader by about 20%. Overall,
sdf2fps is about 10% faster extracting PubChem fingerprints from the PubChem sdf.gz files.

404 Chapter 9. What’s New / CHANGELOG

mailto:sales@dalkescientific.com
https://chemfp.com/BaseLicense.txt

chemfp Documentation, Release 3.4

Improved FPB output performance by about 10% by using a C extension.

Chemfp now supports reading compressed FPB files, and reading FPB files from stdin. These are read
entirely into memory before use as they cannot be memory-mapped. This was a feature request from a
customer who stored large fingerprint files on a network-based filesystem. It was faster to read a compressed
file and decompress into memory than it was to memory-map and use the contents of an uncompressed file.

9.2 What’s new in 3.4b3 (18 June 2020)

• Changed --list-formats to --help-formats.

• Updated oe2fps --help-formats.

• Fixed a bug in several OEChem create_string() and create_bytes() implementations where a
non-None ‘id’ changed the molecule title.

• Finished updating the documentation.

9.3 What’s new in 3.4b2 (12 June 2020)

• Changed the licensing model to let people use chemfp without a valid license key, with restrictions:

– fingerprint arenas may not be larger than 50,000 fingerprints,

– arena searches may not have more than 50,000 queries or targets,

– FPS searches may not have more than 20 queries

– Tversky searches are disabled, and writing FPB files is disabled.

• Added “includeTags” option for the RDKit toolkit SDF reader. The default of True parses the SD tag
data. This isn’t needed if you just want to generate fingerprints. rdkit2fps sets includeTags=False by
default, for a ~5% speedup in parsing a PubChem file.

• Added Zstandard input and output options to sdf2fps.

• Fixed a couple of bugs in the new gzio module. Better code to handle finding libz, and support for
different response codes for older versions of libz.

• Added compression --level option to fpcat

• Support OEChem 2.3 from 2019.Oct.

• Added support for OEChem formats OEZ, CIF, mmCIF, PDB, FASTA, and CSV. Also implemented
a “sequence” format based on the FASTA reader.

• Added experimental support for OpenEye’s fingerprint-like screens. The new fingerprint family names
are OpenEye-MoleculeScreen, OpenEye-MDLScreen, and OpenEye-SMARTSScreen. The functions are
type-based: QMols produce query screens and “regular” molecules produce target screens.

• get_fingerprint_families() now supports an optional “toolkit_name” parameter which loads and
returns only the fingerprints families for the specified toolkit.

• BUG FIX: some OpenEye toolkit writers, when passed a new identifier, SetTitle(new_id) on the
molecule before writing, but did not SetTitle(old_id) to restore original id.

• BUG FIX: the code did not check for fingerprint generation failures when using
OEChem/OEGraphSim. Fixed the code so it doesn’t an empty molecule returns an empty
fingerprint, instead of reusing whatever the previous fingerprint was.

9.2. What’s new in 3.4b3 (18 June 2020) 405

chemfp Documentation, Release 3.4

• Fixed a number of issues identified by PyFlakes, including some bugs, mostly related to error conditions
which weren’t tested.

9.4 What’s new in 3.4b1 (24 April 2020)

• Support Open Babel 3.0.

• Support Open Babel ECFP fingerprints. Requires Open Babel 3.0 or later. Use --nBits to specify a
size other than the default of 4096 bits. (Must be a power of 2, and at least 32.)

• Support RDKit parsers for FASTA, sequence, HELM, Mol2, PDB, Maestro and XYZ formats.

• RDKit SMILES writers now support the “cxsmiles” boolean flag to generate CXSMILES strings.
RDKit SDF and Molfile writers support “v3k” boolean flag to always generate V3000 records.

• Added support for RDKit SECFP fingerprints, developed by the Reymond group. These are circular
fingerprints similar to ECFP fingerprints except they use canonical fragment SMILES for the circular
substructures to generate hash values.

• Added support for additional RDKit fingerprint parameters:

– RDKit-Fingerprint: branchedPaths and useBondOrder

– RDKit-Morgan: includeRedundantEnvironments

– RDKit-AtomPair: nBitsPerEntry, includeChirality, and use2D

– RDKit-Torsion: nBitsPerEntry, includeChirality

• Added support for Zstandard compression everywhere gzip is supported, except for the Open Babel
and OpenEye toolkits, where the native toolkits do not support Zstandard and do not accept a Python
file object.

• Sped up FPB generation for ChEMBL by about 9% by rewriting several parts of the FPID block writer
code in C.

• Faster gzip read performance when reading from stdin or a named file. The new module calls zlib
functions directly, which gives 15-25% improved performance. If you have problems with the new gzip
reader, you can disable it be setting the environment variable CHEMFP_USE_SYSTEM_GZIP to 1.

• For even faster gzip read performance, chemfp can use an external program to decompress stdin or a
named file. If the environment variable CHEMFP_GZCAT is set then chemfp will interpret it as command-
line arguments to use in a subprocess. This may be zcat, gzcat or gzip -dc, or pigz -dc. (NOTE:
this variable was named CHEMFP_GZCAT_BINARY in the a4 release.)

In one test of simsearch, using 1.7M 2048-bit RDKit Morgan fingerprints from ChEMBL 23, measuring
wall-clock time:

• a search of the uncompressed file took 1.45 seconds

• CHEMFP_GZCAT=gzcat took 2.16 seconds (3.07 of total user time)

• the new gzip reader took 3.65 seconds

• CHEMFP_USE_SYSTEM_GZIP=1 took 4.36 seconds

Note that part of the speedup is because gzcat runs in another process so take better advantage of multicore
hardware. (That is, I measured wall-clock time on a multicore machine, not overall CPU time.)

• Improved the error handling when chemfp uses an external program to decompress an gzip’ed file.
NOTE: IT IS NOT FOOLPROOF! Chemfp waits 0.01 seconds to see if gzcat has exited unexpectedly,
which might happen if the file does not exist or cannot be read. However, there is a chance that gzcat

406 Chapter 9. What’s New / CHANGELOG

chemfp Documentation, Release 3.4

may take longer to report an error. In addition, chemfp does not detect if gzip exited early because
the file was corrupt or incomplete.

• Added a --list-formats options to oe2fps, rdkit2fps, and ob2fps, which gives more detailed informa-
tion about the supported input structure file formats and their options.

• No longer including or using a copy of unittest2, which was needed for Python 2.6 support.

9.5 What’s new in 3.4a4 (18 March 2020)

• simsearch accepts a structure file as query input. Use --in or --query-format to specify the format
type, or let chemfp try to figure out from the filename extension.

If the fingerprint type is not specified with --query-type then the target file metadata must specify the
type.

The --id-tags, --delimiter, --has-header, -R and --errors options from the *2fps programs are also
supported.

• The OEChem SMILES and InChI readers now support the has_header reader_arg to skip the first
line of the file. Use --has-header to enable that feature in oe2fps.

• FPB files may now be read from stdin, and fpb.gz files are supported. Unlike regular FPB files, which
are memory-mapped, the contents of these files are read into memory before use. The main use case
for fpb.gz files is to reduce network I/O if the files are on a remote disk.

• Changed the FPS reader block size from around 11K to 100K, giving a 20% boost in read performance
and 10% boost in fpcat performance. The smaller block size was chosen 10 years ago, on much less
powerful hardware.

• Experimental support for zstd compression, based on the filename ending with either .fps.zst or
.fpb.zst. This depends on the third-party “zstandard” package. My experience is that piping gzip
output to chemfp is faster than letting chemp use Python’s built-in gzip reader or using zstandard.

• Experimental support to use an external binary to decompress a gzip file. Set “CHEMFP_GZCAT_BINARY”
to “gzcat” or “zcat” or whatever program you use to read a gzip-compressed file (passed on the
command-line) and write the uncompressed contents to stdout. My timings show using an external
program is 25% faster than using Python’s built-in gzip module.

9.6 What’s new in version 3.4a2

Released 7 June 2019

Performance improvements for Tanimoto search. Older versions used a fast rejection test based on a rational
approximation to the threshold. It required two multiplications for each test. The new implementation uses
an exact test based on the minimum required intersection count, with only one comparision per test.

The chemfp benchmark suggests timing improvements like:

• 10-20% faster for 166 bits (POPCNT)

• 1-10% faster for 881 bits (POPCNT)

• 2- 7% faster for 1024 bits (POPCNT)

• 0- 9% faster for 1024 bits (AVX2)

• 0- 2% faster for 2048 bits (POPCNT)

9.5. What’s new in 3.4a4 (18 March 2020) 407

chemfp Documentation, Release 3.4

• 0-10% faster for 2048 bits (AVX2)

These numbers will be firmed up for the 3.4 release.

Improved error handling for oe2fps, ob2fps, and rdkit2fps when the underlying toolkit is not installed.

BUG FIX: Fixed several errrors related to storing 4GB or more of record identifier strings. This can occur if
your id contains both the id and the SMILES or other large data, or if you have many fingerprints each with
a large id (eg, an IUPAC name). The FPB format has a design limit of about 250M records, corresponding
to 17.2 characters per id before the old code would break.

BUG FIX: the Avalon fingerprint type is now registered. Previously it worked only if one of the other RDKit
fingerprint types was used first.

BUG FIX: the simseach metadata now uses #query_source and #target_source instead of #query_sources
and #target_sources.

BUG FIX: Fixed bug which prevented reading FPS files using the Windows newline convention.

BUG FIX: Fixed segfault when hex_to_bitlist or hex_contains were called with the wrong number of
arguments.

BUG FIX: simsearch --query incorrectly included a #query_sources in the output, as a duplicate of
#target_sources. Now it correctly omits #query_sources.

9.7 What’s new in version 3.4a1

Released 6 November 2018

Added the arena methods to_numpy_array() and to_numpy_bitarray(). The first returns a NumPy array
view of the underlying fingerprint data, as uint8 values, including pad bytes. This array makes it easier for
other programs to work directly with the chemfp fingerprint data. The second creates a new NumPy array
with one uint8 byte per fingerprint bit. The default returns all bits, or you can specific which bit columns
to use. This function makes it easy to use fingerprint bits as descriptors for clustering or other predictive
algorithms.

Added the fingerprints attribute to the FingerprintArena class. It gives list-like access the fingerprints.
For example, it can be used to iterate over the fingerprints.

BUG FIX: count_all() now uses a 64-bit integer. Previously it used as signed 32-bit integer, which could
overflow for large results.

BUG FIX: removed a memory leak in symmetric threshold searches.

BUG FIX: Calling the Tversky threshold arena search with the Tanimoto values alpha=beta=1.0 now calls
the (more optimized) Tanimoto arena search. Previous it called the Tanimoto arena search and then did the
general Tversky search, taking over twice as long to give the same results.

BUG FIX: The knearest Tversky symmetric arena search did not release Python references if there was an
allocation failure during the search. Now fixed.

BUG FIX: The FPS fingerprint writer didn’t verify that the fingerprint length matched the number of bytes
in the metadata. Fixed, and normalized the length change error message across the writers.

BUG FIX: The 3.3 broke support for compiling with --no-openmp. Fixed.

9.8 What’s new in version 3.3

Released 16 August 2018

408 Chapter 9. What’s New / CHANGELOG

chemfp Documentation, Release 3.4

BUG FIX: the k-nearest symmetric Tanimoto and Tversky search code contained a flaw when there was
more than one fingerprint with no bits set and the threshold was 0.0. Since all of the scores will be 0.0, the
code uses the first k fingerprints as the matches. However, they put all of the hits into the first search result
(item 0), rather than the corresponding result for each given query. This also opened up a race condition
for the OpenMP implementation, which could cause chemfp to crash.

Performance improvements for the POPCNT and AVX2-based searches. This was done by developing
specialized versions of the Tanimoto and Tversky search functions for each of the POPCNT and AVX2
implementations, by initializing some of the AVX2 registers only once per search rather than once per
popcount, by improving the rejection test for obvious mismatches, and by improving the alignment for
AVX2 loads.

Releative to chemfp 1.5 (the latest free version of chemfp), version 3.3 is about 20-35% faster for 166-bit
searches, 20-25% faster for 881-bit searches, and around 50% faster for 1024- and 2048-bit searches.

Relative to chemfp 3.2.1 (the previous version of chemfp), version 3.3 is 60% faster for 166-bit fingerprints,
15% faster for for 881-bit fingerprints, 25% faster for 1024-bit fingerprints, and 15% faster for 2048-bit
fingerprints.

Unindexed search (which occurs when the fingerprints are not in popcount order) now uses the fast popcount
implementations rather than the generic byte-based one. The result is about 6x faster.

Changed the simsearch --times option for more fine-grained reporting. The output (sent to stderr) now
looks like:

open 0.01 read 0.08 search 0.10 output 0.27 total 0.46

where ‘open’ is the time to open the file and read the metadata, ‘read’ is the time spent reading the file,
‘search’ is the time for the actual search, ‘output’ is the time to write the search results, and ‘total’ is the
total time from when the file is opened to when the last output is written.

Added SearchResult.format_ids_and_scores_as_bytes() to improve the simsearch output performance
when there are many hits. Turns out the limiting factor in that case is not the search time but output
formatting. The old code uses Python calls to convert each score to a double. The new code pushes that
code into C. My benchmark used a k=all NxN search of ~2,000 PubChem fingerprints to generate about 4M
scores. The output time went from 15.60s to 5.62s. (The search time was only 0.11s on my laptop.)

There is a new option, “report-algorithm” with the corresponding environment variable
CHEMFP_REPORT_ALGORITHM. The default does nothing. Set it to “1” to have chemfp print
a description of the search algorithm used, including any specialization, and the number of threads. For
examples:

chemfp search using threshold Tanimoto arena, index, single threaded (generic)
chemfp search using threshold Tversky arena, index, single threaded (popcnt_128_128)
chemfp search using knearest Tanimoto arena symmetric, OpenMP (popcnt_112), 8 threads

For the ‘generic’ searches, use CHEMFP_REPORT_INTERSECT=1 to see which specific popcount func-
tion is used.

There is a new option, “use-specialized-algorithms” with the corresponding environment variable
CHEMFP_USE_SPECIALIZED_ALGORITHMS. The default, “1”, uses the new specialized algorithms
mentioned above. Set it to “0” to have chemfp fall back to the generic algorithm. This option is primarily
used for timing comparisons and may be removed in future versions of chemfp.

There is experimental multi-threaded support for single-query searches. By default it is disabled because on
newer hardware it is slower than single-threaded search, and it will take time to figure out why.

The new option “num-column-threads” controls this feature. (In chemfp nomenclature, each query is a row,
and the targets are columns.) By default it is 1, meaning that single-query searches are single-threaded.

9.8. What’s new in version 3.3 409

chemfp Documentation, Release 3.4

Change it to 2 or higher to enable the “OpenMP columns” algorithm. The number of threads used is the
smaller of the number of column threads and the value of chemfp.get_num_threads().

For one benchmark, based on a threshold Tanimoto search of RDKit’s 2048-bit fingerprint, the search time
on my MacBook Pro laptop using POPCNT from 2011 goes from 19.7 to 16.1 seconds when I use 2 threads
instead of 1. On the other hand, on a Skylake machine using AVX2 the time goes from 5.3 to 9.3 seconds.

Better error handling in simsearch so that I/O error prints an error message and exit rather than give a full
stack trace. Testing this feature also identified bugs in the error handling code, which have been fixed.

9.9 What’s new in version 3.2.1

Released 12 April 2018

The biggest change is in the chemfp license. The commercial version is now distributed under a propritary
license instead of the MIT open source license.

There are two other minor changes. The build process now includes support for AVX2 by default, and
the fingerprint writer classes have a new ‘format’ attribute which is either “fps” or “fpb”, or is None if not
defined.

9.9.1 License key

This marks the first release of chemfp with a proprietary license.

Or rather, licenses. There is an academic license and commercial licenses in various flavors. In addition,
chemfp is still available under the open source MIT license, though that option is the most expensive. The
chemfp 1.x series (currently chemfp 1.5) is still available for no cost under the MIT license, and receives
updates, but it only supports Python 2.7 and it does not have as many features.

Chemfp 3.2.1 is available in source code and as a pre-compiled Python package which should run under most
x86 64-bit Linux-based OSes. The pre-compiled packages requires a license key.

The license key is date locked. If a valid key is not found then “import chemfp” will print diagnostic messages
to stderr and fingerprint search and arena generation functionality will be disabled. If you call one of the
disabled functions then it will raise a NotImplementedError exception. Simsearch will not work, and neither
will FPB generation.

Chemfp will look for the license key in the CHEMFP_LICENSE environment variable. For example, in
bash:

export CHEMFP_LICENSE=20101225-demo@HPDHKMHBIAENBEFLMCNKFGFAABNDGDOB

The first 8 digits are the year, month, and date that the license expires, in GMT. In this demo example the
license expired at the end of Christmas Day of 2010.

After the date comes optional configuration data including a user identifier, followed by the ‘@’, and ending
with a validation key.

There is no centralized license manger, and you may run chemfp on as many computers at your site as you
wish, within the limits of your license agreement.

There are two new API functions:

• chemfp.is_licensed() - return True if the license key is valid or no license key is needed, otherwise
return False.

410 Chapter 9. What’s New / CHANGELOG

https://www.python.org/dev/peps/pep-0513/
https://www.python.org/dev/peps/pep-0513/

chemfp Documentation, Release 3.4

• chemfp.get_license_date() - return the license key expiration date as a 3-element tuple in the form
(year, month, day). If the license key is not found or does not pass the security check then the function
returns None. If this version of chemfp does not need a license key then it returns (9999, 12, 25).

9.9.2 Why the change in license policy?

In 2009 or so I decided to see if I could make a living selling free software. Most people who develop open
source software for chemistry get their funding from other sources. Academics might be funded from grants,
a company might use an open source project for business reasons, as a way to lower overall costs. Some
companies sell a proprietary product or access to a service which uses an open source component, where the
income from the non-free sources funds the free software development. But I can only think of a one or two
cases in where people tried to make a living off of the source code itself, and they were not that successful.

I had some ideas of how it might be successful, and tried them out. While I had some sales, I never made
anywhere near what I would have made for the same effort as a consultant or contractor.

I also ran into some difficulties. Most software companies provide their software either free or with steep
discounts to academic organizations. If I do that with the most recent version of chemfp, I take a rather
large risk that some grad student will post the source on GitHub. (Pharmaceutical company employees are
much less likely to do that.)

I charge a lot of money for chemfp, because the few people who need high performance similarity search
are willing to pay for it. Potential customers want to try it out. Since I either control the copyright or use
components which allow proprietary use, I was able to make a non-disclosure agreement for the evaluation
period. Had I been using GPL-based components, and thus restricted to a free software license, that would
have been impossible.

I could continue to work at it trying to make a living selling free software, but after 9 years of trying I
decided it’s time to switch to a more standard proprietary licensing scheme.

The chemfp 1.x line will still be available at no cost under the MIT license.

9.9.3 AVX2 popcount enabled by default

AVX2 compilation is now enabled by default. It was disabled in earlier releases because the AVX2 command-
line flag was used to compile every file and I was worried that it might result in a binary which couldn’t be
used by older hardware. For this release I figured out how to use the -mssse3 and -mavx2 flags only for the
relevant popcount calculations.

At run-time chemfp will detect which CPU-specific features are available and only use the SSSE3 or AVX2
implementations when appropriate.

9.10 What’s new in version 3.2

Released 19 March 2018

This version mostly contains bug fixes and internal improvements. The biggest additions are support for Dave
Cosgrove’s ‘flush’ fingerprint file format, and support for ‘fromAtoms’ in some of the RDKit fingerprints.

The configuration has changed to use setuptools.

Previously the command-line programs were installed as small scripts. Now they are created and installed
using the “console_scripts” entry_point as part of the install process. This is more in line with the modern
way of installing command-line tools for Python.

If these scripts are no longer installed correctly, please let me know.

9.10. What’s new in version 3.2 411

https://www.gnu.org/philosophy/selling.html

chemfp Documentation, Release 3.4

If you have installed the chemfp_converters package then chemfp will use it to read and write fingerprint
files in flush format. It can be used as output from the *2fps programs, as input and output to fpcat, and
as query input to simsearch.

Added “fromAtoms” support for the RDKit hash, torsion, Morgan, and pair fingerprints. This is primarily
useful if you want to generate the circular environment around specific atoms of a single molecule, and you
know the atom indices. If you pass in multiple molecules then the same indices will be used for all of them.
Out-of-range values are ignored.

The command-line option is --from-atoms, which takes a comma-separated list of non-negative integer atom
indices. For examples:

--from-atoms 0
--from-atoms 29,30

The corresponding fingerprint type strings have also been updated. If fromAtoms is specified then the string
fromAtoms=i,j,k,… is added to the string. If it is not specified then the fromAtoms term is not present, in
order to maintain compability with older types strings. (The philosophy is that two fingerprint types are
equivalent if and only if their type strings are equivalent.)

The --from-atoms option is only useful when there’s a single query and when you have some other mechanism
to determine which subset of the atoms to use. For example, you might parse a SMILES, use a SMARTS
pattern to find the subset, get the indices of the SMARTS match, and pass the SMILES and indices to
rdk2fps to generate the fingerprint for that substructure.

Be aware that the union of the fingerprint for --from-atoms X and the fingerprint for --from-atoms Y
might not be equal to the fingerprint for --from-atoms X,Y. However, if a bit is present in the union of the
X and Y fingerprints then it will be present in the X,Y fingerprint.

Why? The fingerprint implementation first generates a sparse count fingerprint, then converts that to a
bitstring fingerprint. The conversion is affected by the feature count. If a feature is present in both X and
Y then X,Y fingerprint may have additional bits sets over the individual fingerprints.

9.10.1 Bug fixes

Fixed a bug in FPB identifier index lookup. When the id’s hash didn’t exist, it got stuck in an infinite loop.
There is a special token to identify the end of the hash chain. Unfortunately, that token wasn’t marked as a
b”byte string” during the Python 2to3 conversion, so that token was never found, causing the code to loop
over the chain forever. It is now a byte string, and a check was added to prevent infinite loops.

Fixed a bug where a k=0 similarity search using an FPS file as the targets caused a segfault. The code
assumed that k would be at least 1. If you do a k=0 search, it will currently read the entire file, checking
for format errors, and return no hits.

Chemfp no longer generates Python warnings. That is, the regression tests all pass under “python -W
error unit2 discover”. The biggest problem was the ResourceWarning from all of the files which were never
explicitly closed. They used to depend on the garbage collector to close the file but now use either through
a context manager or with close(). In addition, several strings contains invalid escape characters and some
regression tests used deprecated APIs.

The context manager and close() method for the FPBFingerprintAreana now close the underlying file ob-
ject/mmap rather than depend on the garbage collector.

The readers and writers which are wrappers to an iterator which may hold a file object, and where the file
object was created by chemfp, now know to close() the wrapped iterator when processing is over.

Added a check that the threshold and count symmetric arena searches have a popcount. Unordered arenas
caused the code to segfault.

412 Chapter 9. What’s New / CHANGELOG

https://pypi.python.org/pypi/chemfp-converters/

chemfp Documentation, Release 3.4

9.11 What’s new in version 3.1

Released 17 September 2017

The new specialized POPCNT implementation for PubChem/CACTVS keys increases search performance
for that case by about 15%.

The SearchResults object gained the to_csr() method and the shape attribute. The new method returns
a SciPy compressed sparse row matrix containing the similarity scores, which can be passed into scikit-learn
for clustering.

The fall 2017 release of OEChem will accept InChI strings as structure input. The chemfp wrapper now
knows about this, as well as the two new InChI output flavors “RelativeStereo” and “RacemicStereo”.

The fall 2017 release of RDKit will fix a bug in the pattern fingerprint definitions. The new chemfp fingerprint
type is RDKit-Pattern/4.

Changed how oe2fps, rdkit2fps, and ob2fps report missing or empty identifiers. Previously the default
--errors setting of “ignore” simply skipped those records, without any warning messages. This caused
problems processing the ChEBI SD file. Most of the records have an empty title line, so only a few fingerprint
records were generated. It wasn’t obvious that the resulting data set was useless. The new code always reports
a warning for empty or missing identifiers, even with “ignore”. If the --errors is “strict” then the warning
becomes an error and processing stops.

Updated the #software line to include “chemfp/3.1” in addition to the toolkit information. This helps
distinguish between, say, two different programs which generate RDKit Morgan fingerprints. It’s also possible
that a chemfp bug can affect the fingerprint output, so the extra term makes it easier to identify a bad dataset.

There are several small fixes related to memory leaks, the bytes/Unicode distinction in Python 3, error
messages, and error handling.

Removed chemfp.progressbar and chemfp.futures. These were included in chemfp 1.1 because I used them
in a project for one customer and thought they might be useful in future chemfp projects. They were not.
Also removed chemfp.argparse because chemfp 3.0 dropped support for Python 2.6.

9.12 What’s new in version 3.0.1

Released 28 August 2017

This is a bug-fix release. This fixes a critical bug in the general-purpose POPCNT popcount implementation
and a bug in the code to detect the RDKit Pattern fingerprint change in 2017.3.

See the CHANGELOG for details.

9.13 What’s new in version 3.0

Released 2 May 2017

Chemfp now supports both Python 2.7 and Python 3.5 or later. It no longer supports version before Python
2.7. Chemfp will support Python 2.7 at least until 2020, which is the end-of-life for Python 2.7.

This required extensive changes to distinguish between text/Unicode strings and byte strings. The biggest
user-facing change is that identifiers are now treated as Unicode strings. Fingerprints are still treated as
byte strings.

9.11. What’s new in version 3.1 413

https://docs.scipy.org/doc/scipy/reference/sparse.html
http://scikit-learn.org/

chemfp Documentation, Release 3.4

This change is not backwards compatible. The APIs function parameters are polymorphic, so in most cases
you can pass in either a Unicode string or a UTF-8 encoded byte string. However, the return type for an
identifier is Unicode, which will likely cause problems with existing code which expects bytes.

All of the chemistry toolkits have decided to treat files as UTF-8 encoded. Chemfp’s “text toolkit” offers
limited support for reading Latin-1 encoded files. This is a tricky topic so contact me if you have questions
or problems.

I have removed the “make_string_creator()” function because it was hard to explain, hard to maintain, and
had little performance improvement over passing in the arguments to chemfp.create_string(). This will
break compatibility, but then again, I don’t think anyone used it. If it is a problem, I suggest creating a
function, as in the following:

>>> from chemfp import rdkit_toolkit as T
>>> mol = T.parse_molecule("c1ccccc1O", "smistring")
>>> T.create_string(mol, "smistring", writer_args = {"allBondsExplicit": True})
u'O-c1:c:c:c:c:c:1'
>>> def make_string(mol):
... return T.create_string(mol, "smistring", writer_args = {"allBondsExplicit": True})
...
>>> make_string(mol)
u'O-c1:c:c:c:c:c:1'

If you look carefully at the previous example, you’ll see the other major backwards incompatibility. The
function chemfp.create_string() now return a Unicode string instead of a byte string. This also means
its format parameter no longer accepts the “.zlib” or “.gzip” extensions.

Instead, to get the old behavior use the new API function chemfp.create_bytes():

>>> T.create_bytes(mol, "smistring", writer_args = {"allBondsExplicit": True})
'O-c1:c:c:c:c:c:1'
>>> T.create_bytes(mol, "smistring.zlib", writer_args = {"allBondsExplicit": True})
'x\x9c\xf3\xd7M6\xb4J\x86CC\x00&\xc8\x04\x8d'

There’s a similar change between chemfp.open_molecule_writer_to_string() and the new function
chemfp.open_molecule_writer_to_bytes().

There are also some new features in version 3.0 which don’t break compatibility.

Similarity search is faster because there are now specialized popcount implementations based on the fin-
gerprint length. On one benchmark, 166-bit searches are 35% faster, 1024-bit searches are 25% faster, and
2048-bit searches are 5% faster.

There is a new popcount implementation for processors with the AVX2 instruction set. It is about 15%
faster than the POPCNT version for 2048 bit fingerprints. To test it out you will have to compile chemfp
with --with-avx2 enabled.

Added support for the Avalon fingerprints in RDKit, if RDKit has been compiled with Avalon support.

9.14 What’s new in version 2.1

Released 2 July 2015

Version 2.1 adds Tversky support for every place there was Tanimoto search (except the handful of deprecated
APIs). There are new search routines for FPS and arena searches, including OpenMP support, and new
bitops functions to compute a Tversky index between two fingerprints.

414 Chapter 9. What’s New / CHANGELOG

chemfp Documentation, Release 3.4

The k-nearest arena searches now support OpenMP. Previously they were single threaded even though the
other search functions supported multiple threads.

The built-in SDF parser saw a couple improvements, including support for both “\n” and “\r\n” newlines,
instead of only “\n” newlines.

There were a number of bug fixes that concern edge cases. For example, some 64-bit double calculations
could be off-by-one in the last digit, and fingerprints with 0 bits set could cause a few problems.

9.15 What’s new in version 2.0

Released 8 April 2015

Version 2.0 includes many new features designed for web service development. The new “FPB” binary
fingerprint file format is very fast to load, which is great for web server reloading during development and
on the command-line. The speed comes from using a memory-mapped file, which also means that multiple
chemfp instances can use the same file on the same machine without extra memory overhead.

The most extensive improvement is the new portable API for working with structure files and fingerprint
types. The moment you start working with multiple chemistry toolkits, you realize that they all have different
ways to read and write molecules, and to generate fingerprints from a molecule. Chemfp tries hard to have a
consistent API for these common tasks, without sacrificing performance, so you can get get your work done.
For example, with the new API it’s easy to take an SD record as an input string, compute the MACCS
fingerprints for each available toolkit, add the results as new SD tags, and return the updated record.

This sounds so easy, doesn’t it? It took about a year to develop. The API is quite extensive, and includes
the ability to pass toolkit-specific options to the underlying parsers, a low-level SDF parser that can be used
to index a file, a way to get a list of available formats and fingerprint types, and methods to parse fingerprint
arguments from strings.

New with version 2.0 is the ability to handle PubChem-sized data. Previous versions used 32 bit indexing
and had a limit of 4GB, which is enough for 33M 1024-bit fingerprints, but PubChem has about twice that
many structures.

There are also a lot of improvements, bug fixes, and performance tweaks. For example, the FPS reader is
now almost twice as fast! For details, see the CHANGELOG file of the release.

9.15. What’s new in version 2.0 415

chemfp Documentation, Release 3.4

416 Chapter 9. What’s New / CHANGELOG

CHAPTER 10

License and advertisement

This program was developed by Andrew Dalke <dalke@dalkescientific.com>, Andrew Dalke Scientific, AB.
It is available for purchase under an academic license, a commerical proprietary license, or an open source
(MIT) license. A purchase of a license includes free upgrades and support for one year, and a discount on
support renewal. (The support for the academic license is more limited than the other two options.)

I also maintain the chemfp-1.x series. Version chemfp-1.6 is available at no cost from chemfp.com, or if you
know someone with a copy of chemfp 2.x or 3.x under the MIT license, you might be able to get it from
them at no cost.

If you have questions about or with to purchase the commercial distribution, send an email to
sales@dalkescientific.com. You may also request a demo license for evaluation.

Chemfp may be used without a valid license key under the following license:

Chemfp Base License Agreement v1.1
18 Jun 2020

This is the default License Agreement for chemfp, a high-performance
similarity search tool for cheminformatics fingerprints. It applies to
anyone who has a copy of a pre-compiled chemfp distribution and who
did not purchase or otherwise acquire an alternate License Agreement
from Andrew Dalke Scientific AB ("Dalke Scientific") or its authorized
redistributors.

This License Agreement, which covers the chemfp source code, is
neither open source nor free software. It is a proprietary License
Agreement for software made available to you at no cost.

1. Reservation of Rights and Ownership

Chemfp is licensed, not sold. Dalke Scientific, its affiliates and
suppliers own and retain all right, title and interest in and to
chemfp, including all copyrights, patents, trade secret rights,

(continues on next page)

417

mailto:dalke@dalkescientific.com
mailto:sales@dalkescientific.com

chemfp Documentation, Release 3.4

(continued from previous page)

trademarks and other intellectual property rights therein, except as
explicitly described below or explicitly covered under another License
Agreement as stated in the relevant part of the source code.

The chemfp distribution is protected by Swedish copyright laws and
other intellectual property laws and international treaty provisions.

You may make copies for internal use of chemfp, including for use on
third-party hardware such as cloud providers, so long as the users of
chemfp are internal to your organization (i.e. employees,
contractors, interns, agents, and other persons under your control and
direction).

You may not distribute modified copies of chemfp, in whole or in part,
to any third party, nor may you rent, sublicense, or lease, with or
without consideration, chemfp to third parties. You further may not
use chemfp to act as a service bureau or application service provider
or use chemfp for commercial software hosting services.

In addition, you may not publish chemfp for others to use it in any
way that is against the law.

2. Other License Restrictions and Grants

If you develop software for internal use then you may use any chemfp
functionality, except that you may not use chemfp to:

- generate FPB files
- create or search in-memory fingerprint arenas with more

than 50,000 fingerprints
- perform Tversky searches
- perform Tanimoto searches of FPS files with

more than 20 queries at a time.

In the interest of clarity, you are explicitly permitted to use
chemfp's "toolkit" API implementations, fingerprint type API
implementations, and "bitops" functions.

You may modify, reverse-engineer, decompile, or disassemble chemfp.
However, you may not do so for the purpose of circumventing the
license key system or circumventing any of the terms and restrictions
of this license or any other provision of law.

(Look, I know the license key is not hard to break - it's there to
keep honest people honest.)

Modifications must not remove relevant copyright statements and
license information.

Within the restrictions given above, you may use chemfp to validate the
accuracy of your fingerprint generation and search software, including
in the development of for-profit and commercial applications which may

(continues on next page)

418 Chapter 10. License and advertisement

chemfp Documentation, Release 3.4

(continued from previous page)

be a direct competitor to chemfp.

Within the restrictions given above, you may use chemfp to generate
fingerprint data sets in FPS format for any internal use, and to
generate fingerprint data sets published at no cost for general public
download.

3. Patent Grant

You are granted a non-exclusive, worldwide, royalty-free license to
any patents that Dalke Scientific may assert on this release of
chemfp.

If you bring a patent claim against Dalke Scientific or any of its
affliates or suppliers over patents that you claim are infringed by
any version of chemfp then your license to use chemfp is terminated as
of the date such litigation is filed.

4. Disclaimers and Limitation of Liability

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

NEITHER DALKE SCIENTIFIC NOR ITS AFFILIATES OR SUPPLIERS MAKE ANY
ASSURANCES WITH REGARD TO THE ACCURACY OF THE RESULTS OR OUTPUT THAT
DERIVES FROM ANY USE OF THIS SOFTWARE.

If your jurisdiction does not allow the exclusion or limitation of the
liability for consequential or incidental damages, then you may not
use chemfp.

NOTWITHSTANDING ANY DAMAGES THAT YOU MIGHT INCUR FOR ANY REASON
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ALL DAMAGES REFERENCED
ABOVE AND ALL DIRECT OR GENERAL DAMAGES), THE ENTIRE CUMULATIVE
LIABILITY OF DALKE SCIENTIFIC, ITS AFFILIATES AND ANY OF THEIR
SUPPLIERS, WHETHER IN CONTRACT (INCLUDING ANY PROVISION OF THIS
LICENSE AGREEMENT), TORT, OR OTHERWISE, AND YOUR EXCLUSIVE REMEDY FOR
ALL OF THE FOREGOING, SHALL BE LIMITED TO THE GREATER OF DIRECT
DAMAGES IN THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE AND/OR
SERVICES OR U.S.$5.00. THE FOREGOING LIMITATIONS, EXCLUSIONS, AND
DISCLAIMERS SHALL APPLY TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, EVEN IF DALKE SCIENTIFIC, ITS AFFILIATES OR SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES AND EVEN IF ANY REMEDY
FAILS ITS ESSENTIAL PURPOSE.

5. Your Warranty to Dalke Scientific

(continues on next page)

419

chemfp Documentation, Release 3.4

(continued from previous page)

You warrant that all individuals having access to and/or using chemfp
will observe and perform all the terms and conditions of this License
Agreement. You shall use all reasonable efforts to see that employees,
agents, or other persons under your direction or control who have
access to and/or use the chemfp distribution abide by the terms and
conditions of this License Agreement. You shall, at your own expense,
promptly enforce the restrictions in this License Agreement against
any person who gains access to your copy of chemfp (i.e. the copy you
obtain upon agreeing to this License Agreement or any other lawful
copy you have made from such copy) with your permission or while your
employee or agent and who violates such restrictions, by instituting
and diligently pursuing all legal and equitable remedies against him
or her.

You agree to immediately notify Dalke Scientific in writing of any
misuse, misappropriation or unauthorized use of the chemfp
distribution that may come to your attention. If you authorize,
assist, encourage or facilitate another person or entity to take any
action related to the subject matter of this License Agreement, you
shall be deemed to have taken the action yourself. You agree to
defend, indemnify and hold harmless Dalke Scientific, its affiliates
and their suppliers from any and all claims resulting from or arising
out of any your, including any employee’s or agent’s (a) use or misuse
of chemfp, (b) violation of any law or the rights of any third party,
including but not limited to infringement or misappropriation of any
intellectual or proprietary rights of any third party, or (c) breach
of this License Agreement, including any breach of any warranty or
representation you make to Dalke Scientific.

6. Injunctive Relief

Because of the unique nature of chemfp, you understand and agree
that Dalke Scientific will suffer irreparable injury in the event you
fail to comply with any of the terms and conditions this License
Agreement and that monetary damages may be inadequate to compensate
Dalke Scientific for such breach. Accordingly, you agree that Dalke
Scientific will, in addition to any other remedies available to it at
law or in equity, be entitled to injunctive relief, without posting a
bond, to enforce the terms and conditions of this License Agreement.

7. Termination

You may terminate this License agreement at any time. Dalke Scientific
may immediately terminate this License Agreement if you breach any
representation, warranty, agreement or obligation contained or
referred to in this License Agreement. Upon termination, you must
dispose of chemfp and all copies or versions of chemfp.

The provisions of Sections 4, 5, 6, 7, and 8 shall survive
termination or expiration of this Agreement for any reason.

8. Venue
(continues on next page)

420 Chapter 10. License and advertisement

chemfp Documentation, Release 3.4

(continued from previous page)

In any suit or other action to enforce any right or remedy under or
arising out of this License Agreement, the prevailing party shall be
entitled reasonable attorneys' fees together with expenses and costs
that such prevailing party incurs. This License Agreement shall be
governed by the laws Sweden, provided that Dalke Scientific may pursue
injunctive relief in any forum in order to protect intellectual
property rights. You consent to the personal jurisdiction of the
courts of such venue. This License Agreement will be binding upon, and
inure to the benefit of the parties and their respective successors
and assigns.

The failure by Dalke Scientific to enforce any provision of this
License Agreement shall in no way be construed to be a present or
future waiver of such provision nor in any way affect our right to
enforce such provision thereafter. All waivers by us must be in
writing to be effective. If you have not received a different license
agreement from Dalke Scientific or its authorized redistributors then
this License Agreement, together with any addendum or amendment
included with chemfp, is the complete agreement between Dalke
Scientific and you and supersedes all prior agreements, oral or
written, with respect to the subject matter hereof.

All communications and notices to be made or given pursuant to this
License Agreement shall be in the English language.

9. Copyright Notices

Copyright © 2010-2020 Andrew Dalke Scientific AB, Storgatan 50, 461 30
Trollhättan, Sweden. All rights reserved. Any rights not expressly
granted in this License Agreement are reserved.

Other copyright holders are:
- Kim Walisch, <kim.walisch@gmail.com> (several popcount implementations,

under the MIT license)
- Stanford University (written by Imran S. Haque <ihaque@cs.stanford.edu>,

under the 3-Clause BSD License)
- Python Software Foundation (the ascii_buffer_converter, under the Python license)
- Christopher Swenson (the TimSort code in hits.c, under the MIT license)
- Daniel Lemire, Nathan Kurz, Owen Kaser, et al. (the AVX2 popcount

implementation, under the Apache 2 license)
- Rational Discovery LLC, Greg Landrum, and Julie Penzotti (the MACCS

pattern definitions in rdmaccs.patterns and rdmaccs2.patterns)

421

chemfp Documentation, Release 3.4

422 Chapter 10. License and advertisement

CHAPTER 11

Future

The chemfp code base is solid and in use at many companies, some of whom have paid for the commercial
version. It has great support for fingerprint generation, fast similarity search, and toolkit portability, but
there’s plenty left to do in future. Here’s a mixture of things that are likely and things which are possibilties.
Of course funding and feedback would help prioritize things. Let me know if you need something like one of
these.

The current FPB format is limited to about 200M fingerprints, while the largest current databases are
nearing 1B fingerprints. One workaround is to split the data set into multiple FPB files. Better would be to
have a format which handles everything in a single file.

Right now you’re limited to the built-in toolkit fingerprint types, plus chemfp’s own SMARTS-based finger-
prints. There should be a registration system so you can tell chemfp about user-defined fingerprint types.

I would like some way to select fingerprint subsets. My original thought was something like an awk for the
FPS format, with the ability to select N fingerprints at random, or those matching a given set of identifiers,
etc. My current thought is to implement it as a sqlite virtual table.

Chemfp supports Tanimoto and Tversky similarity. I could also add support for other measures; cosine and
Hamming seem like the most useful other alternatives.

Chemfp does not currently support Microsoft Windows computer because the code assumes the LP64 model,
where “int” is 32 bits and “long” is 64 bits. It will require a lot of low-level work to tweak everything correctly
for the Windows LLP64 model, where “int” and “long” are 32 bits and “long long” is 64 bits. Once that’s
done, I’ll have to figure out how to make an installer. I’ve decided to put it off until a someone (or someones)
fund it.

The threshold and k-nearest arena search results store hits using compressed sparse rows. These work well
for sparse results, but when you want the entire similarity matrix (ie, with a minimum threshold of 0.0) of
a large arena, then time and space to maintain the sparse data structure becomes noticable. It’s likely in
that case that you want to store the scores in a 2D NumPy matrix.

I’m really interested in using chemfp to handle different sorts of clustering. Let me know if there are things
I can add to the API which would help you do that.

If you are not a Python programmer then you might prefer that the core search routines be made accessible
through a C API. That’s possible, in that the software was designed with that in mind, but it needs more

423

mailto:dalke@dalkescientific.com

chemfp Documentation, Release 3.4

development and testing.

Chemfp ever since version 1.1 supports OpenMP. That’s great for shared-memory machines. Are you inter-
ested in supporting a distributed computing version?

There are any number of higher-level tools which can be built on the chemfp components. For example,
what about a wsgi component which implements a web-based search API for your local network? Wouldn’t
it be nice to say:

fpserver filename1.fpb

and have a simple search service?

What about an IPython visualization tool?

There’s a paper (doi:10.1093/bioinformatics/byq067) on using locality-sensitive hashing to find highly similar
fingerprints and a more recent one (doi:10.1186/s13321-018-0321-8) on LSH trees. Are there cases where it’s
more useful than chemfp’s direct search?

Several people have asked about GPU implementations. My feeling is that the CPU is fast enough, and
much easier to deploy. That’s not saying I wouldn’t be interested in a GPU implementation, only describing
why it’s not at the top of the list.

424 Chapter 11. Future

CHAPTER 12

Thanks

In no particular order, the following contributed to chemfp in some way: Noel O’Boyle, Geoff Hutchison,
the Open Babel developers, Greg Landrum, OpenEye, Roger Sayle, Phil Evans, Evan Bolton, Wolf-Dietrich
Ihlenfeldt, Rajarshi Guha, Dmitry Pavlov, Roche, Kim Walisch, Daniel Lemire, Nathan Kurz, Chris Morely,
Jörg Kurt Wegner, Phil Evans, Björn Grüning, Andrew Henry, Brian McClain, Pat Walters, Brian Kelley,
Lionel Uran Landaburu, Sereina Riniker, and Brian Cole.

Thanks also to my wife, Sara Marie, for her many years of support.

425

chemfp Documentation, Release 3.4

426 Chapter 12. Thanks

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

427

chemfp Documentation, Release 3.4

428 Chapter 13. Indices and tables

Python Module Index

c
chemfp, 253
chemfp._text_toolkit, 398
chemfp.arena, 298
chemfp.base_toolkit, 338
chemfp.bitops, 323
chemfp.encodings, 324
chemfp.fpb_io, 332
chemfp.fps_io, 327
chemfp.io, 400
chemfp.openbabel_patterns, 289
chemfp.openbabel_toolkit, 345
chemfp.openbabel_types, 286
chemfp.openeye_patterns, 292
chemfp.openeye_toolkit, 357
chemfp.openeye_types, 290
chemfp.rdkit_patterns, 297
chemfp.rdkit_toolkit, 369
chemfp.rdkit_types, 293
chemfp.search, 303
chemfp.text_toolkit, 380
chemfp.toolkit, 333
chemfp.types, 278

429

chemfp Documentation, Release 3.4

430 Python Module Index

Index

Symbols
--with-avx2, --without-avx2

command line option, 5
--with-openmp, --without-openmp

command line option, 4
--with-ssse3, --without-ssse3

command line option, 4
__call__() (chemfp.types.FingerprintFamily

method), 279
__getitem__() (chemfp.arena.FingerprintArena

method), 299
__getitem__() (chemfp.search.SearchResults

method), 319
__init__() (chemfp.FingerprintIterator method),

262
__init__() (chemfp.Fingerprints method), 263
__init__() (chemfp.io.Location method), 401
__iter__() (chemfp.FingerprintIterator method),

263
__iter__() (chemfp.FingerprintReader method),

261
__iter__() (chemfp.arena.FingerprintArena

method), 299
__iter__() (chemfp.fps_io.FPSReader method),

328
__iter__() (chemfp.search.SearchResult method),

321
__iter__() (chemfp.search.SearchResults method),

319
__len__() (chemfp.arena.FingerprintArena

method), 299
__len__() (chemfp.search.SearchResult method), 321
__len__() (chemfp.search.SearchResults method),

318
__repr__() (chemfp.Metadata method), 261
__repr__() (chemfp.base_toolkit.Format method),

342
__repr__() (chemfp.base_toolkit.FormatMetadata

method), 339

__repr__() (chemfp.io.Location method), 402
__repr__() (chemfp.types.FingerprintFamily

method), 279
__str__() (chemfp.Metadata method), 261

A
add_sdf_tag() (in module chemfp.text_toolkit), 397
add_tag() (chemfp._text_toolkit.TextRecord

method), 399
add_tag() (in module chemfp.openbabel_toolkit),

356
add_tag() (in module chemfp.openeye_toolkit), 368
add_tag() (in module chemfp.rdkit_toolkit), 379
add_tag() (in module chemfp.text_toolkit), 391
add_tag() (in module chemfp.toolkit), 337
args (chemfp.base_toolkit.FormatMetadata at-

tribute), 338
aromaticity (chemfp.Metadata attribute), 260

B
base_name (chemfp.types.FingerprintFamily at-

tribute), 279
base_name (chemfp.types.FingerprintType attribute),

281
BaseMoleculeReader (class in chemfp.base_toolkit),

339
BaseMoleculeWriter (class in chemfp.base_toolkit),

341
byte_contains() (in module chemfp.bitops), 323
byte_contains_bit() (in module chemfp.bitops),

323
byte_difference() (in module chemfp.bitops), 323
byte_from_bitlist() (in module chemfp.bitops),

323
byte_hex_tanimoto() (in module chemfp.bitops),

323
byte_hex_tversky() (in module chemfp.bitops), 323
byte_intersect() (in module chemfp.bitops), 323
byte_intersect_popcount() (in module

chemfp.bitops), 323

431

chemfp Documentation, Release 3.4

byte_popcount() (in module chemfp.bitops), 323
byte_tanimoto() (in module chemfp.bitops), 323
byte_to_bitlist() (in module chemfp.bitops), 323
byte_tversky() (in module chemfp.bitops), 323
byte_union() (in module chemfp.bitops), 323

C
CanRecord (class in chemfp._text_toolkit), 400
CanStringRecord (class in chemfp._text_toolkit),

400
category (chemfp.ChemFPProblem attribute), 264
check_fingerprint_problems() (in module

chemfp), 265
check_metadata_problems() (in module chemfp),

265
chemfp (module), 253
chemfp._text_toolkit (module), 398
chemfp.arena (module), 298
chemfp.base_toolkit (module), 338
chemfp.bitops (module), 323
chemfp.encodings (module), 324
chemfp.fpb_io (module), 332
chemfp.fps_io (module), 327
chemfp.io (module), 400
chemfp.openbabel_patterns (module), 289
chemfp.openbabel_toolkit (module), 345
chemfp.openbabel_types (module), 286
chemfp.openeye_patterns (module), 292
chemfp.openeye_toolkit (module), 357
chemfp.openeye_types (module), 290
chemfp.rdkit_patterns (module), 297
chemfp.rdkit_toolkit (module), 369
chemfp.rdkit_types (module), 293
chemfp.search (module), 303
chemfp.text_toolkit (module), 380
chemfp.toolkit (module), 333
chemfp.types (module), 278
ChemFPError (class in chemfp), 260
ChemFPProblem (class in chemfp), 264
clear() (chemfp.search.SearchResult method), 321
clear_all() (chemfp.search.SearchResults method),

319
close() (chemfp.base_toolkit.BaseMoleculeReader

method), 340
close() (chemfp.base_toolkit.BaseMoleculeWriter

method), 341
close() (chemfp.FingerprintIterator method), 263
close() (chemfp.FingerprintWriter method), 264
close() (chemfp.fpb_io.InputOrderFPBWriter

method), 333
close() (chemfp.fpb_io.OrderedFPBWriter

method), 332
close() (chemfp.fps_io.FPSReader method), 329
close() (chemfp.fps_io.FPSWriter method), 331

closed (chemfp.base_toolkit.BaseMoleculeReader at-
tribute), 339

closed (chemfp.base_toolkit.BaseMoleculeWriter at-
tribute), 341

closed (chemfp.base_toolkit.IdAndMoleculeReader
attribute), 340

closed (chemfp.base_toolkit.IdAndRecordReader at-
tribute), 340

closed (chemfp.base_toolkit.MoleculeReader at-
tribute), 340

closed (chemfp.base_toolkit.MoleculeStringWriter
attribute), 342

closed (chemfp.base_toolkit.MoleculeWriter at-
tribute), 342

closed (chemfp.base_toolkit.RecordReader at-
tribute), 340

closed (chemfp.fpb_io.InputOrderFPBWriter at-
tribute), 333

closed (chemfp.fpb_io.OrderedFPBWriter at-
tribute), 332

closed (chemfp.fps_io.FPSReader attribute), 328
command line option

--with-avx2, --without-avx2, 5
--with-openmp, --without-openmp, 4
--with-ssse3, --without-ssse3, 4

compute_fingerprint()
(chemfp.types.FingerprintType method),
286

compute_fingerprints()
(chemfp.types.FingerprintType method),
286

contains_arena() (in module chemfp.search), 318
contains_fp() (in module chemfp.search), 318
copy() (chemfp._text_toolkit.TextRecord method),

399
copy() (chemfp.arena.FingerprintArena method),

300
copy() (chemfp.Metadata method), 261
copy_molecule() (in module

chemfp.openbabel_toolkit), 356
copy_molecule() (in module

chemfp.openeye_toolkit), 368
copy_molecule() (in module chemfp.rdkit_toolkit),

379
copy_molecule() (in module chemfp.text_toolkit),

391
copy_molecule() (in module chemfp.toolkit), 337
count() (chemfp.search.SearchResult method), 321
count_all() (chemfp.search.SearchResults method),

319
count_tanimoto_hits() (in module chemfp), 266
count_tanimoto_hits_arena()

(chemfp.fps_io.FPSReader method),
329

432 Index

chemfp Documentation, Release 3.4

count_tanimoto_hits_arena() (in module
chemfp.search), 304

count_tanimoto_hits_fp()
(chemfp.arena.FingerprintArena method),
301

count_tanimoto_hits_fp()
(chemfp.fps_io.FPSReader method),
329

count_tanimoto_hits_fp() (in module
chemfp.search), 303

count_tanimoto_hits_symmetric() (in module
chemfp), 267

count_tanimoto_hits_symmetric() (in module
chemfp.search), 304

count_tversky_hits() (in module chemfp), 270
count_tversky_hits_arena() (in module

chemfp.search), 306
count_tversky_hits_fp()

(chemfp.arena.FingerprintArena method),
302

count_tversky_hits_fp()
(chemfp.fps_io.FPSReader method),
329

count_tversky_hits_fp() (in module
chemfp.search), 306

count_tversky_hits_symmetric() (in module
chemfp), 271

count_tversky_hits_symmetric() (in module
chemfp.search), 307

create_bytes() (in module
chemfp.openbabel_toolkit), 353

create_bytes() (in module
chemfp.openeye_toolkit), 365

create_bytes() (in module chemfp.rdkit_toolkit),
376

create_bytes() (in module chemfp.text_toolkit),
388

create_bytes() (in module chemfp.toolkit), 336
create_string() (in module

chemfp.openbabel_toolkit), 352
create_string() (in module

chemfp.openeye_toolkit), 364
create_string() (in module chemfp.rdkit_toolkit),

376
create_string() (in module chemfp.text_toolkit),

388
create_string() (in module chemfp.toolkit), 336
cumulative_score() (chemfp.search.SearchResult

method), 322
cumulative_score_all()

(chemfp.search.SearchResults method),
319

D
date (chemfp.Metadata attribute), 261
description (chemfp.ChemFPProblem attribute),

264

E
error_level (chemfp.ChemFPProblem attribute),

264

F
filename (chemfp.base_toolkit.FormatMetadata at-

tribute), 338
filename (chemfp.io.Location attribute), 402
fill_lower_triangle() (in module chemfp.search),

311
fingerprint_kwargs (chemfp.types.FingerprintType

attribute), 281
FingerprintArena (class in chemfp.arena), 298
FingerprintFamily (class in chemfp.types), 278
FingerprintIterator (class in chemfp), 262
FingerprintList (class in chemfp.arena), 303
FingerprintReader (class in chemfp), 261
fingerprints (chemfp.arena.FingerprintArena at-

tribute), 298
Fingerprints (class in chemfp), 263
FingerprintType (class in chemfp.types), 281
FingerprintWriter (class in chemfp), 263
first_line (chemfp.io.Location attribute), 402
format (chemfp.fpb_io.InputOrderFPBWriter at-

tribute), 333
format (chemfp.fpb_io.OrderedFPBWriter at-

tribute), 332
Format (class in chemfp.base_toolkit), 342
format_ids_and_scores_as_bytes()

(chemfp.search.SearchResult method),
322

FormatMetadata (class in chemfp.base_toolkit), 338
FPSReader (class in chemfp.fps_io), 327
FPSWriter (class in chemfp.fps_io), 331
from_base64() (in module chemfp.encodings), 325
from_binary_lsb() (in module chemfp.encodings),

325
from_binary_msb() (in module chemfp.encodings),

325
from_cactvs() (in module chemfp.encodings), 326
from_daylight() (in module chemfp.encodings), 327
from_destination() (chemfp.io.Location method),

401
from_hex() (in module chemfp.encodings), 326
from_hex_lsb() (in module chemfp.encodings), 326
from_hex_msb() (in module chemfp.encodings), 326
from_kwargs() (chemfp.types.FingerprintFamily

method), 279

Index 433

chemfp Documentation, Release 3.4

from_on_bit_positions() (in module
chemfp.encodings), 327

from_source() (chemfp.io.Location method), 401
from_text_settings()

(chemfp.types.FingerprintFamily method),
280

G
get_by_id() (chemfp.arena.FingerprintArena

method), 299
get_default_reader_args()

(chemfp.base_toolkit.Format method),
344

get_default_writer_args()
(chemfp.base_toolkit.Format method),
344

get_defaults() (chemfp.types.FingerprintFamily
method), 280

get_fingerprint() (chemfp.arena.FingerprintArena
method), 299

get_fingerprint_by_id()
(chemfp.arena.FingerprintArena method),
299

get_fingerprint_families() (in module chemfp),
274

get_fingerprint_family()
(chemfp.types.FingerprintType method),
286

get_fingerprint_family() (in module chemfp),
274

get_fingerprint_family_names() (in module
chemfp), 275

get_fingerprint_type()
(chemfp.arena.FingerprintArena method),
299

get_fingerprint_type()
(chemfp.FingerprintReader method),
262

get_fingerprint_type()
(chemfp.fps_io.FPSReader method),
328

get_fingerprint_type() (in module chemfp), 275
get_fingerprint_type_from_text_settings()

(in module chemfp), 276
get_format() (in module chemfp.openbabel_toolkit),

346
get_format() (in module chemfp.openeye_toolkit),

358
get_format() (in module chemfp.rdkit_toolkit), 370
get_format() (in module chemfp.text_toolkit), 382
get_format() (in module chemfp.toolkit), 334
get_formats() (in module

chemfp.openbabel_toolkit), 346

get_formats() (in module chemfp.openeye_toolkit),
357

get_formats() (in module chemfp.rdkit_toolkit),
369

get_formats() (in module chemfp.text_toolkit), 381
get_formats() (in module chemfp.toolkit), 334
get_id() (in module chemfp.openbabel_toolkit), 356
get_id() (in module chemfp.openeye_toolkit), 368
get_id() (in module chemfp.rdkit_toolkit), 380
get_id() (in module chemfp.text_toolkit), 392
get_id() (in module chemfp.toolkit), 338
get_ids() (chemfp.search.SearchResult method), 321
get_ids_and_scores() (chemfp.search.SearchResult

method), 321
get_index_by_id() (chemfp.arena.FingerprintArena

method), 299
get_indices() (chemfp.search.SearchResult

method), 321
get_indices_and_scores()

(chemfp.search.SearchResult method),
321

get_input_format() (in module
chemfp.openbabel_toolkit), 347

get_input_format() (in module
chemfp.openeye_toolkit), 358

get_input_format() (in module
chemfp.rdkit_toolkit), 370

get_input_format() (in module
chemfp.text_toolkit), 382

get_input_format() (in module chemfp.toolkit), 334
get_input_format_from_source() (in module

chemfp.openbabel_toolkit), 347
get_input_format_from_source() (in module

chemfp.openeye_toolkit), 359
get_input_format_from_source() (in module

chemfp.rdkit_toolkit), 371
get_input_format_from_source() (in module

chemfp.text_toolkit), 383
get_input_format_from_source() (in module

chemfp.toolkit), 335
get_input_formats() (in module

chemfp.openbabel_toolkit), 346
get_input_formats() (in module

chemfp.openeye_toolkit), 358
get_input_formats() (in module

chemfp.rdkit_toolkit), 370
get_input_formats() (in module

chemfp.text_toolkit), 382
get_input_formats() (in module chemfp.toolkit),

334
get_kwargs_from_text_settings()

(chemfp.types.FingerprintFamily method),
280

get_license_date() (in module chemfp), 255

434 Index

chemfp Documentation, Release 3.4

get_max_threads() (in module chemfp), 276
get_metadata() (chemfp.types.FingerprintType

method), 283
get_num_threads() (in module chemfp), 277
get_output_format() (in module

chemfp.openbabel_toolkit), 347
get_output_format() (in module

chemfp.openeye_toolkit), 358
get_output_format() (in module

chemfp.rdkit_toolkit), 370
get_output_format() (in module

chemfp.text_toolkit), 382
get_output_format() (in module chemfp.toolkit),

335
get_output_format_from_destination() (in mod-

ule chemfp.openbabel_toolkit), 347
get_output_format_from_destination() (in mod-

ule chemfp.openeye_toolkit), 359
get_output_format_from_destination() (in mod-

ule chemfp.rdkit_toolkit), 371
get_output_format_from_destination() (in mod-

ule chemfp.text_toolkit), 383
get_output_format_from_destination() (in mod-

ule chemfp.toolkit), 335
get_output_formats() (in module

chemfp.openbabel_toolkit), 346
get_output_formats() (in module

chemfp.openeye_toolkit), 358
get_output_formats() (in module

chemfp.rdkit_toolkit), 370
get_output_formats() (in module

chemfp.text_toolkit), 382
get_output_formats() (in module chemfp.toolkit),

334
get_reader_args_from_text_settings()

(chemfp.base_toolkit.Format method),
343

get_scores() (chemfp.search.SearchResult method),
321

get_sdf_id() (in module chemfp.text_toolkit), 398
get_sdf_tag() (in module chemfp.text_toolkit), 397
get_sdf_tag_pairs() (in module

chemfp.text_toolkit), 397
get_tag() (chemfp._text_toolkit.TextRecord

method), 399
get_tag() (in module chemfp.openbabel_toolkit),

356
get_tag() (in module chemfp.openeye_toolkit), 368
get_tag() (in module chemfp.rdkit_toolkit), 380
get_tag() (in module chemfp.text_toolkit), 391
get_tag() (in module chemfp.toolkit), 337
get_tag_as_bytes() (chemfp._text_toolkit.TextRecord

method), 399
get_tag_pairs() (chemfp._text_toolkit.TextRecord

method), 399
get_tag_pairs() (in module

chemfp.openbabel_toolkit), 356
get_tag_pairs() (in module

chemfp.openeye_toolkit), 368
get_tag_pairs() (in module chemfp.rdkit_toolkit),

380
get_tag_pairs() (in module chemfp.text_toolkit),

392
get_tag_pairs() (in module chemfp.toolkit), 338
get_tag_pairs_as_bytes()

(chemfp._text_toolkit.TextRecord method),
399

get_toolkit() (in module chemfp), 277
get_toolkit_names() (in module chemfp), 277
get_type() (chemfp.types.FingerprintType method),

283
get_unqualified_reader_args()

(chemfp.base_toolkit.Format method),
344

get_unqualified_writer_args()
(chemfp.base_toolkit.Format method),
345

get_writer_args_from_text_settings()
(chemfp.base_toolkit.Format method),
343

getvalue() (chemfp.base_toolkit.MoleculeStringWriter
method), 342

H
has_fingerprint_family() (in module chemfp),

276
has_toolkit() (in module chemfp), 278
hex_contains() (in module chemfp.bitops), 323
hex_contains_bit() (in module chemfp.bitops), 323
hex_decode() (in module chemfp.bitops), 324
hex_difference() (in module chemfp.bitops), 323
hex_encode() (in module chemfp.bitops), 324
hex_encode_as_bytes() (in module chemfp.bitops),

324
hex_from_bitlist() (in module chemfp.bitops), 323
hex_intersect() (in module chemfp.bitops), 324
hex_intersect_popcount() (in module

chemfp.bitops), 324
hex_isvalid() (in module chemfp.bitops), 324
hex_popcount() (in module chemfp.bitops), 324
hex_tanimoto() (in module chemfp.bitops), 324
hex_to_bitlist() (in module chemfp.bitops), 324
hex_tversky() (in module chemfp.bitops), 324
hex_union() (in module chemfp.bitops), 324

I
id_bytes (chemfp._text_toolkit.TextRecord at-

tribute), 399

Index 435

chemfp Documentation, Release 3.4

IdAndMoleculeReader (class in
chemfp.base_toolkit), 340

IdAndRecordReader (class in chemfp.base_toolkit),
340

ids (chemfp.arena.FingerprintArena attribute), 298
InputOrderFPBWriter (class in chemfp.fpb_io), 332
is_available (chemfp.base_toolkit.Format at-

tribute), 343
is_input_format (chemfp.base_toolkit.Format at-

tribute), 342
is_licensed() (in module chemfp), 255
is_licensed() (in module

chemfp.openbabel_toolkit), 346
is_licensed() (in module chemfp.openeye_toolkit),

357
is_licensed() (in module chemfp.rdkit_toolkit),

369
is_licensed() (in module chemfp.text_toolkit), 381
is_licensed() (in module chemfp.toolkit), 334
is_output_format (chemfp.base_toolkit.Format at-

tribute), 343
iter_arenas() (chemfp.arena.FingerprintArena

method), 300
iter_arenas() (chemfp.FingerprintReader method),

261
iter_arenas() (chemfp.fps_io.FPSReader method),

328
iter_ids() (chemfp.search.SearchResult method),

321
iter_ids() (chemfp.search.SearchResults method),

319
iter_ids_and_scores()

(chemfp.search.SearchResults method),
319

iter_indices() (chemfp.search.SearchResults
method), 319

iter_indices_and_scores()
(chemfp.search.SearchResults method),
319

iter_scores() (chemfp.search.SearchResults
method), 319

K
knearest_tanimoto_search() (in module chemfp),

269
knearest_tanimoto_search_arena()

(chemfp.fps_io.FPSReader method),
330

knearest_tanimoto_search_arena() (in module
chemfp.search), 315

knearest_tanimoto_search_fp()
(chemfp.arena.FingerprintArena method),
302

knearest_tanimoto_search_fp()
(chemfp.fps_io.FPSReader method),
330

knearest_tanimoto_search_fp() (in module
chemfp.search), 314

knearest_tanimoto_search_symmetric() (in mod-
ule chemfp), 270

knearest_tanimoto_search_symmetric() (in mod-
ule chemfp.search), 315

knearest_tversky_search() (in module chemfp),
273

knearest_tversky_search_arena() (in module
chemfp.search), 316

knearest_tversky_search_fp()
(chemfp.arena.FingerprintArena method),
302

knearest_tversky_search_fp()
(chemfp.fps_io.FPSReader method),
331

knearest_tversky_search_fp() (in module
chemfp.search), 316

knearest_tversky_search_symmetric() (in mod-
ule chemfp), 274

knearest_tversky_search_symmetric() (in mod-
ule chemfp.search), 317

L
load_fingerprints() (in module chemfp), 256
location (chemfp.base_toolkit.BaseMoleculeReader

attribute), 339
location (chemfp.base_toolkit.BaseMoleculeWriter

attribute), 341
location (chemfp.base_toolkit.IdAndMoleculeReader

attribute), 340
location (chemfp.base_toolkit.IdAndRecordReader

attribute), 340
location (chemfp.base_toolkit.MoleculeReader at-

tribute), 340
location (chemfp.base_toolkit.MoleculeStringWriter

attribute), 342
location (chemfp.base_toolkit.MoleculeWriter at-

tribute), 342
location (chemfp.base_toolkit.RecordReader at-

tribute), 340
location (chemfp.fps_io.FPSReader attribute), 328
location (chemfp.ParseError attribute), 260
Location (class in chemfp.io), 401

M
make_fingerprinter()

(chemfp.types.FingerprintType method),
283

make_id_and_molecule_fingerprint_parser()
(chemfp.types.FingerprintType method),

436 Index

chemfp Documentation, Release 3.4

285
make_id_and_molecule_parser() (in module

chemfp.openbabel_toolkit), 351
make_id_and_molecule_parser() (in module

chemfp.openeye_toolkit), 363
make_id_and_molecule_parser() (in module

chemfp.rdkit_toolkit), 374
make_id_and_molecule_parser() (in module

chemfp.text_toolkit), 386
make_id_and_molecule_parser() (in module

chemfp.toolkit), 336
metadata (chemfp.arena.FingerprintArena at-

tribute), 298
metadata (chemfp.base_toolkit.BaseMoleculeReader

attribute), 339
metadata (chemfp.base_toolkit.BaseMoleculeWriter

attribute), 341
metadata (chemfp.base_toolkit.IdAndMoleculeReader

attribute), 340
metadata (chemfp.base_toolkit.IdAndRecordReader

attribute), 340
metadata (chemfp.base_toolkit.MoleculeReader at-

tribute), 340
metadata (chemfp.base_toolkit.MoleculeStringWriter

attribute), 342
metadata (chemfp.base_toolkit.MoleculeWriter at-

tribute), 342
metadata (chemfp.base_toolkit.RecordReader at-

tribute), 340
metadata (chemfp.fpb_io.InputOrderFPBWriter at-

tribute), 332
metadata (chemfp.fpb_io.OrderedFPBWriter at-

tribute), 332
metadata (chemfp.fps_io.FPSReader attribute), 328
Metadata (class in chemfp), 260
mol (chemfp.io.Location attribute), 402
MoleculeReader (class in chemfp.base_toolkit), 340
MoleculeStringWriter (class in

chemfp.base_toolkit), 342
MoleculeWriter (class in chemfp.base_toolkit), 342
msg (chemfp.ParseError attribute), 260

N
name (chemfp.types.FingerprintFamily attribute), 279
name (chemfp.types.FingerprintType attribute), 281
name (in module chemfp.openbabel_toolkit), 345
name (in module chemfp.openeye_toolkit), 357
name (in module chemfp.rdkit_toolkit), 369
name (in module chemfp.text_toolkit), 381
name (in module chemfp.toolkit), 333
num_bits (chemfp.Metadata attribute), 260
num_bits (chemfp.types.FingerprintType attribute),

281
num_bytes (chemfp.Metadata attribute), 260

O
offsets (chemfp.io.Location attribute), 402
open() (in module chemfp), 256
open_fingerprint_writer() (in module chemfp),

259
open_molecule_writer() (in module

chemfp.openbabel_toolkit), 353
open_molecule_writer() (in module

chemfp.openeye_toolkit), 365
open_molecule_writer() (in module

chemfp.rdkit_toolkit), 377
open_molecule_writer() (in module

chemfp.text_toolkit), 389
open_molecule_writer() (in module

chemfp.toolkit), 337
open_molecule_writer_to_bytes() (in module

chemfp.openbabel_toolkit), 355
open_molecule_writer_to_bytes() (in module

chemfp.openeye_toolkit), 367
open_molecule_writer_to_bytes() (in module

chemfp.rdkit_toolkit), 379
open_molecule_writer_to_bytes() (in module

chemfp.text_toolkit), 390
open_molecule_writer_to_bytes() (in module

chemfp.toolkit), 337
open_molecule_writer_to_string() (in module

chemfp.openbabel_toolkit), 354
open_molecule_writer_to_string() (in module

chemfp.openeye_toolkit), 367
open_molecule_writer_to_string() (in module

chemfp.rdkit_toolkit), 378
open_molecule_writer_to_string() (in module

chemfp.text_toolkit), 390
open_molecule_writer_to_string() (in module

chemfp.toolkit), 337
OpenBabelECFP0FingerprintType_v1 (class in

chemfp.openbabel_types), 288
OpenBabelECFP10FingerprintType_v1 (class in

chemfp.openbabel_types), 289
OpenBabelECFP2FingerprintType_v1 (class in

chemfp.openbabel_types), 288
OpenBabelECFP4FingerprintType_v1 (class in

chemfp.openbabel_types), 288
OpenBabelECFP6FingerprintType_v1 (class in

chemfp.openbabel_types), 288
OpenBabelECFP8FingerprintType_v1 (class in

chemfp.openbabel_types), 288
OpenBabelFP2FingerprintType_v1 (class in

chemfp.openbabel_types), 287
OpenBabelFP3FingerprintType_v1 (class in

chemfp.openbabel_types), 287
OpenBabelFP4FingerprintType_v1 (class in

chemfp.openbabel_types), 287
OpenBabelMACCSFingerprintType_v1 (class in

Index 437

chemfp Documentation, Release 3.4

chemfp.openbabel_types), 287
OpenBabelMACCSFingerprintType_v2 (class in

chemfp.openbabel_types), 287
OpenEyeCircularFingerprintType_v2 (class in

chemfp.openeye_types), 290
OpenEyeMACCSFingerprintType_v2 (class in

chemfp.openeye_types), 290
OpenEyeMACCSFingerprintType_v3 (class in

chemfp.openeye_types), 290
OpenEyeMDLScreenFingerprintType_v1 (class in

chemfp.openeye_types), 292
OpenEyeMoleculeScreenFingerprintType_v1

(class in chemfp.openeye_types), 291
OpenEyePathFingerprintType_v2 (class in

chemfp.openeye_types), 291
OpenEyeSMARTSScreenFingerprintType_v1 (class

in chemfp.openeye_types), 292
OpenEyeTreeFingerprintType_v2 (class in

chemfp.openeye_types), 291
OrderedFPBWriter (class in chemfp.fpb_io), 332
output_recno (chemfp.io.Location attribute), 402

P
parse_id_and_molecule() (in module

chemfp.openbabel_toolkit), 352
parse_id_and_molecule() (in module

chemfp.openeye_toolkit), 364
parse_id_and_molecule() (in module

chemfp.rdkit_toolkit), 375
parse_id_and_molecule() (in module

chemfp.text_toolkit), 387
parse_id_and_molecule() (in module

chemfp.toolkit), 336
parse_id_and_molecule_fingerprint()

(chemfp.types.FingerprintType method),
284

parse_molecule() (in module
chemfp.openbabel_toolkit), 351

parse_molecule() (in module
chemfp.openeye_toolkit), 363

parse_molecule() (in module chemfp.rdkit_toolkit),
375

parse_molecule() (in module chemfp.text_toolkit),
387

parse_molecule() (in module chemfp.toolkit), 336
parse_molecule_fingerprint()

(chemfp.types.FingerprintType method),
284

ParseError (class in chemfp), 260
partial_count_tanimoto_hits_symmetric() (in

module chemfp.search), 305
partial_count_tversky_hits_symmetric() (in

module chemfp.search), 307

partial_threshold_tanimoto_search_symmetric()
(in module chemfp.search), 310

partial_threshold_tversky_search_symmetric()
(in module chemfp.search), 313

prefix (chemfp.base_toolkit.Format attribute), 342
Python Enhancement Proposals

PEP 343, 187

R
RDKitAtomPairFingerprint_v1 (class in

chemfp.rdkit_types), 294
RDKitAtomPairFingerprint_v2 (class in

chemfp.rdkit_types), 295
RDKitAvalonFingerprintType_v1 (class in

chemfp.rdkit_types), 297
RDKitFingerprintType_v1 (class in

chemfp.rdkit_types), 293
RDKitFingerprintType_v2 (class in

chemfp.rdkit_types), 293
RDKitMACCSFingerprintType_v1 (class in

chemfp.rdkit_types), 294
RDKitMACCSFingerprintType_v2 (class in

chemfp.rdkit_types), 294
RDKitMorganFingerprintType_v1 (class in

chemfp.rdkit_types), 294
RDKitPatternFingerprint_v1 (class in

chemfp.rdkit_types), 296
RDKitPatternFingerprint_v2 (class in

chemfp.rdkit_types), 296
RDKitPatternFingerprint_v3 (class in

chemfp.rdkit_types), 296
RDKitSECFPFingerprintType_v1 (class in

chemfp.rdkit_types), 296
RDKitTorsionFingerprintType_v1 (class in

chemfp.rdkit_types), 295
RDKitTorsionFingerprintType_v2 (class in

chemfp.rdkit_types), 295
RDMACCSOpenBabelFingerprinter_v1 (class in

chemfp.openbabel_patterns), 289
RDMACCSOpenBabelFingerprinter_v2 (class in

chemfp.openbabel_patterns), 289
RDMACCSOpenEyeFingerprinter_v1 (class in

chemfp.openeye_patterns), 292
RDMACCSOpenEyeFingerprinter_v2 (class in

chemfp.openeye_patterns), 292
RDMACCSRDKitFingerprinter_v1 (class in

chemfp.rdkit_patterns), 297
RDMACCSRDKitFingerprinter_v2 (class in

chemfp.rdkit_patterns), 298
read_ids_and_molecules() (in module

chemfp.openbabel_toolkit), 349
read_ids_and_molecules() (in module

chemfp.openeye_toolkit), 361

438 Index

chemfp Documentation, Release 3.4

read_ids_and_molecules() (in module
chemfp.rdkit_toolkit), 373

read_ids_and_molecules() (in module
chemfp.text_toolkit), 385

read_ids_and_molecules() (in module
chemfp.toolkit), 335

read_ids_and_molecules_from_string() (in mod-
ule chemfp.openbabel_toolkit), 350

read_ids_and_molecules_from_string() (in mod-
ule chemfp.openeye_toolkit), 362

read_ids_and_molecules_from_string() (in mod-
ule chemfp.rdkit_toolkit), 374

read_ids_and_molecules_from_string() (in mod-
ule chemfp.text_toolkit), 386

read_ids_and_molecules_from_string() (in mod-
ule chemfp.toolkit), 336

read_molecule_fingerprints()
(chemfp.types.FingerprintType method),
283

read_molecule_fingerprints() (in module
chemfp), 257

read_molecule_fingerprints_from_string()
(chemfp.types.FingerprintType method),
284

read_molecule_fingerprints_from_string() (in
module chemfp), 258

read_molecules() (in module
chemfp.openbabel_toolkit), 348

read_molecules() (in module
chemfp.openeye_toolkit), 359

read_molecules() (in module chemfp.rdkit_toolkit),
371

read_molecules() (in module chemfp.text_toolkit),
383

read_molecules() (in module chemfp.toolkit), 335
read_molecules_from_string() (in module

chemfp.openbabel_toolkit), 349
read_molecules_from_string() (in module

chemfp.openeye_toolkit), 361
read_molecules_from_string() (in module

chemfp.rdkit_toolkit), 373
read_molecules_from_string() (in module

chemfp.text_toolkit), 384
read_molecules_from_string() (in module

chemfp.toolkit), 335
read_sdf_ids_and_records() (in module

chemfp.text_toolkit), 393
read_sdf_ids_and_records_from_string() (in

module chemfp.text_toolkit), 395
read_sdf_ids_and_values() (in module

chemfp.text_toolkit), 394
read_sdf_ids_and_values_from_string() (in

module chemfp.text_toolkit), 396
read_sdf_records() (in module

chemfp.text_toolkit), 392
read_sdf_records_from_string() (in module

chemfp.text_toolkit), 395
recno (chemfp.io.Location attribute), 402
record (chemfp._text_toolkit.TextRecord attribute),

399
record (chemfp.io.Location attribute), 402
record_format (chemfp._text_toolkit.TextRecord

attribute), 399
record_format (chemfp.base_toolkit.FormatMetadata

attribute), 338
record_format (chemfp.io.Location attribute), 402
RecordReader (class in chemfp.base_toolkit), 340
reorder() (chemfp.search.SearchResult method), 321
reorder_all() (chemfp.search.SearchResults

method), 320

S
save() (chemfp.arena.FingerprintArena method),

299
save() (chemfp.FingerprintReader method), 262
save() (chemfp.fps_io.FPSReader method), 328
SDFRecord (class in chemfp._text_toolkit), 400
SearchResult (class in chemfp.search), 320
SearchResults (class in chemfp.search), 318
set_id() (in module chemfp.openbabel_toolkit), 357
set_id() (in module chemfp.openeye_toolkit), 369
set_id() (in module chemfp.rdkit_toolkit), 380
set_id() (in module chemfp.text_toolkit), 392
set_id() (in module chemfp.toolkit), 338
set_num_threads() (in module chemfp), 277
set_sdf_id() (in module chemfp.text_toolkit), 398
severity (chemfp.ChemFPProblem attribute), 264
shape (chemfp.search.SearchResults attribute), 319
smiles (chemfp._text_toolkit.TextRecord attribute),

399
SmiRecord (class in chemfp._text_toolkit), 400
SmiStringRecord (class in chemfp._text_toolkit),

400
software (chemfp.Metadata attribute), 260
software (chemfp.types.FingerprintType attribute),

281
software (in module chemfp.openbabel_toolkit), 346
software (in module chemfp.openeye_toolkit), 357
software (in module chemfp.rdkit_toolkit), 369
software (in module chemfp.text_toolkit), 381
software (in module chemfp.toolkit), 333
sources (chemfp.Metadata attribute), 260
SubstructOpenBabelFingerprinter_v1 (class in

chemfp.openbabel_patterns), 289
SubstructOpenEyeFingerprinter_v1 (class in

chemfp.openeye_patterns), 292
SubstructRDKitFingerprintType_v1 (class in

chemfp.rdkit_patterns), 297

Index 439

chemfp Documentation, Release 3.4

supports_io (chemfp.base_toolkit.Format at-
tribute), 343

T
TextRecord (class in chemfp._text_toolkit), 398
threshold_tanimoto_search() (in module chemfp),

267
threshold_tanimoto_search_arena()

(chemfp.fps_io.FPSReader method),
330

threshold_tanimoto_search_arena() (in module
chemfp.search), 309

threshold_tanimoto_search_fp()
(chemfp.arena.FingerprintArena method),
301

threshold_tanimoto_search_fp()
(chemfp.fps_io.FPSReader method),
329

threshold_tanimoto_search_fp() (in module
chemfp.search), 308

threshold_tanimoto_search_symmetric() (in
module chemfp), 268

threshold_tanimoto_search_symmetric() (in
module chemfp.search), 309

threshold_tversky_search() (in module chemfp),
271

threshold_tversky_search_arena() (in module
chemfp.search), 312

threshold_tversky_search_fp()
(chemfp.arena.FingerprintArena method),
302

threshold_tversky_search_fp()
(chemfp.fps_io.FPSReader method),
330

threshold_tversky_search_fp() (in module
chemfp.search), 311

threshold_tversky_search_symmetric() (in mod-
ule chemfp), 272

threshold_tversky_search_symmetric() (in mod-
ule chemfp.search), 312

to_csr() (chemfp.search.SearchResults method), 320
to_numpy_array() (chemfp.arena.FingerprintArena

method), 301
to_numpy_bitarray()

(chemfp.arena.FingerprintArena method),
301

toolkit (chemfp.types.FingerprintFamily attribute),
279

toolkit (chemfp.types.FingerprintType attribute),
281

type (chemfp.Metadata attribute), 260

U
UsmRecord (class in chemfp._text_toolkit), 400

UsmStringRecord (class in chemfp._text_toolkit),
400

V
version (chemfp.types.FingerprintFamily attribute),

279
version (chemfp.types.FingerprintType attribute),

281

W
where() (chemfp.io.Location method), 402
write_fingerprint() (chemfp.FingerprintWriter

method), 264
write_fingerprint()

(chemfp.fpb_io.InputOrderFPBWriter
method), 333

write_fingerprint()
(chemfp.fpb_io.OrderedFPBWriter
method), 332

write_fingerprint() (chemfp.fps_io.FPSWriter
method), 331

write_fingerprints() (chemfp.FingerprintWriter
method), 264

write_fingerprints()
(chemfp.fpb_io.InputOrderFPBWriter
method), 333

write_fingerprints()
(chemfp.fpb_io.OrderedFPBWriter
method), 332

write_fingerprints() (chemfp.fps_io.FPSWriter
method), 331

write_id_and_molecule()
(chemfp.base_toolkit.BaseMoleculeWriter
method), 341

write_ids_and_molecules()
(chemfp.base_toolkit.BaseMoleculeWriter
method), 341

write_molecule() (chemfp.base_toolkit.BaseMoleculeWriter
method), 341

write_molecules() (chemfp.base_toolkit.BaseMoleculeWriter
method), 341

440 Index

	Installing
	Installing a pre-compiled package
	Installing from source
	Configuration options

	Working with the command-line tools
	Generate fingerprint files from PubChem SD tags
	k-nearest neighbor search
	Threshold search
	Combined k-nearest and threshold search
	NxN (self-similar) searches
	Using a toolkit to process the ChEBI dataset
	Alternate error handlers
	chemfp’s two cross-toolkit substructure fingerprints
	Generate binary FPB files from a structure file
	Convert between FPS and FPB formats
	Specify the fpcat output format
	Alternate fingerprint file formats
	Similarity search with the FPB format
	Converting large data sets to FPB format
	Generate fingerprints in parallel and merge to FPB format

	Help for the command-line tools
	fpcat command-line options
	ob2fps command-line options
	oe2fps command-line options
	rdkit2fps command-line options
	sdf2fps command-line options
	simsearch command-line options

	Fingerprints and fingerprint search examples
	Python 2 vs. Python 3
	Unicode and byte strings
	Hex representation of a binary fingerprint
	Byte and hex fingerprints
	Fingerprint reader and metadata
	Working with a FingerprintArena
	Create an arena with user-specified fingerprints
	Save a fingerprint arena
	How to use query fingerprints to search for similar target fingerprints
	How to search an FPS file
	How do to a Tversky search using the Dice weights
	FingerprintArena searches returning indices instead of ids
	Access the fingerprint arena bytes as a NumPy array
	Access the fingerprint bits as a NumPy array
	Computing a distance matrix for clustering
	Convert SearchResults to a SciPy csr matrix
	Taylor-Butina clustering
	MinMax Diversity Selection using RDKit
	Configuring OpenMP threads
	OpenMP and multi-threaded applications
	Fingerprint Substructure Screening (experimental)
	Substructure screening with RDKit
	Reading structure fingerprints using a toolkit
	Select a random fingerprint sample
	Don’t reorder an arena by popcount
	Look up a fingerprint with a given id
	Sorting search results
	Working with raw scores and counts in a range
	Cumulative search result counts and scores
	Writing fingerprints with a fingerprint writer
	Fingerprint readers and writers are context managers
	Write fingerprints to stdout or a file-like object
	Writing fingerprints to an FPB file
	Specify the output fingerprint format
	Merging multiple structure-based fingerprint sources
	Merging multiple fingerprint files
	Check for metadata compatibility problems
	How to write very large FPB files
	FPS fingerprint writer errors
	FPS fingerprint writer location
	MACCS dependency on hydrogens
	Create similarity search web service

	Fingerprint family and type examples
	Fingerprint families and types
	Fingerprint family
	Fingerprint family discovery
	get_fingerprint_type() and get_type()
	Create a fingerprint using text settings
	FingerprintType properties and methods
	Convert a structure record to a fingerprint
	Convert a structure record to an id and fingerprint
	Make a specialized id and molecule fingerprint parser
	Read a structure file and compute fingerprints
	Structure-based fingerprint reader location
	Read fingerprints from a string containing structures
	Structure-based fingerprint reader errors
	Experimental error handler
	Compute a fingerprint for a native toolkit molecule
	Fingerprint many native toolkit molecules
	Make a specialized molecule fingerprinter

	Toolkit API examples
	Get a chemfp toolkit
	Parse and create SMILES
	Canonical, non-isomeric, and arbitrary SMILES
	Use format to create a record in SDF format
	Use zlib record compression
	Use zst record compression
	Get a list of available formats and distinguish between input and output formats
	Determine the format for a given filename
	Parse the id and the molecule at the same time
	Specify alternate error behavior
	Specify a SMILES delimiter through reader_args
	Specify an output SMILES delimiter through writer_args
	RDKit-specific SMILES reader_args and writer_args
	OpenEye-specific SMILES reader_args and writer_args
	OpenEye-specific aromaticity
	Open Babel-specific SMILES reader_args and writer_args
	Get the default reader_args or writer_args for a format
	Convert text settings into reader and writer arguments
	Multi-toolkit reader_args and writer_args
	Qualified reader and writer parameters names
	Qualified parameter priorities
	Qualified names and text settings
	Read molecules from an SD file or stdin
	Read ids and molecules from an SD file at the same time
	Read ids and molecules using an SD tag for the id
	Read from a string instead of a file
	The reader may reuse molecule objects!
	Write molecules to a SMILES file
	Reader and writer context managers
	Write molecules to stdout in a specified format
	Write molecules to a string (and a bit of InChI)
	Handling errors when reading molecules from a string
	Handling errors when reading molecules from a file
	Ignore errors in create_string() and create_bytes()
	Ignore errors when writing molecules
	Reader and writer format metadata
	Location information: filename, record_format, recno and output_recno
	Location information: record position and content
	Writing your own error handler (Experimental)
	A Babel-like structure format converter
	argparse text settings to reader and writer args
	Creating a specialized record parser
	Molecule API: Get and set the molecule id
	Molecule API: Copy a molecule
	Molecule API: Working with SD tags
	Add fingerprints to an SD file using a toolkit

	Text toolkit examples
	Toolkits may modify the molecular structure
	Toolkits may modify SDF syntax
	The text toolkit “molecules”
	The text toolkit implements the toolkit API
	Reading and adding SD tags with the text_toolkit
	Synchronizing readers from different toolkits through the text toolkit
	Add multiple toolkit fingerprints to an SD file
	Text toolkit and SDF files
	Read id and tag value pairs from an SD file
	Extract the id and atom and bond counts from an SD file
	SDF-specific parser parameters
	Working with SD records as strings
	Unicode and other character encoding
	Mixed encodings and raw bytes

	chemfp API
	chemfp top-level API
	chemfp.types - fingerprint families and types
	chemfp.arena module
	chemfp.search module
	chemfp.bitops module
	chemfp.encodings
	chemfp.fps_io module
	chemfp.fpb_io module
	chemfp toolkit API
	is_licensed
	get_formats
	get_input_formats
	get_output_formats
	get_format
	get_input_format
	get_output_format
	get_input_format_from_source
	get_output_format_from_destination
	read_molecules
	read_molecules_from_string
	read_ids_and_molecules
	read_ids_and_molecules_from_string
	make_id_and_molecule_parser
	parse_molecule
	parse_id_and_molecule
	create_string
	create_bytes
	open_molecule_writer
	open_molecule_writer_to_string
	open_molecule_writer_to_bytes
	copy_molecule
	add_tag
	get_tag
	get_tag_pairs
	get_id
	set_id
	chemfp.base_toolkit
	Toolkit readers
	Toolkit writers
	chemfp.openbabel_toolkit module
	chemfp.openeye_toolkit module
	chemfp.rdkit_toolkit module
	chemfp.text_toolkit module
	chemfp._text_toolkit module (private)
	chemfp.io module

	What’s New / CHANGELOG
	What’s new in 3.4 (24 June 2020)
	What’s new in 3.4b3 (18 June 2020)
	What’s new in 3.4b2 (12 June 2020)
	What’s new in 3.4b1 (24 April 2020)
	What’s new in 3.4a4 (18 March 2020)
	What’s new in version 3.4a2
	What’s new in version 3.4a1
	What’s new in version 3.3
	What’s new in version 3.2.1
	What’s new in version 3.2
	What’s new in version 3.1
	What’s new in version 3.0.1
	What’s new in version 3.0
	What’s new in version 2.1
	What’s new in version 2.0

	License and advertisement
	Future
	Thanks
	Indices and tables
	Python Module Index
	Index

