chemfp Documentation
Release 3.5

Andrew Dalke

Jan 27, 2021

Table of Contents

1 Installing 3
1.1 Installing a pre-compiled package 3
1.2 Imstalling from source L L e 4
1.3 Configuration options L L e e e 4
1.4 Installing CDK and JPype e 5

2 Working with the command-line tools 7
2.1 Generate fingerprint files from PubChem SD tags 7
2.2 k-nearest neighbor search L L e 8
2.3 Threshold search e e e e e 9
2.4 Combined k-nearest and threshold search 10
2.5 NxN (self-similar) searches L 11
2.6 Using a toolkit to process the ChEBI dataset 11
2.7 Alternate error handlers e 16
2.8 chemfp’s two cross-toolkit substructure fingerprints 17
2.9 Generate binary FPB files from a structure file 19
2.10 Convert between FPS and FPB formats 20
2.11 Specify the fpcat output format L oo o 21
2.12 Alternate fingerprint file formats e 22
2.13 Similarity search with the FPB format 23
2.14 Converting large data sets to FPB format 0oL 23
2.15 Generate fingerprints in parallel and merge to FPB format 24

3 Help for the command-line tools 27
3.1 fpcat command-line options L. e e e 27
3.2 ob2fps command-line options e e e e 29
3.3 o0e2fps command-line options L. e e e e e e e 32
3.4 rdkit2fps command-line options L e 38
3.5 cdk2fps command-line options L 43
3.6 sdf2fps command-line options e e e e e e e e 47
3.7 simsearch command-line optionso oL 48

4 Fingerprints and fingerprint search examples 51
4.1 Python 2 vs. Python 3 51
4.2 Unicode and byte strings L 52
4.3 Hex representation of a binary fingerprint oo oo L 52
4.4 Byte and hex fingerprints L e e 53

4.5 Fingerprint reader and metadata oL L L Lo o 57
4.6 Working with a FingerprintArena L L e 58
4.7 Create an arena with user-specified fingerprints Lo o000 60
4.8 Save a fingerprint arena L. oL e 62
4.9 How to use query fingerprints to search for similar target fingerprints 63
4.10 How tosearch an FPSfile. o0 65
4.11 How do to a Tversky search using the Dice weights. 66
4.12 FingerprintArena searches returning indices instead of ids 67
4.13 Access the SearchResult scores and indices as a NumPy array 70
4.14 Access the SearchResult scores and indices as buffer or ctypes structure 72
4.15 Access the fingerprint arena bytes as a NumPy array 73
4.16 Access the fingerprint bits as a NumPy array L 0oL 74
4.17 Computing a distance matrix for clustering L oo 76
4.18 Convert SearchResults to a SciPy csr matrix o oo 78
4.19 Taylor-Butina clustering oL L 79
4.20 MinMax Diversity Selection using RDKit oo 81
4.21 Configuring OpenMP threads e 83
4.22 OpenMP and multi-threaded applications 85
4.23 Fingerprint Substructure Screening (experimental) L L. 85
4.24 Substructure screening with RDKit oo oo 87
4.25 Reading structure fingerprints using a toolkit oL o oo 93
4.26 Select a fingerprint subset using a list of indices oL Lo 95
4.27 Sample N fingerprints at random L 97
4.28 Split into training and test sets oL L 99
4.29 Don’t reorder an arena by popcount oL oL Lo s 100
4.30 Look up a fingerprint with a givenid o Lo oL 101
4.31 Sorting search results oL e 102
4.32 Working with raw scores and counts inarange oo 105
4.33 Cumulative search result counts and scores L. 106
4.34 Writing fingerprints with a fingerprint writer oo o000 109
4.35 Fingerprint readers and writers are context managers 112
4.36 Write fingerprints to stdout or a file-like object oL oo 113
4.37 Writing fingerprints toan FPB file 114
4.38 Specify the output fingerprint formato oL 117
4.39 Merging multiple structure-based fingerprint sourceso L. 117
4.40 Merging multiple fingerprint fileso oL Lo 119
4.41 Check for metadata compatibility problems oo oL 122
4.42 How to write very large FPB files L 125
4.43 FPS fingerprint writer errors o e e e e e 126
4.44 FPS fingerprint writer location oL L 127
4.45 MACCS dependency on hydrogens e 129
4.46 Create similarity search web service L L 133
Fingerprint family and type examples 137
5.1 Fingerprint families and types L Lo e 137
5.2 Fingerprint family oL e 139
5.3 Fingerprint family discovery Lo 141
5.4 get_fingerprint_type() and get_type() 147
5.5 Create a fingerprint using text settings L. 148
5.6 FingerprintType properties and methods 0. 150
5.7 Convert a structure record to a fingerprint oo oL 151
5.8 Convert a structure record to an id and fingerprint 152
5.9 Make a specialized id and molecule fingerprint parser 152
5.10 Read a structure file and compute fingerprintso 154

5.11 Structure-based fingerprint reader location, 155
5.12 Read fingerprints from a string containing structures 0L 157
5.13 Structure-based fingerprint reader errors Lo 158
5.14 Experimental error handlero L L o 158
5.15 Compute a fingerprint for a native toolkit molecule 159
5.16 Fingerprint many native toolkit molecules oo 0oL 160
5.17 Make a specialized molecule fingerprinter oL 161
Toolkit API examples 163
6.1 Get achemfp toolkit e 163
6.2 Parse and create SMILES 165
6.3 Canonical, non-isomeric, and arbitrary SMILES 166
6.4 Use format to create a record in SDF format 0. 167
6.5 Use zlib record compressiono L e 169
6.6 Use zst record compression L oo e e e e 170
6.7 Get a list of available formats and distinguish between input and output formats 170
6.8 Determine the format for a given filename oL oL Lo 172
6.9 Parse the id and the molecule at the same time 174
6.10 Specify alternate error behavior oL Lo 175
6.11 Specify a SMILES delimiter through reader_args 177
6.12 Specify an output SMILES delimiter through writer _args 178
6.13 RDKit-specific SMILES reader__args and writer_args 179
6.14 OpenEye-specific SMILES reader_args and writer_args 180
6.15 OpenEye-specific aromaticity L L 183
6.16 Open Babel-specific SMILES reader_args and writer_args 185
6.17 CDK-specific SMILES reader args and writer_args v v v ... 186
6.18 Get the default reader_args or writer_args for a format 187
6.19 Convert text settings into reader and writer arguments oL L. 188
6.20 Multi-toolkit reader_args and writer_args oL Lo 189
6.21 Qualified reader and writer parameters nameso 191
6.22 Qualified parameter priorities L. oL 193
6.23 Qualified names and text settings 194
6.24 Read molecules from an SD fileorstdin oL 195
6.25 Read ids and molecules from an SD file at the same time 196
6.26 Read ids and molecules using an SD tag for theid, 198
6.27 Read from a string instead of a file. L o 199
6.28 The reader may reuse molecule objects! Lo 201
6.29 Write molecules to a SMILES file 202
6.30 Reader and writer context managers L Lo 203
6.31 Write molecules to stdout in a specified format o000 204
6.32 Write molecules to a string (and a bit of InChI) 205
6.33 Handling errors when reading molecules from a string 206
6.34 Handling errors when reading molecules from a file. L. 210
6.35 Ignore errors in create string() and create bytes() L 214
6.36 Ignore errors when writing molecules L L o o 216
6.37 Reader and writer format metadatao L oo 218
6.38 Location information: filename, record format, recno and output_recno 219
6.39 Location information: record position and content 221
6.40 Writing your own error handler (Experimental) 223
6.41 A Babel-like structure format converter 226
6.42 argparse text settings to reader and writer args Lo oL 232
6.43 Creating a specialized record parser Lo 237
6.44 Molecule API: Get and set the molecule id 240
6.45 Molecule API: Copy a molecule e 241

6.46 Molecule API: Working with SD tags 242
6.47 Add fingerprints to an SD file using a toolkit oL oL oL 244
Text toolkit examples 247
7.1 Toolkits may modify the molecular structure 247
7.2 Toolkits may modify SDF syntax 248
7.3 The text toolkit “molecules” 250
7.4 The text toolkit implements the toolkit APT 252
7.5 Reading and adding SD tags with the text_toolkit 253
7.6 Synchronizing readers from different toolkits through the text toolkit 254
7.7 Add multiple toolkit fingerprints to an SD file L. 257
7.8 Text toolkit and SDF files e e 260
7.9 Read id and tag value pairs froman SD file oo o 261
7.10 Extract the id and atom and bond counts from an SD file 261
7.11 SDF-specific parser parameters« .. o e e e e e e 263
7.12 Working with SD records as strings L 264
7.13 Unicode and other character encoding L 266
7.14 Mixed encodings and raw bytes. L oL 269
chemfp API 273
8.1 chemfp top-level APT 273
8.2 chemfp.types - fingerprint families and types o oL 296
8.3 chemfp.arena module L e 321
8.4 chemfp.search module L 327
8.5 chemfp.bitops module e 349
8.6 chemfp.encodings L 350
8.7 chemfp.fps_iomodule L 353
8.8 chemfp.fpb_iomodule. e 358
8.9 chemfp toolkit APT e 359
8.10 is licensed s 360
8.11 get_formats oL e e 360
8.12 get_input_formats 360
8.13 get_output_formats. L e 360
8.14 get_format oL e 360
8.15 get_input_format e 361
8.16 get_output_format 361
8.17 get_input_format_ from source 361
8.18 get_output_format_from_destination oo oo 361
8.19 read molecules e 361
8.20 read molecules from_ string 361
8.21 read ids and molecules e 362
8.22 read_ids and_molecules from_ string L. 362
8.23 make id and molecule parser 362
8.24 parse molecule e 362
8.25 parse id_and _molecule 362
8.26 create String L e e e e e 362
8.27 create_bytes L e 363
8.28 open_molecule writer L e e e e e 363
8.29 open_molecule writer to stringo o e 363
8.30 open_molecule writer _to_bytes e e 363
8.31 copy_molecule e e e e e 363
8.32 add_tag 364
8.33 get_tag L 364
8.34 get_tag pairs 364

8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45
8.46

chemfp.base toolkit
Toolkit readers Lo e e e e
Toolkit writers L e e
chemfp.openbabel toolkit module
chemfp.openeye_toolkit module
chemfp.rdkit_toolkit module
chemfp.cdk_toolkit module
chemfp.text toolkit module e
chemfp. text_toolkit module (private) L
chemfp.iomodule e

9 What’s New / CHANGELOG

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17

What’s new in 3.5 (27 January 2021) Lo
What’s new in 3.4.1 (27 August 2020)
What’s new in 3.4 (24 June 2020)
What’s new in 3.4b3 (18 June 2020)
What’s new in 3.4b2 (12 June 2020)
What’s new in 3.4b1 (24 April 2020)
What’s new in 3.4a4 (18 March 2020) 0 i
What’s new in version 3.4a2 L e
What’s new in version 3.4al L e
What’s new in version 3.3 e e e e e e
What'’s new in version 3.2.1 e e e e e e
What’s new in version 3.2 L e e e e e e
What’s new in version 3.1 L L L e e e e e e e e e e e
What’s new in version 3.0.1 L
What’s new in version 3.0 e e
What’s new in version 2.1 L e e e e e
What’s new in version 2.0 e e e e e e

10 License and advertisement

11 Future

12 Thanks

13 Indices and tables

Python Module Index

Index

463

465

467

469

471

vi

chemfp Documentation, Release 3.5

chemfp is a set of command-line tools and a Python package for working with cheminformatics fingerprints.

This is the documentation for the commerical version of chemfp, which supports Python 2.7 and 3.6 or later.
The documentation for chemfp 1.6.1, the most recent version of the no-cost/open source version of chemfp,
is available from http://chemfp.readthedocs.io/en/chemfp-1.6.1/. Chemfp 1.6.1 only supports Python 2.7.

NOTE: While chemfp 1.x will support Python 2.7 for benchmarking purposes, chemfp 3.5 will be the last
version of the main chemfp development track to support Python 2.7.

Most people will use the command-line programs to generate and search fingerprint files. 0b2fps, oe2fps,
rdkit2fps, and cdk2fps use respectively the Open Babel, OpenEye, RDKit and CDK chemistry toolkits to
convert structure files into fingerprint files. sdf2fps extracts fingerprints encoded in SD tags to make the
fingerprint file. simsearch finds targets in a fingerprint file which are sufficiently similar to the queries. fpcat
converts between FPS and FPB formats and merges multiple fingerprint files into one.

The programs are built using the chemfp Python library API. The search capabilities are part of the public
API, as well as a cross-toolkit API for reading and writing molecules from structure files or strings, and for
computing molecular fingerprints. To get started, see the examples of how to use the chemfp API.

Remember: chemfp cannot generate fingerprints from a structure file without a third-party chemistry toolkit.
Chemfp 3.5 was released on 27 January 2021. See What’s New for a description of the changes.

The Python 2.7 version was tested with Open Babel 2.4.0 and RDKit 2018.09.3, which are the last versions
of those toolkits to support Python 2.7. The Python 3.x version should work with any recent version of
OEChem/OEGraphSim, Open Babel, RDKit or CDK.

For a different, more scholarly discussion of chemfp see “The chemfp project” in the Journal of Cheminfor-
matics. That paper covers the purpose of the project, its architecture and design, the FPS and FPB file
formats, and the experience in trying to run chemfp as a self-funded open source project.

To cite chemfp use: Dalke, A. The chemfp project. J Cheminform 11, 76 (2019). https://doi.org/10.1186/
$13321-019-0398-8 .

Table of Contents 1

http://chemfp.com/
http://chemfp.readthedocs.io/en/chemfp-1.6.1/
http://openbabel.org/
http://www.eyesopen.com/
http://www.rdkit.org/
https://cdk.github.io/index.html
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0398-8
https://doi.org/10.1186/s13321-019-0398-8
https://doi.org/10.1186/s13321-019-0398-8

chemfp Documentation, Release 3.5

2 Table of Contents

CHAPTER 1

Installing

Chemfp 3.5 is available as a pre-compiled package or a source distribution.

1.1 Installing a pre-compiled package

Pre-compiled packages for chemfp are available for Python 2.7, Python 3.6, Python 3.7, Python 3.8 and
Python 3.9. They were compiled under the “manylinux1” and “manylinux2014” Docker build environment,
which means they should work for most Linux-based operating systems.

These binary packages are NOT open source. By default they are distributed under the Chemfp Base License
Agreement v1.1, which lets you use some of the chemfp functionality for internal purposes, including the
ability to create FPS files and use the “toolkit” APIs.

However, the following features require a time-limited license key:
o generate FPB files
e create or search in-memory fingerprint arenas with more than 50,000 fingerprints
e perform Tversky searches
e perform Tanimoto searches of FPS files with more than 20 queries at a time.

These features can be enabled with a valid license key, set via the environment variable CHEMFP_LICENSE.
Email sales@dalkescientific.com to request a evaluation license or to purchase a license.

Use the following command to install a pre-compiled version of chemfp:

python -m pip install chemfp -i https://chemfp.com/packages/

If you get the message:

ERROR: Could not find a version that satisfies the requirement chemfp (from versiomns:
—none)
ERROR: No matching distribution found for chemfp

https://chemfp.com/BaseLicense.txt
https://chemfp.com/BaseLicense.txt
mailto:sales@dalkescientific.com

chemfp Documentation, Release 3.5

then you are likely installing from a non-Linux-based operating system like macOS or Microsoft Windows.
Pre-compiled installers are not yet available for those OSes. Currently macOS is supported in the source
distribution and Windows is not yet supported.

1.2 Installing from source

The chemfp source distribution requires that Python and a C compiler be installed in your machines. Since
chemfp doesn’t yet run on Microsoft Windows (for tedious technical reasons), then your machine likely
already has both Python and a C compiler installed. In case you don’t have Python, or you want to install a
newer version, you can download a copy of Python from http://www.python.org/download/ . If you don’t
have a C compiler, .. well, do I really need to give you a pointer for that?

You may use chemfp 3.5 with either Python 2.7, or Python 3.6 or newer.

The core chemfp functionality does not depend on a third-party library but you will need a chemistry toolkit
in order to generate new fingerprints from structure files. chemfp supports the free Open Babel, RDKit,
and CDK toolkits and the proprietary OEChem/OEGraphSim toolkits. Make sure you install the Python
libraries for the toolkit(s) you select.

The easiest way to install chemfp is with the pip installer. This comes with Python 2.7.9 or later, and with
Python 3.4 and later so is almost certainly installed if you have Python. To install the source distribution
tar.gz file with pip:

python -m pip install chemfp-3.5.tar.gz

Otherwise you can use Python’s standard “setup.py” Read http://docs.python.org/install /index.html for
details of how to use it. The short version is to do the following:

tar xf chemfp-3.5.tar.gz
cd chemfp-3.5

python setup.py build
python setup.py install

The last step may need a sudo if you otherwise cannot write to your Python site-package. A far better
option is to use a virtual environment.

1.3 Configuration options

The setup.py file has several compile-time options which can be set either from the python setup.py build
command-line or through environment variables. The environment variable solution is the easiest way to
change the settings under pip.

--with-openmp, --without-openmp

Chemfp uses OpenMP to parallelize multi-query searches. The default is -—with-openmp. If you have a
very old version of gcc, or an older version of clang, or are on a Mac where the default clang-based compiler
doesn’t support OpenMP, then you will need to use —~without-openmp to tell setup.py to compile without
OpenMP:

python setup.py build --without-openmp

You can also set the environment variable CHEMFP__OPENMP to “1” to compile with OpenMP support,
or to “0” to compile without OpenMP support:

4 Chapter 1. Installing

http://www.python.org/download/
https://pip.pypa.io/
http://docs.python.org/install/index.html
https://docs.python.org/3/tutorial/venv.html

chemfp Documentation, Release 3.5

CHEMFP_OPENMP=0 python -m pip install chemfp-3.4.tar.gz

Note: you can use the environment variable CC to change the C compiler. For example, the clang compiler
on Mac doesn’t support OpenMP so I installed gece-10 using Homebrew <https://brew.sh/> and compiled
chemfp using:

CC=gcc-10 python -m pip install chemfp-3.5.tar.gz

--with-ssse3, —--without-ssse3

Chemfp by default compiles with SSSE3 support, which was first available in 2006 so almost certainly
available on your Intel-like processor. In case I'm wrong (are you compiling for ARM? If so, send me any
compiler patches), you can disable SSSE3 support using the --without-ssse3, or set the environment
variable CHEMFP_SSSE3 to “0”.

—--with-avx2, --without-avx2

Chemfp 3.0 added support for the AVX2 instruction set. This can be 30% faster than the POPCNT
instruction for 1024 or 2048 bit fingerprints. By default it is enabled, and chemfp checks that the chip
implements AVX2 before calling the functions which are explicitly written with AVX2.

Use --without-avz2 or set the environment variable CHEMFP_AVX2 to “0” to disable it.
-—arch=NAME

By default the compiler generates code that works on a variety of processors. This may mean the compiler
avoids using some processor-specific features which aren’t available on all of the processors in the base
feature set. For example, it may avoid AVX2 instructions if the compiler has been configured to also support
processors without AVX2 instructions.

The --arch option configures the compiler to compile chemfp for then named architecture. For example,
if you are compiling chemfp on the machine on the same machine where you will run it, you might specify
—arch native so the generated code is optimized for that machine.

For gce and clang, this is converted into -march=native.

If you are benchmarking chemfp then you should configure the compiler so it optimizes for the specific
hardware architecture you are testing.

Note: This option is experimental and may be removed in the next version. It is probably better to set
this compiler option yourself via CC or CFLAGS.

1.4 Installing CDK and JPype

CDK is a Java package. Chemfp is written for Python. How can chemfp call into CDK?

There are several ways for Python programs to call into Java. I tried two of them and ended up using JPype,
following Noel O’Boyle’s suggestion.

There are a few ways to install JPype. The easiest is likely to use conda (see the documentation for details)
or, if you have the the Java run-time, you can pip install it with:

python -m pip install JPypel

This installs the jpype module for Python.

1.4. |Installing CDK and JPype 5

https://jpype.readthedocs.io/en/latest/install.html

chemfp Documentation, Release 3.5

You’ll also need to put the CDK JAR on the CLASSPATH. For example, in the following I download the
JAR file then set the CLASSPATH using bash syntax:

cd ~/ftps
curl -LO https://github.com/cdk/cdk/releases/download/cdk-2.3/cdk-2.3. jar
export CLASSPATH=/Users/dalke/ftps/cdk-2.3.jar

(I put my manually downloaded packages in ~/ftps/ for historic reasons.)

Use cdk2fps --version to diagnose if things are working. If it’s a success it should look like:

% cdk2fps --version
cdk2fps 3.5

The following message occurs if jpype isn’t installed:

Cannot run cdk2fps: Cannot import jpype, which is required for
chemfp to access the CDK jar: No module named 'jpype'

The following message occurs if jpype is installed (eg, via pip) but either Java isn’t installed on your machine
or jpype couldn’t find your installation:

Cannot run cdk2fps: No JVM shared library file (libjvm.so)
found. Try setting up the JAVA_HOME environment variable properly.

The following message occurs if the CDK JAR file is not on the CLASSPATH:

Cannot run cdk2fps: It appears that CDK is not installed: Unable to
access the CDK jar via JPype. Is the jar on your CLASSPATH?: Failed
to import 'org.openscience'

The following message occurs if you are using Python 2 (jpype and therefore chemfp does not support Python
2):

Cannot run cdk2fps: Unable to use cdk2fps on Python 2

6 Chapter 1. Installing

CHAPTER 2

Working with the command-line tools

The sections in this chapter describe examples of using the command-line tools to generate fingerprint files
and to do similarity searches of those files.

2.1 Generate fingerprint files from PubChem SD tags

In this section you’ll learn how to create a fingerprint file from an SD file which contains pre-computed
CACTVS fingerprints. You do not need a chemistry toolkit for this section.

PubChem is a great resource of publically available chemistry information. The data is available for ftp
download. We’ll use some of their SD formatted files. Each record has a PubChem/CACTVS fingerprint
field, which we’ll extract to generate an FPS file.

Start by downloading the files Compound_ 099000001 099500000.sdf.gz (from ftp://ftp.ncbinlm.
nih.gov/pubchem/Compound/CURRENT-Full/SDF /Compound_ 099000001 099500000.sdf.gz) and
Compound_048500001__049000000.sdf.gz (from ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/
CURRENT-Full/SDF/Compound__048500001__049000000.sdf.gz). At the time of writing they con-
tain 10,826 and 14,967 records, respectively. (I chose some of the smallest files so they would be easier to
open and review.)

Next, convert the files into fingerprint files. On the command line do the following two commands:

sdf2fps —-pubchem Compound_099000001_099500000.sdf.gz -o pubchem_queries.fps
sdf2fps --pubchem Compound_048500001_049000000.sdf.gz -o pubchem_targets.fps

Congratulations, that was it!

If you’re curious about what an FPS file looks like, here are the first 10 lines of pubchem_ queries.fps, with
some of the lengthy fingerprint lines replaced with an ellipsis:

#FPS1
#num_bits=881
#type=CACTVS-E_SCREEN/1.0 extended=2

(continues on next page)

http://pubchem.ncbi.nlm.nih.gov/
ftp://ftp.ncbi.nlm.nih.gov
ftp://ftp.ncbi.nlm.nih.gov
http://en.wikipedia.org/wiki/Structure_Data_File#SDF
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_048500001_049000000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_048500001_049000000.sdf.gz

chemfp Documentation, Release 3.5

(continued from previous page)

#software=CACTVS/unknown
#source=Compound_099000001_099500000.sdf .gz
#date=2020-05-11T14:35:08

07de0d00000000000000 ... 393e338d1017100000000204000000000000010200000000000000000 |,
—99000039
07de1c00020000000000 ... 995e1398a405000010000000000008000000000000000000000000000 |,
—99000230
07de0c00000000000000 ... blbe31913097110008000000008000800400000000400000000000000 |,
—99002251
07de0500000000000000 ... 313e43891037901000000004000040000000000200002000000000000 |,
—99003537

How does this work? Each PubChem record contains the precomputed CACTVS substructure keys in the
PUBCHEM__CACTVS_SUBSKEYS tag. Here’s what it looks like for record 99000039, which is the first
record in Compound__099000001_099500000.sdf.gz:

> <PUBCHEM_CACTVS_SUBSKEYS>
AAADceB7sAAAAAAAAAAAAAAAAAAAAAAAAAASYTAABYAAAACxOAAAHgAQAAAADC jBngQ8wPLIEAC0AZV3
VACCgCA1AiAT2KG4ZNgIYPrA1£fGUJYhglgDIyccci4COAAAAAAQCAAAAAAAACAQAAAAAAAAAAA==

The --pubchem flag tells sdf2fps to get the value of that tag and decode it to get the fingerprint. It also
adds a few metadata fields to the fingerprint file header.

The order of the FPS fingerprints are the same as the order of the corresponding record in the SDF. You
can see that in the output, where 99000039 is the first record in the FPS fingerprints.

If you store records in an SD file then you almost certainly don’t use the same fingerprint encoding as
PubChem. sdf2fps can decode from a number of encodings, like hex and base64. Use --help to see the list
of available decoders.

The example uses -o to have sdf2fps write the output to a file instead of to stdout. By default, filenames
ending in “fps” are saved in FPS format. Use “fps.gz” for the gzip-compressed FPS format and “fps.zst”
for the zstandard-compressed FPS format.

2.2 k-nearest neighbor search

In this section you’ll learn how to search a fingerprint file to find the k-nearest neighbors. You will need the
FPS fingerprint files generated in Generate fingerprint files from PubChem SD tags but you do not need a
chemistry toolkit.

We'll use the pubchem queries.fps as the queries for a k=2 nearest neighor similarity search of the target
file puchem__ targets.gps:

simsearch -k 2 -q pubchem_queries.fps pubchem_targets.fps

That’s all! You should get output which starts:

#Simsearch/1

#num_bits=881

#type=Tanimoto k=2 threshold=0.0
#software=chemfp/3.4
#queries=pubchem_queries.fps
#targets=pubchem_targets.fps

(continues on next page)

8 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

#query_source=Compound_099000001_099500000.sdf .gz
#target_source=Compound_048500001_049000000.sdf.gz

2 99000039 48503376 0.8785 48503380 0.8729
2 99000230 48563034 0.8588 48731730 0.8523
2 99002251 48798046 0.8110 48625236 0.8107
2 99003537 48997075 0.9036 48997697 0.8985

Here’s how to interpret the output. The lines starting with ‘#’ are header lines. It contains metadata
information describing that this is a similarity search report. You can see the search parameters, the name
of the tool which did the search, and the filenames which went into the search.

After the ‘4’ header lines come the search results, with one result per line. There are in the same order
as the query fingerprints. Each result line contains tab-delimited columns. The first column is the number
of hits. The second column is the query identifier used. The remaining columns contain the hit data, with
alternating target id and its score.

For example, the first result line contains the 2 hits for the query 99000039. The first hit is the target
id 48503376 with score 0.8785 and the second hit is 48503380 with score 0.8729. Since this is a k-nearest
neighor search, the hits are sorted by score, starting with the highest score. Do be aware that ties are broken
arbitrarily. There may be additional hits with the score 0.8729 which are not reported.

2.3 Threshold search

In this section you’ll learn how to search a fingerprint file to find all of the neighbors at or above a given
threshold. You will need the FPS fingerprint files generated in Generate fingerprint files from PubChem SD
tags but you do not need a chemistry toolkit.

Let’s do a threshold search and find all hits which are at least 0.85 similar to the queries:

simsearch --threshold 0.85 -q pubchem_queries.fps pubchem_targets.fps

The first 15 lines of output from this are:

#Simsearch/1

#num_bits=881

#type=Tanimoto k=all threshold=0.85
#software=chemfp/3.4

#queries=pubchem_queries.fps
#targets=pubchem_targets.fps
#query_source=Compound_099000001_099500000.sdf .gz
#target_source=Compound_048500001_049000000.sdf.gz

4 99000039 48732162 0.8596 48503380 0.8729 48503376 0.
—8785 48520532 0.8541

2 99000230 48563034 0.8588 48731730 0.8523

0 99002251

4 99003537 48566113 0.8724 48998000 0.8535 48997697 0.
—8985 48997075 0.9036

4 99003538 48566113 0.8724 48998000 0.8535 48997697 0.
—8985 48997075 0.9036

0 99005028

0 99005031

2.3. Threshold search 9

chemfp Documentation, Release 3.5

Take a look at the first result line, which contains the 4 hits for the query id 99000039. As before, the hit
information alternates between the target ids and the target scores, but unlike the k-nearest search, the hits
are not in a particular order. You can see that here where the scores are 0.8596, 0.8729, 0.8785, and 0.8541.

You might be wondering why I chose the 0.85 threshold, or decided to show only the first 15 lines of output.
Quite simply, it was for presentation. With a threshold of 0.8, the first record has 41 hits, which requires 84
columns to show, which is a bit overwhelming.

2.4 Combined k-nearest and threshold search

In this section you’ll learn how to search a fingerprint file to find the k-nearest neighbors, where all of the
hits must be at or above given threshold. You will need the fingerprint files generated in Generate fingerprint
files from PubChem SD tags but you do not need a chemistry toolkit.

You can combine the -k and --threshold queries to find the k-nearest neighbors which are all at or above
a given threshold:

simsearch -k 3 --threshold 0.7 -q pubchem_queries.fps pubchem_targets.fps

This find the nearest 3 structures, which all must be at least 0.7 similar to the query fingerprint. The output
from the above starts:

#Simsearch/1

#num_bits=881

#type=Tanimoto k=3 threshold=0.7
#software=chemfp/3.4

#queries=pubchem_queries.fps
#targets=pubchem_targets.fps
#query_source=Compound_099000001_099500000.sdf .gz
#target_source=Compound_048500001_049000000.sdf.gz

3 99000039 48503376 0.8785 48503380 0.8729 48732162 0.
—8596

3 99000230 48563034 0.8588 48731730 0.8523 48583483 0.
8412

3 99002251 48798046 0.8110 48625236 0.8107 48500395 0.
7927

3 99003537 48997075 0.9036 48997697 0.8985 48566113 0.
8724

3 99003538 48997075 0.9036 48997697 0.8985 48566113 0.
—8724

3 99005028 48651160 0.8288 48848576 0.8167 48660867 0.
—8000

3 99005031 48651160 0.8288 48848576 0.8167 48660867 0.
8000

3 99006292 48945841 0.9652 48737522 0.8793 48575758 0.
—85637

3 99006293 48945841 0.9652 48737522 0.8793 48575758 0.
8537

0 99006597

3 99006753 48655580 0.9310 48662591 0.9249 48654553 0.
—9096

3 99009085 48561250 0.8503 48588162 0.8027 48675288 0.
7973

10 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.5

The output format is identical to the previous two search examples, and because this is a k-nearest search,
the hits are sorted from highest score to lowest.

2.5 NxN (self-similar) searches

In this section you’ll learn how to use the same fingerprints as both the queries and targets, that is, a self-
similarity search. You will need the pubchem__queries.fps fingerprint file generated in Generate fingerprint
files from PubChem SD tags but you do not need a chemistry toolkit.

Use the —-NxN option if you want to use the same set of fingerprints as both the queries and targets. Using
the pubchem_ queries.fps from the previous sections:

simsearch -k 3 --threshold 0.7 --NxN pubchem_queries.fps

This code is very fast because there are so few fingerprints. For larger files the —-NxN will be about twice as
fast and use half as much memory compared to:

simsearch -k 3 --threshold 0.7 -q pubchem_queries.fps pubchem_queries.fps

In addition, the —-NxN option excludes matching a fingerprint to itself (the diagonal term).

2.6 Using a toolkit to process the ChEBI dataset

In this section you’ll learn how to create a fingerprint file from a structure file. The structure processing
and fingerprint generation are done with a third-party chemisty toolkit. chemfp supports Open Babel,
OpenEye, RDKit and CDK. (OpenEye users please note that you will need an OEGraphSim license to use
the OpenEye-specific fingerprinters.)

We'll work with data from ChEBI, which are “Chemical Entities of Biological Interest”. They distribute
their structures in several formats, including as an SD file. For this section, download the “lite” version from
ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF /ChEBI lite.sdf.gz . It contains the same structure data as
the complete version but many fewer tag data fields. For ChEBI 187 this file contains 107,207 records and
the compressed file is 34MB.

Unlike the PubChem data set, the ChEBI data set does not contain fingerprints so we’ll need to generate
them using a toolkit.

2.6.1 ChEBI record titles don’t contain the id

Strangely, the ChEBI dataset does not use the title line of the SD file to store the record id. A simple
examination shows that 58,288 of the title lines are empty, 39,524 have the title “null”, 4,345 have the title ”
7 (with a single space), 1,983 have the title “ChEBI”, 57 of them are labeled “Structure #1”, and the others
are usually compound names like ‘fluprednidene acetate’, ‘bkas#30-CoA(4-)’, and ‘Compound 92’.

(I've asked ChEBI to fix this, to no success after many years. Perhaps you have more influence?)

Instead, the record id is stored as value of the “ChEBI ID” tag, which looks like:

> <ChEBI ID>
CHEBI:776

By default the toolkit-based fingerprint generation tools use the title as the identifier, and print a warning
and skip the record if the identifier is missing. Here’s an example with rdkit2fps:

2.5. NxN (self-similar) searches 11

http://www.ebi.ac.uk/chebi/
ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz

chemfp Documentation, Release 3.5

% rdkit2fps ChEBI_lite.sdf.gz
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 1, record #1. Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 62, record #2.

—Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 100, record #3.,
—Skipping.
ERROR: Missing title in SD record, file 'ChEBI_lite.sdf.gz', line 135, record #4.,
—Skipping.

. skipping many lines
ERROR: Empty title in SD record after cleanup, file 'ChEBI_lite.sdf.gz', line 2019,
—record #32: first line is ' '. Skipping.
. skipping a lot more lines ...
#FPS1
#num_bits=2048
#type=RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1
#software=RDKit/2020.03.1 chemfp/3.4
#source=ChEBI_lite.sdf.gz
#date=2020-05-12T09:36:52
031087be231150242e7144009200002193c1080c02858a1116a68100a588063428404052
53004080c8cc3c48114101b25081a10c025e634c08a1c00088102c0400121040a2080505
188a9c0a150000028211219¢1001000981c4804417180aca0401408500180182210716db
1580708a0b8a0802820532854411200¢1101040404001118600d0a518402385dc0001129
0602205a070480c148£240421000¢321801922c7808740cd0b10ea4c40000403dc180121
94d8d120020150b3d00043a24370000201042881d15018c0e0901442881d68604c4a8380
8110c772a824051948003c801360600221040010e20418381668404b0424ec130£05a090
c94960e0 ChEBI
000080000000000000000028800000000000000002000000040080000000000000002000
40000002000c000000000000000080080000000200400100000000000000001000000400
00100000000000000080000000000000010000000801002000000001000000400004c000
000000000000800004000000001102000000200004000000100300080000000000000000
00000000000000000820000404000000800000400000200c000008040000000000000000
200101008000000000000000000202000002008000000000000002000000000008000400
000000000000000100400001000200800000010003002800000020020000000000000000
00000000 ChEBI
210809600d11180010010200820108302804406016040100a4019100001204a12800000c
400202200286000491800080c00019050000630a8222b4a10c10450170048100a0020600
200093020522088a9005040028100000890048004af130e280000445000526496044c228
0413804030000062060804c520002200030064114£2001803401a£120100043248000c20
02008092020c62042925c0800008c140848448541a42205c0305584810788441610a0400
000c8100088c4064000105128a824284300648008900000100c00201c41027400c8a2090
8700440a0012012180410291002200024002a1100b5038410206a0000900404400001150
000a020a null
. more lines omitted ...

That output shown contains three fingerprint records; the first two with the id “ChEBI” and the third with
the id “ChEBI”. The other records had no title and were skipped, with a message sent to stderr describing
the problem and the location of the record containing the problem. (The “Empty title after cleanup” is
because chemfp removes trailing whitespace on the title line. If nothing is left after cleanup then chemfp
will report the problem.)

(If the first 100 records have no identifiers then the command-line tools will exit even if -~errors is ignore.
This is a safety mechanism. Let me know if it’s a problem.)

Instead, use the ——id-tag option to specify of the name of the data tag containing the id. For this data set

12 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.5

you'll need to write it as:

--id-tag "ChEBI ID"

The quotes are important because of the space in the tag name.

Here’s what that looks like:

% rdkit2fps ChEBI_lite.sdf.gz --id-tag "ChEBI ID" | head -8 | fold

#FPS1

#num_bits=2048

#type=RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1
#software=RDKit/2020.03.1 chemfp/3.4

#source=ChEBI_lite.sdf.gz

#date=2020-05-12T09:44:29
10208220141258c184490038b4124609db0030024a0765883c62c9e1288a1dc224de62£445743b8b
30ad542718468104d521a214227b29ba3822fbf20e15491802a051532cd10d902c39b02b51648981
9c87eb41142811026d510a890a711cb02£2090ddacd990c5240cc282090640103d0a0a8b460184£5
11114e2a8060200804529804532313bb03912d5e2857a6028960189e370100052c63474748a1c000
8079£49c484ca04c0d0bcb2c64b72401042a1£82002b097e852830e5898302021a1203e412064814
ab98741c014e9210bc30ab180£0162029d4c446aa01c34850071e4££f037a60e732£d85014344£82a
3442a98398654481b003a84£201£518f CHEBI:90
00000000080200412008000008000004000010100022008000400002000020100020006000800001
01000100080001000010000002002200000200000008000000400002100000000080000004401000
80200020800200002000001400022064000004244810000000000080000a80012002020004198002
00080200020020120040203001000802010100024211000004400000000100200003000001000100
0100021000a200601080002a00002020048004030000884084000008000002040200010800000000
2000010022000800002000020001400020800100025040000000200a080244000060008000000802
8100c801108000000041c00200800002 CHEBI: 165

In addition to “ChEBI ID” there’s also a “ChEBI Name” tag which includes data values like “tropic acid”
and “(+)-guaia-6,9-diene”. Every ChEBI record has a unique name so the names could also be used as the
primary identifier instead of its id.

To use the ChEBI Name as the primary chemfp identifier, specify:

--id-tag "ChEBI Name"

The FPS fingerprint file format allows identifiers with a space, or comma, or anything other tab, newline,
and a couple of other bytes, so it’s no problem using those names directly.

2.6.2 Generate fingerprints with Open Babel

If you have the Open Babel Python library installed then you can use 0b2fps to generate fingerprints:

ob2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fps

This takes about 2m45s on my 2019-era laptop to process all of the records, and generates messages like:

*xx (Open Babel Warning in Expand
Alias R was not chemically interpreted

(continues on next page)

2.6. Using a toolkit to process the ChEBI dataset 13

chemfp Documentation, Release 3.5

(continued from previous page)

% Open Babel Warning in ReadMolecule

WARNING: Problem interpreting the valence field of an atom
The valence field specifies a valence 3 that is
less than the observed explicit valence 4.

% Open Babel Warning in ReadMolecule
Failed to kekulize aromatic bonds in MOL file

x Open Babel Warning in ReadMolecule
Invalid line: M RGP must only refer to pseudoatoms
M RGP 2 12 1 15 2

The default generates FP2 fingerprints, so the above is the same as:

ob2fps --FP2 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fps

ob2fps can generate several other types of fingerprints. (Use —--help for a list.) For example, to generate the
Open Babel implementation of the MACCS definition specify:

ob2fps --MACCS --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

2.6.3 Generate fingerprints with OpenEye

If you have the OEChem Python library installed, with licenses for OEChem and OEGraphSim, then you
can use oe2fps to generate fingerprints:

oe2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o oe_chebi.fps

This takes about 33 seconds on my laptop and generates a number of warnings like “Stereochemistry corrected
on atom number 17 of”, “Unsupported Sgroup information ignored”, and “Invalid stereochemistry specified
for atom number 9 of”. Normally the record title comes after the “.. of”, but the title is blank for most of
the records.

OEChem could not parse 2 of the 107,207 records. I looked at the failing records (CHEBI:147324 and
CHEBI:147325) and noticed that they have 0 atoms and 0 bonds. By default OEChem’s SDF reader skips
empty records. If you really need those records, add the SuppressEmptyMolSkip flag to the default ‘flavor’
reader argument, like this:

oe2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o oe_chebi.fps \
-R flavor=Default,SuppressEmptyMolSkip

The default settings generate OEGraphSim path fingerprint with the values:

numbits=4096 minbonds=0 maxbonds=5
atype=Arom|AtmNum|Chiral |EqHalo |FCharge |HvyDeg|Hyb btype=0Order|Chiral

Each of these can be changed through command-line options. Use --help for details.

oe2fps can generate several other types of fingerprints. For example, to generate the OpenEye implementation
of the MACCS definition specify:

14 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.5

oe2fps --maccs166 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

Use --help for a list of available oe2fps fingerprints or to see more configuration details.

2.6.4 Generate fingerprints with RDKit

If you have the RDKit Python library installed then you can use rdkit2fps to generate fingerprints. Based
on the previous examples you probably guessed that the command-line is:

rdkit2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o rdkit_chebi.fps

This takes about 5 minutes and 20 seconds on my laptop, and RDKit did not generate fingerprints for 242
of the 106,965 records. RDKit logs warning and error messages to stderr. They look like:

[11:48:30] WARNING: not removing hydrogen atom without neighbors
[11:48:30] Explicit valence for atom # 12 N, 4, is greater than permitted
[11:48:30]

*kok ok
Post-condition Violation

Element 'X' not found

Violation occurred on line 91 in file /Users/dalke/ftps/rdkit-Release_2020_03_1/Code/
—GraphMol/PeriodicTable.h

Failed Expression: anum > -1
*kkok

[11:48:30] Element 'X' not found

For example, RDKit is careful to check that structures make chemical sense. It rejects 4-valent nitrogen and
refuses to process that those structures, which is the reason for the first line of that output.

The default generates RDKit’s path fingerprints with parameters:

minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1

Each of those can be changed through command-line options. See rdkit2fps —~help for details, where you’ll
also see a list of the other available fingerprint types.

For example, to generate the RDKit implementation of the MACCS definition use:

rdkit2fps --maccs166 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps

while the following generates the Morgan /circular fingerprint with radius 3:

rdkit2fps --morgan --radius 3 --id-tag "ChEBI ID" ChEBI_lite.sdf.gz

2.6.5 Generate fingerprints with CDK

If you have the CDK Java JAR file on your CLASSPATH and you have installed the JPypel package (see
the [installation guide for help]) then you can use cdk2fps to generate fingerprints. Based on the previous
examples you can probably guess that the command-line is:

2.6. Using a toolkit to process the ChEBI dataset 15

chemfp Documentation, Release 3.5

cdk2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o cdk_chebi.fps

This takes about 1 minute and 20 seconds on my laptop, and CDK did not generate fingerprints for 16 of
the 107,207 structures. (This section of the documentation was written in just before the chemfp 3.5 release,
with a different ChEBI download than the rest of this document.) CDK generated two warnings:

org.openscience.cdk.config.IsotopeFactory ERROR: Could not find major isotope for: 88
org.openscience.cdk.config.IsotopeFactory ERROR: Could not find major isotope for: 88

Chemfp lets you choose an alternate error handler (see the next section), which can help you figure out what
happened. T’ll enable the report error handler:

cdk2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o cdk_chebi.fps --errors report

This generates 16 lines of the form:

ERROR: Cannot generate fingerprint: java.lang.NullPointerException,
file 'ChEBI_lite.sdf.gz', record #8513. Skipping.

That means the record caused the CDK fingerprinter function to fail, by raising a Java NullPointerException,
which chemfp catches and reports. For reference, that record is ChEBI ID CHEBI:5015.

(There is experimental support for letting chemfp’s text toolkit parse the SD records and passing the text
to CDK. This is enabled with the cdk.sdf.implementation value “chemfp”, like this:

. ——errors report -R implementation=chemfp

This adds line number information to the report:

ERROR: Cannot generate fingerprint: java.lang.NullPointerException,
file 'ChEBI_lite.sdf.gz', line 539706, record #8513. Skipping.

This variant implementation took 1 minute and 30 seconds, so adds some overhead. Let me know if you find
it useful.)

The default cdk2fps fingerprint type is CDK-Daylight with parameters:

size=1024 searchDepth=7 pathLimit=42000 hashPseudoAtoms=0

Each of those can be changed through command-line options. See cdk2fps —-help for details, where you’ll
also see a list of the other available fingerprint types.

For example, to generate the CDK implementation of the MACCS definition use:

cdk2fps --MACCS --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o chebi_maccs.fps --errors report

This generates 22 report lines of the form:

ERROR: Cannot generate fingerprint: java.lang.NullPointerException:
Aromaticity model requires implicit hydrogen count is set., file
'ChEBI_lite.sdf.gz', record #2918. Skipping.

2.7 Alternate error handlers

In this section you’ll learn how to change the error handler for rdkit2fps using the -—errors option.

16 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.5

By default the “<toolkit>2fps” programs “ignore” structures which could not be parsed into a molecule
option. There are two other options. They can “report” more information about the failure case and keep
on processing, or they can be “strict” and exit after reporting the error.

This is configured with the -—errors option.

Here’s the rdkit2fps output using --errors report:

[12:21:03] WARNING: not removing hydrogen atom without neighbors

[12:21:03] Explicit valence for atom # 12 N, 4, is greater than permitted

ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 24228, record #380.
— Skipping.

[12:21:03] Explicit valence for atom # 12 N, 4, is greater than permitted

ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 24338, record #381.
— Skipping.

The first two lines come from RDKit. The third line is from chemfp, reporting which record could not be
parsed. (The record starts at line 24228 of the file.) The fourth line is another RDKit error message, and
the last line is another chemfp error message.

Here’s the rdkit2fps output using --errors strict:

[12:24:24] WARNING: not removing hydrogen atom without neighbors

[12:24:24] Explicit valence for atom # 12 N, 4, is greater than permitted

ERROR: Could not parse molecule block, file 'ChEBI_lite.sdf.gz', line 24228, record #380.
— Exiting.

Because this is strict mode, processing exits at the first failure.

The ob2fps and oe2fps tools implement the ——errors option, but they aren’t as useful as rdkit2fps because the
underlying APIs don’t give useful feedback to chemfp about which records failed. For example, the standard
OEChem file reader automatically skips records that it cannot parse. Chemfp can’t report anything when
it doesn’t know there was a failure.

The default error handler in chemfp 1.1 was “strict”. In practice this proved more annoying than useful
because most people want to skip the records which could not be processed. They would then contact me
asking what was wrong, or doing some pre-processing to remove the failure cases.

One of the few times when it is useful is for records which contain no identifier. When I changed the default
from “strict” to “ignore” and tried to process ChEBI, I was confused at first about why the output file was
so small. Then I realized that it’s because the many records without a title were skipped, and there was no
feedback about skipping those records.

I changed the code so missing identifiers are always reported, even if the error setting is “ignore”. Missing
identifiers will still stop processing if the error setting is “strict”.

2.8 chemfp’s two cross-toolkit substructure fingerprints

In this section you’ll learn how to generate the two substructure-based fingerprints which come as part of
chemfp. These are based on cross-toolkit SMARTS pattern definitions and can be used with Open Babel,
OpenEye, and RDKit. (For OpenEye users, these fingerprints use the base OEChem library but do not use
the separately licensed OEGraphSim library.)

chemfp implements two platform-independent fingerprints where were originally designed for substructure
filters but which are also used for similarity searches. One is based on the 166-bit MACCS implementation
in RDKit and the other comes from the 881-bit PubChem/CACTVS substructure fingerprints.

2.8. chemfp’s two cross-toolkit substructure fingerprints 17

chemfp Documentation, Release 3.5

The chemfp MACCS definition is called “rdmaccs” because it closely derives from the MACCS SMARTS
patterns used in RDKit. (These pattern definitions are also used in Open Babel and the CDK, while OpenEye
has a completely independent implementation.)

Here are example of the respective rdmaccs fingerprint for phenol using each of the toolkits.

Open Babel:

% echo "clccccclO phenol" | ob2fps --in smi --rdmaccs
#FPS1

#num_bits=166

#type=RDMACCS-0OpenBabel/2

#software=0OpenBabel/3.0.0 chemfp/3.5
#date=2021-01-27T14:45:40
00000000000000000000000000000140004480101e phenol

OpenEye:

% echo "clccccclO phenol" | oe2fps --in smi --rdmaccs
#FPS1

#num_bits=166

#type=RDMACCS-0penEye/2

#software=0EChem/2.3.0 (20191016) chemfp/3.5
#date=2021-01-27T14:46:03
00000000000000000000000000000140004480101e phenol

RDKit:

% echo "clccccclO phenol" | rdkit2fps --in smi --rdmaccs
#FPS1

#num_bits=166

#type=RDMACCS-RDKit/2

#software=RDKit/2020.03.1 chemfp/3.5
#date=2021-01-27T14:46:22
00000000000000000000000000000140004480101e phenol

CDK:

% echo "clccccclO phenol" | cdk2fps --in smi --rdmaccs
#FPS1

#num_bits=166

#type=RDMACCS—CDK/2

#software=CDK/2.3 chemfp/3.5

#date=2021-01-27T14:47:34
00000000000000000000000000000140004480101e phenol

For more complex molecules it’s possible that different toolkits produce different fingerprint rdmaccs, even
though the toolkits use the same SMARTS definitions. Each toolkit has a different understanding of chem-
istry. The most notable is the different definition of aromaticity, so the bit for “two or more aromatic rings”
will be toolkit dependent.

2.8.1 substruct fingerprints

chemp also includes a “substruct” substructure fingerprint. This is an 881 bit fingerprint derived from the
PubChem/CACTVS substructure keys. They do not match the CACTVS fingerprints exactly, in part due

18 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.5

to differences in ring perception. Some of the substruct bits will always be 0. With that caution in mind, if
you want to try them out, use the —-substruct option.

The term “substruct” is a horribly generic name. If you can think of a better one then let me know.
Until chemfp 3.0 I said these fingerprints were “experimental”, in that I hadn’t fully validated them against
PubChem/CACTVS and could not tell you the error rate. I still haven’t done that.

What’s changed is that I've found out over the years that people are using the substruct fingerprints, even
without full validatation. That surprised me, but use is its own form of validation. I still would like to
validate the fingerprints, but it’s slow, tedious work which I am not really interested in doing. Nor does it
earn me any money. Plus, if the validation does lead to any changes, it’s easy to simply change the version
number.

2.9 Generate binary FPB files from a structure file

In this section you’ll learn how to generate an FPB file instead of an FPS file. You will need the the
ChEBI file from Using a toolkit to process the ChEBI dataset and a chemistry toolkit. The FPB format was
introduced with chemfp-2.0.

Note: Several chemfp features, like creating FPB files, require a valid license key. If you are using chemfp
under the Base License Agreement then contact sales@dalkescientific.com to purchase a license key or request
an evaluation license.

The FPB format was designed so the fingerprints can be memory-mapped directly to chemfp’s internal data
structures. This makes it very fast to load, but unlike the FPS format, it’s not so easy to write with your
own code. You should think of the FPB format as an binary application format, for chemfp-based tools,
while the FPS format is a text-based format for data exchange between diverse programs.

The easiest way to generate an FPB file from the command line is to use the “fpb” extension instead of
“fps” or “fps.gz”. Here are examples using each of the toolkits.

Open Babel:

% ob2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o ob_chebi.fpb

OpenEye:

% oe2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o oe_chebi.fpb

RDKit:

% rdkit2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o rdkit_chebi.fpb

CDK:

% cdk2fps --id-tag "ChEBI ID" ChEBI_lite.sdf.gz -o cdk_chebi.fpb

The binary format isn’t human-readable. Use fpcat command-line options to see what’s inside:

% fpcat oe_chebi.fpb

#FPS1

#num_bits=4096

#type=0OpenEye-Path/2 numbits=4096 minbonds=0 maxbonds=5
—atype=Arom|AtmNum|Chiral |EqHalo|FCharge |HvyDeg|Hyb btype=0rder|Chiral

(continues on next page)

2.9. Generate binary FPB files from a structure file 19

mailto:sales@dalkescientific.com

chemfp Documentation, Release 3.5

(continued from previous page)

#software=0EGraphSim/2.4.3 (20191016) chemfp/3.4

0000000 ... many zeros ...00000000000000 CHEBI:15378
0000000 ... many zeros ...00000000000000 CHEBI:16042
0000000 ... many zeros ...00000000000000 CHEBI:17792
182b528 ... many hex values ... a8c10cOc CHEBI: 60493

By default the fingerprints are ordered from smallest popcount to largest, which you can see in the output.
A pre-ordered index is faster to search because the target popcounts are pre-computed and because it often
reduces the search space.

If you want to preserve the input order then you’ll need to pipe the FPS output to fpcat and use its
--preserve-order flag. See the next section for an example.

2.10 Convert between FPS and FPB formats

In this section you’ll learn how to convert an FPS file into an FPB file and back, and you’ll learn how to
control the fingerprint ordering. You will need the FPS files generated in Generate fingerprint files from
PubChem SD tags but you do not need a chemistry toolkit. The FPB format was introduced with chemfp-2.0.

If you already have an FPS file then you can convert it directly into an FPB file, and without using a
chemistry toolkit. The fpcat program converts from one format to the other.

In an earlier section I generated the files pubchem_ queries.fps and pubchem_ targets.fps . T’ll convert each
to FPB format:

% fpcat pubchem_targets.fps -o pubchem_targets.fpb
% fpcat pubchem_queries.fps -o pubchem_queries.fpb

The FPB format is a binary format which is difficult to read directly. The easiest way to see what’s inside
is to use fpcat. If you don’t specify an output filename then it sends the results to stdout in FPS format:

% fpcat pubchem_queries.fpb | head -5 | fold

#FPS1

#num_bits=881

#type=CACTVS-E_SCREEN/1.0 extended=2

#software=CACTVS/unknown
00028000e0009840000000
0000c0010003000200000000000000000000000000
00 99116624

The keen-eyed reader might have noticed that the conversion does not have a “source” or “date” field. I
haven’t figured out if this is a bug. Should I keep the original date and structure file source, or use the
current date and FPS file source? Let me know if this is important to you.

By default when fpcat generates an FPB file it reorders the fingerprints by population count and creates a
popcount index. This improves the similarity search performance, but it means that the order of the FPB file
is likely different than the original FPS format. You can get a sense of this by looking at the first fingerprint
in the original pubchem_ queries.fps file:

% grep -v # pubchem_queries.fps | head -1 | fold
07de0d000000000000000000000000000000000000003c060100a0010000008d2£00007800080000

(continues on next page)

20 Chapter 2. Working with the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

0030148379203c034£13080015c0acee2a00410104ac4004101b851d261b10065£03ab8£29a41106
69001393e33841017100000000204000000000000010200000000000000000 99000039

and confirming that it isn’t the same as the first fingerpritn in pubchem__queries.fpb.

If you want the FPB file to store the fingerprints in input order instead of the popcount order needed for
optimized similarity search, then use the --preserve-order flag:

% fpcat pubchem_queries.fps --preserve-order -o input_order.fpb

% fpcat input_order.fpb | grep -v # | head -1 | fold
07de0d000000000000000000000000000000000000003c06010020010000008d2£00007800080000
0030148379203c034£13080015c0acee2a00410104ac4004101b851d261b10065£03ab8£29a41106
69001393e338d1017100000000204000000000000010200000000000000000 99000039

On the flip side, fpcat by default preserves the input order when it creates FPS output. If you instead want
to the output FPS file to be in popcount order then use the --reorder flag:

% fpcat --reorder pubchem_queries.fps | grep -v # | head -1 | fold
00028000e0009840000000
0000c0010003000200000000000000000000000000
00 99116624

2.11 Specify the fpcat output format

In this section you’ll learn how to specify the output format for fpcat using a command-line option instead
of the filename extension. You will need the pubchem_ queries.fpb file from Generate fingerprint files from
PubChem SD tags.

If you do not specify an output filename then fpcat will output the fingerprints in FPS format to stdout.
If you specify a filename then by default it will look at the extension to determine if the output should be
an FPB (“fpb”), FPS (“fps”), or gzip or Zstandard compressed FPS (“fps.gz” or “fps.zst”) file. The FPS
format is used for unrecognized extensions.

In a few rare cases you may want to use a format which doesn’t match the default. To be honest, the
examples I can think of aren’t that realistic, but let’s suppose you want to output the contents of an FPB
file to stdout in gzip’ed FPS format, and count the number of bytes in compressed output. I'll use the use
the —out flag to change the format to ‘fps.gz’ from the default of ‘fps’, then compare the resulting size with
the uncompressed form:

% fpcat pubchem_queries.fpb --out fps | wc -c
2511714

% fpcat pubchem_queries.fpb --out fps.gz | wc -c
314393

It’s not that useful because you could pipe the uncompressed output to gzip, which is also likely faster:

% fpcat pubchem_queries.fpb --out fps | gzip -c -9 | wc -c
11921

In case you’re wondering, chemfp 3.4 added support for zstandard compression, if the “zstandard” Python
module is available.

% fpcat pubchem__queries.fpb —out fps.zst | we -¢ 293806

2.11. Specify the fpcat output format 21

chemfp Documentation, Release 3.5

Chemfp cannot write an FPB file to stdout. In fact, the output file must be seek-able, which means it can’t
be a named pipe either.

2.12 Alternate fingerprint file formats

In this section you’ll learn about chemfp’s support for other fingerprint file formats.

Chemfp started as a way to promote the FPS file format for fingerprint exchange. Chemfp 2.0 added the
FPB format, which is a binary format designed around chemfp’s internal search data structure so it can be
loaded quickly.

There are many other fingerprint formats. Perhaps the best known is the Open Babel FastSearch format.
Two others are Dave Cosgrove’s flush format, and OpenEye’s “fpbin” format.

The chemfp converters package contains utilities to convert between the chemfp formats and these other
formats.:

Convert from/to Dave Cosgrove Flush format
flush2fps drugs.flush
fps2flush drugs.fps -o drugs.flush

Convert from/to OpenEye's fpbin format
fpbin2fps drugs.fpbin --moldb drugs.sdf
fps2fpbin drugs_openeye_path.fps --moldb drugs.sdf -o drugs.fpbin

Convert from/to Open Babel's FastSearch format
fs2fps drugs.fs --datafile drugs.sdf
fps2fs drugs_openbabel FP2.fps --datafile drugs.sdf -o drugs.fs

Of the three formats, the flush format is closest to the FPS data model. That is, it stores fingerprint
records as an identifier and the fingerprint bytes. By comparison, the FastSearch and fpbin formats store
the fingerprint bytes and an index into another file containing the structure and identifier. It’s impossible
for chemfp to get the data it needs without reading both files.

Chemfp has special support for the flush format. If chemfp_converters is installed, chemfp will use it to
read and write flush files nearly everywhere that it accepts FPS files. You can use it at the output to oe2fps,
rdkit2fps, and ob2fps, and as the input queries to simsearch, and as both input and output to fpcat. (You
cannot use it as the simsearch targets because that code has been optimized for FPS and FPB search, and
I haven’t spent the time to optimize flush file support.)

This means that if chemfp_ converters is installed then you can use fpcat to convert between FPS, FPB, and
and flush file formats. For examples:

fpcat drugs.flush -o drugs.fps
fpcat drugs.fps -o drugs.flush

In addition, you can use it at the API level in chemfp.open(), chemfp.load_fingerprints(), chemfp.
open_fingerprint_writer(), and Fingerprintdrena.save().

Note that the flush format does not support the FPS metadata fields, like the fingerprint type, and it only
support fingerprints which are a multiple of 32 bits long. Also, compressed flush files are not supported.

22 Chapter 2. Working with the command-line tools

http://openbabel.org/wiki/FastSearch
https://github.com/OpenEye-Contrib/Flush
https://pypi.python.org/pypi/chemfp-converters/

chemfp Documentation, Release 3.5

2.13 Similarity search with the FPB format

In this section you’ll learn how to do a similarity search using an FPB file as the target. You will need the
fingerprint files from Generate fingerprint files from PubChem SD tags but you do not need a chemistry
toolkit.

NOTE: The Chemfp Base License does not let you generate FPB files. Contact sales@dalkescientific.com to
learn about other licensing options.

Simsearch, like all of the tools starting with chemfp-2.0, understands both FPS and FPB files:

% simsearch -k 3 --threshold 0.85 -q pubchem_queries.fps pubchem_targets.fpb | head
#Simsearch/1

#num_bits=881

#type=Tanimoto k=3 threshold=0.85

#software=chemfp/3.4

#queries=pubchem_queries.fps

#targets=pubchem_targets.fpb

#query_source=Compound_099000001_099500000.sdf .gz

3 99000039 48503376 0.8785 48503380 0.8729 48732162 0.
—8596

2 99000230 48563034 0.8588 48731730 0.8523

0 99002251

You can also use an FPB file as the queries. The pubchem_ queries.fpb file are indexed, which means the
queries with the fewest bits set come first. These will likely be less similar to the targets, so I've lowered the
threshold quite considerably:

% simsearch -k 3 --threshold 0.15 -q pubchem_queries.fpb pubchem_targets.fpb | head
#Simsearch/1

#num_bits=881

#type=Tanimoto k=3 threshold=0.15

#software=chemfp/3.4

#queries=pubchem_queries.fpb

#targets=pubchem_targets.fpb

1 99116624 48637532 0.1607

1 99116625 48637532 0.1607

3 99116667 48656359 0.2727 48656867 0.2667 48839868 0.
—2642

3 99116668 48656359 0.2727 48656867 0.2667 48839868 0.
2642

By default simsearch uses the query and target filename extensions to figure out if the file is in FPS, FPB,
or flush format.

If you don’t want it to auto-detect the format then use the -—query-format and --target-format options
to tell it the format to use. The values can be one of “fps”, “fps.gz”, “fps.zst”, “fpb”, “fpb.gz”, “fpb.zst”, or
“flush”.

2.14 Converting large data sets to FPB format

In this section you’ll learn how to generate an FPB file on computers with relatively limited memory.
To be realistic, this example uses the complete PubChem data set, and extracts the CACTVS/PubChem
fingerprints which are in each record. You do not need a chemistry toolkit for this section.

2.13. Similarity search with the FPB format 23

mailto:sales@dalkescientific.com
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/

chemfp Documentation, Release 3.5

The most direct way to extract the PubChem fingerprints from a PubChem distribution is to use sdf2fps:

sdf2fps --pubchem pubchem/Compound_*.sdf.gz -o pubchem.fpb

This uses the default FPB writer options, which stores all of the fingerprints in memory, sorts them, and
saves the result to the output file. This may use about 2-3 times as much memory as the final FPB output
size, which is a bit unfortunate if you want to generate a 7 GB FPB file on a 12 GB machine.

When I updated this section in June 2020, it took around 25GB of memory to create an FPB file with
102,768,482 PubChem fingerprints, and the final file was about 14GB.

(Note: see the next section for a two-stage solution that lets you parallelize fingerprint generation.)

The “*2fps” command-line tools do not have a way to change the default writer options, although fpcat does.
The --max-spool-size option sets a rough upper bound to the amount of memory to use. When enabled,
the writer breaks the input into parts and creates a temporary FPB file for each part. At the end, it merges
the sorted data from the temporary FPB files to get the final FPB file. Be aware that the specified spool
size is only approximate and is not a hard limit on the maximum amount of memory to use. You may need
to experiment a bit if you have tight constraints, and this option might not be as useful as I thought it was.

The value must be a size in bytes, though suffixes like M or MB for megabyte and T or TB for terabyte are
also allowed. These are in base-10 units, so 1 MB = 1,000,000 bytes. Spaces are not allowed between the
number and the suffix, so “200MB” is okay but “200 MB” is not. The size must be at least 20 MB.

Here is an example of how to convert the CACTVS fingerprints from all of PubChem to an FPB file, using
a relatively small limit of 200 MB:

sdf2fps --pubchem pubchem/Compound_x.sdf.gz | fpcat --max-spool-size 200MB -o pubchem.fpb

This will take a while! The sdf2fps alone takes almost 45 minutes on a ca. 2017-era Haswell machine.

If T save the intermediate results to an FPS file then the in-memory fpcat conversion from FPS to FPB takes
5% minutes and requires 25GB of memory.

With spool of 200MB, the conversion takes nearly 10 minutes. According to htop, the spooled conversion
required, near the peak, 13.3G of virtual memory, a resident set size of 12G, and 10.6G of shared shared
pages. The shared pages are from memory-mapping the intermediate FPB files, so this probably required
only 2GB of real memory.

If T use a 1GB spool size, the conversion time decreases from 10 to 8 minutes, and uses about the same
amount of peak memory.

The temporary files will be placed under the appropriate temporary directory for your operating system. If
that disk isn’t large enough for the intermediate files then use the ——tmpdir option of fpcat to specify an
alternate directory:

fpcat --max-spool-size 1GB pubchem.fps -o pubchem.fpb --tmpdir /usr/tmp

Another option is to specify the directory location using the TMPDIR, TEMP, or TMP environment vari-
ables, which are resolved in that order. The details are described in the Python documentation for temp-
file.tempdir.

2.15 Generate fingerprints in parallel and merge to FPB format

In this section you’ll learn how to merge multiple sorted fingerprints into a single FPB file.

24 Chapter 2. Working with the command-line tools

https://docs.python.org/3.7/library/tempfile#tempfile.tempdir
https://docs.python.org/3.7/library/tempfile#tempfile.tempdir

chemfp Documentation, Release 3.5

The previous section used a single shell command to extract the PubChem/CACTVS fingerprints from
PubChem and generate an FPB file. This is easy to write and understand, but more complex versions may
be more appropriate.

For one, I have four cores on my desktop computer, and I want to use them to process the PubChem files in
parallel. The previous section was only single threaded.

I have all my PubChem files in ~/pubchem/. For each “Compound_ *.sdf.gz” file in that directory I want
to extract the CACTVS/PubChem fingerprints and create an intermediate FPS file in the local directory.
That’s equivalent to running the following commands:

sdf2fps --pubchem ~/pubchem/Compound_000000001_000500000.sdf.gz \\
-o Compound_000000001_000500000. fps
sdf2fps --pubchem ~/pubchem/Compound_000500001_001000000.sdf.gz \\
-o Compound_000500001_001000000. fps
. 291 more lines ...

except that I want to run four at a time.

This is what GNU Parallel was designed for. It’s a command-line tool which can parallelize the execution
of other command-lines.

T’ll start by explaining the core command-line substitution pattern:

sdf2fps --pubchem {} -o {/..}.fps'

The {} will be replaced with a filename, and {/..} will be replaced with the base file-
name, without the directory path prefix or the two suffixes. That is, when {} is
“/Users/dalke/pubchem/Compound__000000001__000500000.sdf.¢z” then {/..} will be “Com-
pound__000000001__000500000.fps™.

Since I want to generate an FPS file, I added the “fps” as a suffix to the second substitution parameter.

I then tell GNU parallel which command-line to use, along with a few other parameters. Here’s the full line,
which I split over two lines to make it more readable:

parallel --plus --no-notice --bar 'sdf2fps --pubchem {}
-o {/..}.fps' ::: ~/pubchem/Compound_x*.sdf.gz

The --plus tells GNU parallel to recognize an expanded set of replacement strings. (“{/..}” is not part of
the standard set of patterns.)

The --no-notice tells it to not display the message about citing GNU parallel in scientific papers.

The --bar enables a progress bar, which looks like this:

30% 88:205=11m17s /Users/dalke/pubchem/Compound_045500001_046000000.sdf.gz

This status line shows that processing is 30% complete, which is file 88 out of 205, and there’s an estimated
11 minutes and 17 seconds remaining.

Finally, the “:::” indicates that the remaining options are the list of parameters to pass to the command-line
template for parallelization.

After about 21 minutes, using 4 CPUs on my laptop (with an effective scaling of 2.8), I now have a large
number of FPS files, which I want to merge into a single FPB file. T'll use fpcat:

fpcat --max-spool-size 1GB Compound*.fps -o pubchem.fpb

2.15. Generate fingerprints in parallel and merge to FPB format 25

http://www.gnu.org/software/parallel/

chemfp Documentation, Release 3.5

Unfortunately my laptop ran out of disk space, so I'll just leave it a that; re-doing the same command on a
server machine won’t provide you any new information.

26 Chapter 2. Working with the command-line tools

CHAPTER 3

Help for the command-line tools

The chemfp command-line tools are:
e fpcat - merge multiple fingerprint files into one
e 0b02fps - use Open Babel to generate fingerprints
e 0¢2fps - use OEChem/OEGraphSim to generate fingerprints
o rdkit2fps - use RDKit to generate fingerprints
e cdk2fps - use CDK to generate fingerprints
o sdf2fps - extract fingerprints from an SD file

e simsearch - search a fingerprint file for similar fingerprints

3.1 fpcat command-line options

The following comes from fpcat --help:

usage: fpcat [-h] [--in FORMAT] [--merge] [-o FILENAME] [--out FORMAT]
[--level LEVEL] [--reorder] [--preserve-order] [--alignment N]
[--show-progress] [--max-spool-size SIZE] [--tmpdir DIRNAME]
[--version] [--license-check]
[filename ...]

Combine multiple fingerprint files into a single file.

positional arguments:
filename input fingerprint filenames (default: use stdin)

optional arguments:
-h, —--help show this help message and exit

(continues on next page)

27

chemfp Documentation, Release 3.5

(continued from previous page)

--in FORMAT input fingerprint format. One of fps or fpb (with
optional gz or zst compression), or flush. (default
guesses from filename or is fps)

--merge assume the input fingerprint files are in popcount
order and do a merge sort

-o FILENAME, --output FILENAME
save the fingerprints to FILENAME (default=stdout)

--out FORMAT output fingerprint format. One of fps, fps.gz,
fps.zst, fpb, or flush. (default guesses from output
filename, or is 'fps')

--level LEVEL compression level. Must be a positive integer or one
of 'min', 'default', or 'max'.

--reorder reorder the output fingerprints by popcount (default
for FPB output)

--preserve-order save the output fingerprints in the same order as the
input (default for FPS output)

--alignment N alignment size when saving a FPB file (default=8)

--show-progress show progress

--max-spool-size SIZE
use temporary files for extra storage space for huge
FPB files (default uses RAM)

-—tmpdir DIRNAME directory for the temporary files (default uses the
system temp directory)
--version show program's version number and exit
--license-check Check the license and report results to stdout.
Examples:

fpcat can be used to convert between FPS and FPB formats. This is
handy if you want to see what's inside of an FPB file:

fpcat fingerprints.fpb
You can use also use fpcat to make an FPB file from an FPS file:

fpcat fingerprints.fps -o fingerprints.fpb
You might have generated a set of FPS file which you want to merge
into a single FPB. (For example, you might have used GNU parallel to
generate FPS files for each of the PubChem files, which you want to
merge into a single file.):

fpcat Compound_x*.fps -o pubchem.fpb
By default the FPB format sorts the fingerprints by popcount. (Use
—--preserve-order if you really want to preserve the input order.) The
sort overhead for PubChem uses about 10 GB of RAM. If you don't have
that much memory then ask fpcat to use less memory:

fpcat --max-spool-size 1GB Compound_x*.fps -o pubchem.fpb

This will use about 2 GB of RAM and the --tmpdir for the rest. (Yes,

(continues on next page)

28 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

it would be nice if I could get those two memory size numbers to
match.)

The --merge option is experimental. Use it if the input fingerprints
are in popcount order, because sorted output is a simple merge sort of
the individual sorted inputs. However, this option opens all input
files at the same time, which may exceed your resource limit on file
descriptors. The current implementation also requires a lot of disk
seeks so is slow for many files.

The flush format is only available if the chemfp_converter package was
installed.

3.2 ob2fps command-line options

The following comes from ob2fps --help:

usage: ob2fps [-h] [--FP2 | --FP3 | --FP4 | --MACCS | --ECFPO | --ECFP2
| ——-ECFP4 | --ECFP6 | --ECFP8 | --ECFP10
| —--substruct | --rdmaccs | --rdmaccs/1]

[--nBits INT] [--id-tag NAME] [--in FORMAT] [-o FILENAME]
[--out FORMAT] [--errors {strict,report,ignorel}]
[--help-formats] [-R NAME=VALUE]

[--delimiter {tab,whitespace,to-eol,space}] [--has-header]
[--version] [--license-check]

[filenames ...]

Generate FPS or FPB fingerprints from a structure file using Open Babel

positional arguments:
filenames input structure files (default is stdin)

optional arguments:

-h, —--help show this help message and exit

--FP2 linear fragments up to 7 atoms

--FP3 SMARTS patterns specified in the file patterns.txt

--FP4 SMARTS patterns specified in the file
SMARTS_IntelLigand.txt

--MACCS Open Babel's implementation of the MACCS 166 keys

--ECFPO ECFP (circular) fingerprints with diameter O

--ECFP2 ECFP (circular) fingerprints with diameter 2

--ECFP4 ECFP (circular) fingerprints with diameter 4

--ECFP6 ECFP (circular) fingerprints with diameter 6

--ECFP8 ECFP (circular) fingerprints with diameter 8

--ECFP10 ECFP (circular) fingerprints with diameter 10

--substruct ChemFP substructure fingerprints

--rdmaccs, --rdmaccs/2

166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs
--id-tag NAME tag name containing the record id (SD files only)

(continues on next page)

3.2. ob2fps command-line options 29

chemfp Documentation, Release 3.5

(continued from previous page)

--in FORMAT input structure format (default autodetects from the
filename extension)

-o FILENAME, --output FILENAME
save the fingerprints to FILENAME (default=stdout)

--out FORMAT output structure format (default guesses from output
filename, or is 'fps')

--errors {strict,report,ignore}
how should structure parse errors be handled?
(default=ignore)

--help-formats list the available formats and reader arguments

-R NAME=VALUE specify a reader argument

--delimiter {tab,whitespace,to-eol,space}
delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--has-header Skip the first line of a SMILES or InChI file Alias
for '-R has_header=1'

--version show program's version number and exit

--license-check Check the license and report results to stdout.

ECFP argument:
--nBits INT number of bits in the fingerprint (default=4096)

By default the Open Babel structure reader determines the file format
and compression type based on the filename extension. Unknown

filename extensions are treated as a uncompressed SMILES files.

If the data comes from stdin, or the guess based on extension name is
wrong, then use "--in FORMAT" option to change the default input format.

For examples:

--in smi
--in sdf.gz

Use "-R° to specify format-specific reader arguments.

Use "--help-formats™ for a list of available formats and reader arguments.

The following comes from ob2fps --help-formats, though I've removed most of the Open Babel formats
from the list.

chemfp has special support for the SMILES, InChI, and SDF formats when
using the Open Babel toolkit.

For these formats, by default, chemfp uses the filename extension to
determine the format type. If the filename ends with ".gz" or ".zst"
then it is intepreted as a gzip or Zstandard compressed file, and the
second-to-last extension is used to determine the format type. Unknown
or unsupported extensions are then tested against Open Babel format
names (see below), and if still unknown, interpreted as a SMILES file.

Note: To enable Zstandard compression, please install the "zstandard"
Python package from https://pypi.org/project/zstandard/ .

(continues on next page)

30 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

You will need to use "-R implementation=chemfp" to enable zst support for
the SDF format.

You may instead specify the file format by name (see below), which is
especially important when reading from stdin, which has no associated
filename extension.

These specially supported filename extensions are:

File Type Extension(s)

SMILES can, ism, isosmi, smi, usm

SDF sdf

InChI inchi

The format can also be specified by name using the '--in' option:
File Type Format name (append .gz or .zst if compressed)

SMILES smi, can, usm

SDF sdf
InChI inchi

The input format parsers can be configured with the "-R" option. For
examples, the following reader arguments tell the SMILES readers that
the fields are whitespace delimited and the first line is a header.

-R delimiter=whitespace -R has_header=true

A1l of the readers support the 'options' reader argument, which is a
string passed directly to 0BConversion(). This is a compact way to
encode all of the Open Babel parameters used in the conversion. For
example, 'ab"text"', would set option 'a' to True, and option 'b' to
the string "text".

The SMILES format parsers use two additional reader arguments:
* 'delimiter' specifies the delimiter type. The default is 'to-eol'.
The other values are 'tab', 'whitespace', 'space' and 'native'.
Use "-R delimiter=native" to match Open Babel's native delimiter
style, which is 'to-eol'.
* 'has_header', if false will skip the first line
of the SMILES file (because it is a header line).

The SDF format parser supports one additional reader argument:

* 'implementation': if "openbabel" or "native", use Open Babel's
native SDF parser. If "chemfp" use chemfp's own implementation
to find SDF records, which are then passed to Open Babel for
parsing. This gives more fine-grained error reporting, and
supports zst compression, and with similar performance.

(Note: Open Babel supports additional optiomns.)

(continues on next page)

3.2. ob2fps command-line options 31

chemfp Documentation, Release 3.5

(continued from previous page)

The InChI format parser supports one additional reader argument:
* 'delimiter' works the same as it does for the SMILES formats

In addition, you may specify an Open Babel formats, either by one of
the following format names, or by reading a filename ending with one
of the format names, optionally with a .gz suffix. Zstandard
compression is not supported by the native Open Babel reader.

Format Description and options

CONFIG DL-POLY CONFIG
CONTCAR VASP format
s (Output single bonds only
b Disable bonding entirely
CONTFF MDFF format
HISTORY DL-POLY HISTORY
. many lines removed from the chemfp documentation ...
Xyz XYZ cartesian coordinates format
s Output single bonds only
b Disable bonding entirely
yob YASARA.org YOB format

You will need to consult the Open Babel documentation
(see http://openbabel.org/wiki/List_of_extensions) and
implementation for full details about how these options work.

3.3 oe2fps command-line options

The following comes from oe2fps --help:

usage: oe2fps [-h] [--path] [--circular] [--tree] [--numbits INT]
[--minbonds INT] [--maxbonds INT] [--minradius INT]
[--maxradius INT] [--atype ATYPE] [--btype BTYPE]
[--maccs166] [--substruct] [--rdmaccs] [--rdmaccs/1]
[--aromaticity NAME] [--id-tag NAME] [--in FORMAT]
[-o FILENAME] [--out FORMAT]
[--errors {strict,report,ignore}] [--help-formats]
[-R NAME=VALUE] [--delimiter {tab,whitespace,to-eol,spacel}]
[--has-header] [--version] [--license-check]
[filenames ...]

Generate FPS or FPB fingerprints from a structure file using OEChem

positional arguments:
filenames input structure files (default is stdin)

optional arguments:
-h, --help show this help message and exit
—--aromaticity NAME use the named aromaticity model (same as '-R

(continues on next page)

32 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

aromaticity=NAME')
--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default guesses from filename)
-o FILENAME, --output FILENAME
save the fingerprints to FILENAME (default=stdout)
--out FORMAT output structure format (default guesses from output
filename, or is 'fps')
--errors {strict,report,ignore}
how should structure parse errors be handled?
(default=ignore)
--help-formats list the available formats and reader arguments
-R NAME=VALUE specify a reader argument
--delimiter {tab,whitespace,to-eol,space}
delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--has-header Skip the first line of a SMILES or InChI file Alias
for '-R has_header=1'

--version show program's version number and exit

--license-check Check the license and report results to stdout.

path, circular, and tree fingerprints:

--path generate path fingerprints (default)

—--circular generate circular fingerprints

-—tree generate tree fingerprints

—-numbits INT number of bits in the fingerprint (default=4096)

--minbonds INT minimum number of bonds in the path or tree
fingerprint (default=0)

--maxbonds INT maximum number of bonds in the path or tree
fingerprint (path default=5, tree default=4)

--minradius INT minimum radius for the circular fingerprint
(default=0)

--maxradius INT maximum radius for the circular fingerprint
(default=5)

--atype ATYPE atom type flags, described below (default=Default)

--btype BTYPE bond type flags, described below (default=Default)

166 bit MACCS substructure keys:
--maccs166 generate MACCS fingerprints

881 bit ChemFP substructure keys:
--substruct generate ChemFP substructure fingerprints

ChemFP version of the 166 bit RDKit/MACCS keys:
--rdmaccs, --rdmaccs/2
generate 166 bit RDKit/MACCS fingerprints (version 2)
--rdmaccs/1 use the version 1 definition for --rdmaccs

ATYPE is one or more of the following, separated by the '|' character

Arom AtmNum Chiral EqArom EqHBAcc EqHBDon EqHalo FCharge HCount HvyDeg
Hyb InRing

(continues on next page)

3.3. oe2fps command-line options 33

chemfp Documentation, Release 3.5

(continued from previous page)

The following shorthand terms and expansions are also available:
DefaultPathAtom = AtmNum|Arom|Chiral|FCharge |HvyDeg|Hyb|EgHalo
DefaultCircularAtom = AtmNum|Arom|Chiral|FCharge|HCount|EgHalo
DefaultTreeAtom = AtmNum|Arom|Chiral|FCharge |HvyDeg|Hyb

and 'Default' selects the correct value for the specified fingerprint.

Examples:
--atype Default
--atype "Arom|AtmNum|FCharge|HCount"
--atype Arom,AtmNum,FCharge,HCount

BTYPE is one or more of the following, separated by the '|' character
Chiral InRing Order

The following shorthand terms and expansions are also available:
DefaultPathBond = Order|Chiral

DefaultCircularBond = Order

DefaultTreeBond = Order

and 'Default' selects the correct value for the specified fingerprint.

Examples:
--btype Default
--btype Order|InRing

To simplify command-line use, a comma may be used instead of a '|' to
separate different fields. Example:
--atype AtmNum,HvyDegree

By default, chemfp will use the filename extension to determine the
structure file format type and possible compression. Most of the file
readers support configuration parameters. Use the '-R' option to
specify those parameters.

Use '--help-formats' to list available formats and reader parameters.

The following comes from oe2fps --help-formats

These are the structure file formats that chemfp can read when using
the OEChem toolkit.

By default, chemfp uses the filename extension to determine the format
type. If the filename ends with ".gz" then it is intepreted as a gzip
compressed file, and the second-to-last extension is used to determine
the format type. Unknown or unsupported extensions are interpreted as
a SMILES file.

(The OEChem structure file readers do not support Zstandard
compression.)

You may instead specify the file format by name (see below), which is
especially important when reading from stdin, which has no associated

(continues on next page)

34 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

filename extension.

The supported filename extensions are:

to the filename to indicate that the contents are

File Type Extension(s)
SMILES can, ism, isosmi, smi, usm
SDF mdl, rxn, sd, sdf
InChI inchi
Tripos Mol2 mol2, mol2h
PDB ent, pdb
XYZ Xyz
SKC skc
Macromodel mmd, mmod
ChemDraw CDX cdx
OE binary oeb
OEB compressed oez
CIF cif
mmCIF mmcif
FASTA fasta
CsSv csv
Append a '.gz'

gzip-compressed.

The format can also be specified by name using the '--in' option:
File Type Format name
SMILES smi, can, usm
SDF sdf
InChI inchi
Tripos Mol2 mol2, mol2h
PDB pdb
XYZ Xyz
SKC skc
Macromodel mmod
ChemDraw CDX cdx
OE binary oeb
OEB compressed oez
CIF cif
mmCIF mmcif
FASTA fasta
CSV csv

Append a '.gz' to the format name to indicate that the contents are

gzip-compressed.

The input format parsers can be configured with the "-R" option. For
example, the following reader arguments tell the SMILES readers that

the fields are whitespace delimited and the first line is a header.

(continues on next page)

3.3. oe2fps command-line options

35

chemfp Documentation, Release 3.5

(continued from previous page)

-R delimiter=whitespace -R has_header=true
A1l formats handle the following two reader arguments:

aromaticity - one of 'openeye', 'daylight', 'tripos', 'mdl', or 'mmff'
(this can also be set via the older '--aromaticity' command-line option)

flavor - a '|' or ',' separated list of flavor names, or a numeric value.
A leading '-' means to remove the given flavor. Examples include:

o

Canon,Strict -- the bitwise merger of the format's Canon and Strict values

o Default,-Kekule —-- the format's Default flavor but without the Kekule bits
(every flavor has a Default)

o 42 -- the specific OEChem flavor value 42

The SMILES and InChI formats also handle reader arguments for the
delimiter style and the presence of an initial header line using the
following:

delimiter - one of 'to-eol' (Daylight/OEChem style), 'tab',
'whitespace', 'space', or 'nmative' (for the native toolkit style)

has_header - '1' if the first line contains a header, else '0O'.
The supported format, default reader arguments, and input flavors are:

Format: can
aromaticity: openeye
delimiter: to-eol
flavor: Default
default flags: <none>
available flags: Canon, Strict
has_header: O

Format: cdx
aromaticity: openeye
flavor: Default
default flags: SuperAtom
available flags: SuperAtom

Format: cif
aromaticity: openeye
flavor: Default
default flags: BondHydToClosest, BondOrder, FormalCrg, ImplicitH,
NormalizeHydPos, OccFilterOneHalf, RemovePBCImages,
RemoveQuestionMarkInLabel, Rings
available flags: BondHydToClosest, BondOrder, FormalCrg, ImplicitH,
NormalizeHydPos, OccFilterOneHalf, RemovePBCImages,
RemoveQuestionMarkInLabel, Rings

Format: csv
aromaticity: openeye

(continues on next page)

36 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

flavor: Default
default flags: Header
available flags: Header

Format: fasta
aromaticity: openeye
flavor: Default
default flags: <none>
available flags: CustomResidues, EmbeddedSMILES

Format: inchi
aromaticity: <N/A>
delimiter: to-eol
flavor: Default
no flavor flags available
has_header: 0

Format: mmcif
aromaticity: openeye
flavor: Default
default flags: <none>
available flags: NoAltLoc

Format: mmod
aromaticity: openeye
flavor: Default
default flags: <none>
available flags: FormalCrg

Format: mol2
aromaticity: openeye
flavor: Default
default flags: <none>
available flags: Forcefield, M2H

Format: mol2h
aromaticity: openeye
flavor: Default
default flags: M2H
available flags: M2H

Format: oeb
aromaticity: <N/A>
flavor: Default
no flavor flags available

Format: oez
aromaticity: <N/A>
flavor: Default
no flavor flags available

Format: pdb

(continues on next page)

3.3. oe2fps command-line options

37

chemfp Documentation, Release 3.5

(continued from previous page)

aromaticity: openeye
flavor: Default
default flags: BondOrder, Connect, END, ENDM, FormalCrg, ImplicitH,
Rings, SecStruct
available flags: ALL, ALTLOC, BondOrder, CHARGE, Connect, DATA, END,
ENDM, FORMALCHARGE, FormalCrg, ImplicitH, RADIUS, Rings,
SecStruct, TER

Format: sdf
aromaticity: openeye
flavor: Default
default flags: <none>
available flags: FixBondMarks, SuppressEmptyMolSkip,
SuppressImp2ExpENHSTE

Format: skc
aromaticity: openeye
flavor: Default
no flavor flags available

Format: smi
aromaticity: openeye
delimiter: to-eol
flavor: Default
default flags: <none>
available flags: Canon, Strict
has_header: 0

Format: usm
aromaticity: openeye
delimiter: to-eol
flavor: Default
default flags: <none>
available flags: Canon, Strict
has_header: O

Format: xyz
aromaticity: openeye
flavor: Default
default flags: BondOrder, Connect, FormalCrg, ImplicitH, Rings
available flags: BondOrder, Connect, FormalCrg, ImplicitH, Rings

See https://docs.eyesopen.com/toolkits/cpp/oechemtk/molreadwrite.html#flavored-input-and-
—output
for documentation about the flavors for each format.

3.4 rdkit2fps command-line options

The following comes from rdkit2fps --help:

38 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

usage: rdkit2fps [-h] [--fpSize INT] [--radius INT] [--nBitsPerEntry INT]
[--includeChirality 0|1] [--from-atoms INT,INT,...]
[--RDK] [--minPath INT] [--maxPath INT]
[--nBitsPerHash INT] [--useHs 0|1] [--branchedPaths 0]1]
[--useBondOrder 0|1] [--morgan] [--useFeatures 0|1]
[--useChirality 0|1] [--useBondTypes 0|1]
[--includeRedundantEnvironments 0|1] [--torsions]
[--targetSize INT] [--pairs] [--minLength INT]
[--maxLength INT] [--use2D 0|1] [--maccs166] [--avalon]
[--isQuery O_or_1] [--bitFlags INT] [--secfp]
[--rings 0|1] [--isomeric 0|1] [--kekulize 0]1]
[--min_radius INT] [--pattern] [--substruct] [--rdmaccs]
[--rdmaccs/1] [--id-tag NAME] [--in FORMAT] [-o FILENAME]
[--out FORMAT] [--errors {strict,report,ignorel}]
[--help-formats] [-R NAME=VALUE]
[--delimiter {tab,whitespace,to-eol,space}] [--has-header]
[--version]
[filenames ...]

Generate FPS or FPB fingerprints from a structure file using RDKit

positional arguments:
filenames input structure files (default is stdin)

optional arguments:

-h, --help show this help message and exit
--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default guesses from filename)

-o FILENAME, --output FILENAME
save the fingerprints to FILENAME (default=stdout)

--out FORMAT output structure format (default guesses from output
filename, or is 'fps')

—--errors {strict,report,ignore}
how should structure parse errors be handled?
(default=ignore)

--help-formats list the available formats and reader arguments

-R NAME=VALUE specify a reader argument

--delimiter {tab,whitespace,to-eol,space}
delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--has-header Skip the first line of a SMILES or InChI file Alias
for '-R has_header=1'
--version show program's version number and exit

Common Parameters (used by more than one fingerprint type):

--fpSize INT number of bits in the fingerprint. Default of 2048 for
RDK, Morgan, topological torsion, atom pair, pattern
and SECFP fingerprints, and 512 for Avalon
fingerprints

--radius INT radius for the Morgan or SECFP fingerprints. Default
of 2 for Morgan, 3 for SECFP

--nBitsPerEntry INT number of bits per entry

(continues on next page)

3.4. rdkit2fps command-line options

39

chemfp Documentation, Release 3.5

(continued from previous page)

--includeChirality 0|1
include chirality information in the atom invariants
--from-atoms INT,INT,...
fingerprint generation must use these atom indices
(out of range indices are ignored)

RDKit topological fingerprints:
Branched or linear hash fingerprint.
Uses --fpSize and --fromAtoms plus:

—--RDK generate RDK fingerprints (default)

--minPath INT minimum number of bonds to include in the subgraph
(default=1)

--maxPath INT maximum number of bonds to include in the subgraph

(default=7)

--nBitsPerHash INT number of bits to set per path (default=2)

--useHs 0|1 include information about the number of hydrogens on
each atom (default=1)

--branchedPaths 0|1 if set both branched and unbranched paths will be used
in the fingerprint (default=1)

--useBondOrder 0|1 if set both bond orders will be used in the path
hashes (default=1)

RDKit Morgan fingerprints:
Circular fingerprints similar to ECFP or FCFP fingerprints.

Uses --fpSize, --radius, and --fromAtoms plus:

—--morgan generate Morgan fingerprints

--useFeatures 0|1 use chemical-feature invariants (default=0)
--useChirality 0|1 include chirality information (default=0)

--useBondTypes 0|1 include bond type information (default=1)
--includeRedundantEnvironments 0|1
if set, the check for redundant atom environments will
not be done (default=0)

RDKit Topological Torsion fingerprints:
See Nilakantan et al., JCICS 27, 82-85 (1987).
Uses --fpSize, --nBitsPerEntry, --includeChirality, and --fromAtoms plus:

--torsions generate Topological Torsion fingerprints
--targetSize INT number of bonds per torsion (default=4)

RDKit Atom Pair fingerprints:
See Carhart et al., JCICS 25, 64-73 (1985).
Uses --fpSize, --nBitsPerEntry, --includeChirality, and --fromAtoms plus:

--pairs generate Atom Pair fingerprints

--minLength INT minimum bond count for a pair (default=1)
--maxLength INT maximum bond count for a pair (default=30)
--use2D 0|1 use 2D instead of 3D distance matrix (default=1)

166 bit MACCS substructure keys:

(continues on next page)

40 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

--maccs166 generate MACCS fingerprints

Avalon fingerprints:
Fingerprints from the Avalon toolkit.
Uses --fpSize plus:

--avalon generate Avalon fingerprints

--isQuery O_or_1 is the fingerprint for a query structure? (1 if yes, O
if no) (default=0)

--bitFlags INT bit flags, SSSBits are 32767 and similarity bits are

15761407 (default=15761407)

SECFP fingerprints:
A circular fingerprint based on fragment SMILES instead of hashing.
Uses —-fpSize and --radius plus:

--secfp generate SECFP fingerprints

--rings 0|1 if 1, add SSSR ring to the fingerprint (default=1)

--isomeric 0|1 if 1, use isomeric SMILES instead of non-isomeric
SMILES (default=0)

--kekulize 0|1 if 1, use Kekule SMILES instead of aromatic SMILES
(default=1)

--min_radius INT minimum radius used to extract n-grams (default=1)

RDKit Pattern fingerprints:
Fingerprints for substructure search screening.

—-—pattern generate (substructure) pattern fingerprints

chemfp's version of the 881 bit PubChem substructure keys:
--substruct generate ChemFP substructure fingerprints

chemfp's version of the 166 bit RDKit/MACCS keys:
--rdmaccs, --rdmaccs/2
generate 166 bit RDKit/MACCS fingerprints (version 2)
—--rdmaccs/1 use the version 1 definition for --rdmaccs

This program guesses the input structure format and the compression
based on the filename extension. If the guess fails then it assumes
the input is an uncompressed SMILES file.

If the data comes from stdin, or the guess based on extension name is
wrong, then use "--in" to change the default input format.

Use the '-R' reader arguments option to pass in format-specific structure
reader arguments. The details depend on the specific format.

Use the command-line option “--help-formats™ to display a list of
available formats and reader arguments.

The following comes from rdkit2fps --help-formats

3.4. rdkit2fps command-line options 41

chemfp Documentation, Release 3.5

These are the structure file formats that chemfp can read when using
the RDKit toolkit.

By default, chemfp uses the filename extension to determine the format
type. If the filename ends with ".gz" or ".zst" then it is intepreted
as a gzip or Zstandard compressed file, and the second-to-last
extension is used to determine the format type. Unknown or unsupported
extensions are interpreted as a SMILES file.

You may instead specify the file format by name (see below), which is
especially important when reading from stdin, which has no associated
filename extension.

The supported filename extensions are:

File Type Extension(s)

SMILES can, ism, isosmi, smi, usm
SDF mdl, sd, sdf
InChI inchi
Tripos Mol2 mol2
PDB ent, pdb
Maestro mae, maegz
FASTA faa, fasta

The format can also be specified by name using the '--in' option:

File Type Format name (append .gz or .zst if compressed)
SMILES smi, can, usm
SDF sdf
InChI inchi
Tripos Mol2 mol2
PDB pdb
Maestro mae
FASTA fasta

The input format parsers can be configured with the "-R" option. For
example, the following reader arguments tell the SMILES readers that
the fields are whitespace delimited and the first line is a header.

-R delimiter=whitespace -R has_header=true

A1l of the input formats implement the 'sanitize' option, which is
enabled by default. Use "-R sanitize=false" to disable sanitization.

The SMILES format parsers use two additional reader arguments:
* 'delimiter' specifies the delimiter type. The default is 'to-eol'.
The other values are 'tab', 'whitespace', 'space' and 'native'.
Use "-R delimiter=native" to match RDKit's native delimiter
style, which is 'whitespace'.
* 'has_header', if false will skip the first line

(continues on next page)

42 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

of the SMILES file (because it is a header line).

The SDF format parser supports two additional reader arguments:
* 'strictParsing', if false will disable strict parsing
* 'removeHs', if false will keep all of the hydrogens

The InChI format parser supports four additional reader arguments:
* 'delimiter' works the same as it does for the SMILES formats
* 'removeHs' works the same as it does for the SDF format
* 'treatWarningAsError', if true treats all warnings as errors
* 'logLevel' specifies the RDKit/InChI library log level, as an integer

The Tripos Mol2 format parser supports two additional reader arguments:
* 'removeHs' works the same as it does for the SDF format
* 'cleanupSubstructures' if false disables standardizing
some substructures found in Mol2 files

The PDB format parser supports three additional reader arguments:
* 'removeHs' works the same as it does for the SDF format
* 'flavor', an input parameter with no documented meaning
* 'proximityBonding', if false will disable automatic
automatic proximity bonding

The Maestro format parser supports one additional reader argument:
* 'removeHs' works the same as it does for the SDF format

The FASTA format parser supports one additional reader argument:
* 'flavor', an integer from O to 9. The values mean:
0 - the sequence contains L-amino acids
1 - allow lowercase for D-amino acids

2 - RNA with no cap 6 - DNA with no cap
3 - RNA with 5' cap 7 - DNA with 5' cap
4 - RNA with 3' cap 8 - DNA with 3' cap
5 - RNA with both caps 9 - DNA with both caps

3.5 cdk2fps command-line options

The following comes from cdk2fps --help:

usage: cdk2fps [-h]

[--type TYPE_STRING | --using FILENAME | --Daylight |
--GraphOnly | --MACCS | --EState | --Extended |
—--Hybridization | --KlekotaRoth | --Pubchem |
--Substructure | --ShortestPath | --ECFPO | --ECFP2 |
--ECFP4 | --ECFP6 | --FCFPO | --FCFP2 | --FCFP4 |
--FCFP6 | --AtomPairs2D] [--substruct] [--rdmaccs]

[--rdmaccs/1] [--size INT] [--searchDepth INT]

[--pathLimit INT] [--hashPseudoAtoms 0|1]

[--perceiveStereochemistry 0|1] [--id-tag NAME] [--in

FORMAT] [-o FILENAME] [--out FORMAT] [--errors

(continues on next page)

3.5. cdk2fps command-line options 43

chemfp Documentation, Release 3.5

(continued from previous page)

{strict,report,ignore}] [--help-formats] [-R
NAME=VALUE] [--delimiter

{tab,whitespace,to-eol,space}] [--has-header]
[--version] [--license-check] [filenames ...]

Generate FPS or FPB fingerprints from a structure file using CDK via JPype

positional arguments:
filenames

optional arguments:
-h, --help
--type TYPE_STRING
--using FILENAME
--Daylight

--GraphOnly

--MACCS
—--EState

—--Extended

--Hybridization

—--KlekotaRoth
—-Pubchem
—-Substructure

—--ShortestPath

--ECFPO
--ECFP2
--ECFP4
--ECFP6
--FCFPO
--FCFP2
--FCFP4

--FCFP6

input structure files (default is stdin)

show this help message and exit

Specify a chemfp type string

Get the fingerprint type from the metadata of a
fingerprint file

Make Daylight-like fingerprints using
cdk.fingerprinter.Fingerprinter (default)

Make Daylight-like fingerprints (ignoring bond types)
using GraphOnlyFingerprinter

Make 166-bit MACCS keys using MACCSFingerprinter
Make 79-bit EState fingerprints using
EStateFingerprinter

Make Daylight-like fingerprints extended with ring
feature bits, using ExtendedFingerprinter

Make Daylight-like fingerprints based on SP2
hybridization instead of aromaticity, using
HybridizationFingerprinter

Make 4860-bit Klekota-Roth fingerprint, using
KlekotaRothFingerprinter

Make 881-bit PubChem fingerprint, using
PubchemFingerprinter

Make 307-bit substructure fingerprint, using
SubstructureFingerprinter

Make fingerprints based on the shortest path between
atoms, ring systems, and more, using
ShortestPathFingerprinter

Make ECFPO-like circular fingerprints, using
CircularFingerprinter (CLASS_ECFPO)

Make ECFP2-like circular fingerprints, using
CircularFingerprinter (CLASS_ECFP2)

Make ECFP4-like circular fingerprints, using
CircularFingerprinter (CLASS_ECFP4)

Make ECFP6-like circular fingerprints, using
CircularFingerprinter (CLASS_ECFP6)

Make FCFPO-like circular feature fingerprints, using
CircularFingerprinter (CLASS_FCFPO)

Make FCFP2-like circular feature fingerprints, using
CircularFingerprinter (CLASS_FCFP2)

Make FCFP4-like circular feature fingerprints, using
CircularFingerprinter (CLASS_FCFP4)

Make FCFP6-like circular feature fingerprints, using
CircularFingerprinter (CLASS_FCFP6)

(continues on next page)

44

Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

--AtomPairs2D Make 780-bit atom-pair fingerprints adapted from Yap
Chun Wei's PaDEL, using AtomPairs2DFingerprinter

--size INT fingerprint size (default=1024)

—--searchDepth INT search depth (default=7)

--pathLimit INT path limit (default=42000)

--hashPseudoAtoms 01
include pseudo-atoms in path enumeration (default=0)
—--perceiveStereochemistry 01
re-perceive stereochemistry from 2D/3D coordinates
(default=0)
--id-tag NAME tag name containing the record id (SD files only)
--in FORMAT input structure format (default autodetects from the
filename extension)
-o FILENAME, --output FILENAME
save the fingerprints to FILENAME (default=stdout)
--out FORMAT output structure format (default guesses from output
filename, or is 'fps')
--errors {strict,report,ignore}
how should structure parse errors be handled?
(default=ignore)
--help-formats list the available formats and reader arguments
-R NAME=VALUE specify a reader argument
--delimiter {tab,whitespace,to-eol,space}
delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--has-header Skip the first line of a SMILES or InChI file Alias
for '-R has_header=1'

--version show program's version number and exit

--license-check Check the license and report results to stdout.

By default the CDK structure reader determines the file format
and compression type based on the filename extension. Unknown
filename extensions are treated as a uncompressed SMILES files.

If the data comes from stdin, or the guess based on extension name is
wrong, then use "--in FORMAT" option to change the default input format.

For examples:

--in smi
--in sdf.gz

Use "-R° to specify format-specific reader arguments.

Use “--help-formats™ for a list of available formats and reader arguments.

The following comes from cdk2fps --help-formats

These are the structure file formats that chemfp and read when using
the CDK toolkit.

By default, chemfp uses the filename extension to determine the format
type. If the filename ends with ".gz" or ".zst" then it is intepreted

(continues on next page)

3.5. cdk2fps command-line options 45

chemfp Documentation, Release 3.5

(continued from previous page)

as a gzip or Zstandard compressed file, and the second-to-last
extension is used to determine the format type. Unknown or unsupported
extensions are interpreted as a SMILES file.

Note: Zstandard support may depend the "zstandard" Python package
and/or the "zstd-jni" Java package. To install the Python package see
https://pypi.org/project/zstandard/ . To get the Java jar file, see
https://github.com/luben/zstd-jni and place it in your CLASSPATH.

You may instead specify the file format by name (see below), which is
especially important when reading from stdin, which has no associated
filename extension.

The supported filename extensions are:

File Type Extension(s)

SMILES can, ism, isosmi, smi, usm
SDF mdl, sd, sdf
InChI inchi

The format can also be specified by name using the '--in' option:

File Type Format name (append .gz or .zst if compressed)
SMILES smi, can, usm
SDF sdf
InChI inchi

The input format parsers can be configured with the "-R" option. For
example, the following reader arguments tell the SMILES readers that
the fields are whitespace delimited and the first line is a header.

-R delimiter=whitespace -R has_header=true

The SMILES format parsers use two additional reader arguments:

* 'delimiter' specifies the delimiter type. The default is 'to-eol'.
The other values are 'tab', 'whitespace', 'space' and 'native'.

Use "-R delimiter=native" to match RDKit's native delimiter
style, which is 'whitespace'.

* 'has_header', if false will skip the first line of the SMILES
file (because it is a header line).

* 'kekulise': The default of 'l' will Kekulize the SMILES. Use 'O’
to skip this step.

* 'implementation': The default 'cdk' uses CDK's IteratingSMILESReader ()
to parse the SMILES file. The 'chemfp' implementation uses chemfp's
Python-based SMILES file parser and CDK's SmilesParser() to parse
parse each SMILES string. The chemfp implementation is slower
but may have better error-handling and/or reporting.

The SDF format parser supports five reader arguments:
* 'mode' can be one of 'RELAXED' or 'STRICT'. The default relaxed

(continues on next page)

46 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

mode supports some records with recoverable errors. The strict
mode fails to parse those records.

* 'ForceReadAs3DCoordinates', with the default of 'O' interprets
V2000 records where all z-coordinates == 0.0 as 2D records. The
value 'l' tells CDK to interpret all records as 3D.

* 'AddStereoElements' with the default of 'l' adds OD stereochemistry
to V2000 records. The value of 'O' skips that step.

* 'InterpretHydrogenlIsotopes with the default of 'l' interprets the
atom symbols 'D' and 'T' as [2H] and [3H], respectively. Use
'0' to disable this interpretation.

* 'implementation': The default 'cdk' uses CDK's SDFReaderFactory()
to parse the SD file. The 'chemfp' implementation uses chemfp's
SD file parser to parse records, and CDK's MDLReader(),
MDLV2000Reader (), or MDLV300OReader() to parse each record. The
chemfp implementation is about 50% slower than the cdk parser but
may have better error-handling and/or reporting.

The InChI format parser supports one reader argument:
* 'delimiter' works the same as it does for the SMILES formats

3.6 sdf2fps command-line options

The following comes from sdf2fps --help:

usage: sdf2fps [-h] [--id-tag TAG] [--fp-tag TAG] [--in FORMAT]
[--num-bits INT] [--errors {strict,report,ignorel}]
[-o FILENAME] [--out FORMAT] [--software TEXT] [--type TEXT]
[--version] [--license-check] [--binary] [--binary-msb]
[--hex] [--hex-1sb] [--hex-msb] [--base64] [--cactvs]
[--daylight] [--decoder DECODER] [--pubchem]
[filenames ...]

Extract a fingerprint tag from an SD file and generate FPS or FPB fingerprints

positional arguments:
filenames input SD files (default is stdin)

optional arguments:

-h, --help show this help message and exit

--id-tag TAG get the record id from TAG instead of the first line
of the record

--fp-tag TAG get the fingerprint from tag TAG (required)

--in FORMAT Specify the input format (one of "sdf", "sdf.gz", or
"sdf.zst")

--num-bits INT use the first INT bits of the input. Use only when the

last 1-7 bits of the last byte are not part of the
fingerprint. Unexpected errors will occur if these
bits are not all zero.

—--errors {strict,report,ignore}
how should structure parse errors be handled?

(continues on next page)

3.6. sdf2fps command-line options 47

chemfp Documentation, Release 3.5

(continued from previous page)

(default=strict)
-o FILENAME, --output FILENAME
save the fingerprints to FILENAME (default=stdout)
--out FORMAT output format, one of 'fps', 'fps.gz', 'fps.zst',
'fpb', or 'flush' (default guesses from output
filename, or is 'fps')

--software TEXT use TEXT as the software description

--type TEXT use TEXT as the fingerprint type description
--version show program's version number and exit
--license-check Check the license and report results to stdout.

Fingerprint decoding options:

--binary Encoded with the characters 'O' and '1l'. Bit #0 comes
first. Example: 00100000 encodes the value 4

--binary-msb Encoded with the characters 'O' and '1l'. Bit #0 comes
last. Example: 00000100 encodes the value 4

--hex Hex encoded. Bit #O is the first bit (1<<0) of the
first byte. Example: 01f2 encodes the value \x01\xf2 =
498

--hex-1sb Hex encoded. Bit #0 is the eigth bit (1<<7) of the
first byte. Example: 804f encodes the value \x01\xf2 =
498

--hex-msb Hex encoded. Bit #0 is the first bit (1<<0) of the
last byte. Example: f201 encodes the value \x01\xf2 =
498

—--base64 Base-64 encoded. Bit #0 is first bit (1<<0) of first
byte. Example: AfI= encodes value \x01\xf2 = 498

—--cactvs CACTVS encoding, based on base64 and includes a
version and bit length

--daylight Daylight encoding, which is a base64 variant

--decoder DECODER import and use the DECODER function to decode the
fingerprint

shortcuts:
—--pubchem decode CACTVS substructure keys used in PubChem. Same as

--software=CACTVS/unknown --type 'CACTVS-E_SCREEN/1.0
extended=2' --fp-tag=PUBCHEM_CACTVS_SUBSKEYS --cactvs

3.7 simsearch command-line options

The following comes from simsearch --help:

usage: simsearch [-h] [-k K_NEAREST] [-t THRESHOLD] [--alpha ALPHA]
[--beta BETA] [--queries QUERIES] [--NxN] [--query QUERY]
[--hex-query HEX_QUERY] [--query-id QUERY_ID]
[--query-format FORMAT] [--target-format FORMAT]
[--query-type STRING] [--id-tag NAME]
[--errors {strict,report,ignore}] [-R NAME=VALUE]
[--delimiter {tab,whitespace,to-eol,space}] [--has-header]
[-o FILENAME] [-c] [-b BATCH_SIZE] [--scan] [--memory]

(continues on next page)

48 Chapter 3. Help for the command-line tools

chemfp Documentation, Release 3.5

(continued from previous page)

[--no-mmap] [--times] [--version] [--license-check]
target_filename

Search an FPS or FPB file for similar fingerprints

positional arguments:
target_filename target filename

optional arguments:
-h, —--help show this help message and exit
-k K_NEAREST, --k-nearest K_NEAREST
select the k nearest neighbors (use 'all' for all
neighbors)
-t THRESHOLD, --threshold THRESHOLD
minimum similarity score threshold
—--alpha ALPHA Tversky alpha parameter (default: 1.0)
--beta BETA Tversky beta parameter (default: the value of --alpha)
--queries QUERIES, -q QUERIES
filename containing the query fingerprints

--NxN use the targets as the queries, and exclude the self-
similarity term
--query QUERY query as a structure record (default format: 'smi')

--hex-query HEX_QUERY
query in hex

--query-id QUERY_ID id for the query or hex-query (default: 'Queryl’

-—query-format FORMAT, --in FORMAT
input query format (default uses the file extension,
else 'fps')

--target-format FORMAT
input target format (default uses the file extension,
else 'fps')

-—query-type STRING fingerprint type string if the queries are structures
(default: use the target fingerprint type)

--id-tag NAME tag containing the record id if --query-format is an
SD file)

--errors {strict,report,ignorel}
how should structure parse errors be handled?
(default=ignore)

-R NAME=VALUE specify a reader argument

--delimiter {tab,whitespace,to-eol,space}
delimiter style for SMILES and InChI files. Alias for
'-R delimiter=VALUE'.

--has-header Skip the first line of a SMILES or InChI file Alias
for '-R has_header=1'

-o FILENAME, --output FILENAME
output filename (default is stdout)

-c, ——count report counts

-b BATCH_SIZE, --batch-size BATCH_SIZE
batch size

--scan scan the file to find matches (low memory overhead)

—--memory build and search an in-memory data structure
(faster for multiple queries)

(continues on next page)

3.7. simsearch command-line options 49

chemfp Documentation, Release 3.5

(continued from previous page)

—-no-mmap

--times
—--version
—--license-check

don't use mmap to read uncompressed FPB

files. May give better performance on
networked file systems, at the expense

of higher memory use.

report load and execution times to stderr

show program's version number and exit

Check the license and report results to stdout.

50

Chapter 3. Help for the command-line tools

CHAPTER 4

Fingerprints and fingerprint search examples

The chemfp command-line programs use a Python library called chemfp. Portions of the API are in flux
and subject to change. The stable portions of the API which are open for general use are documented in
chemfp API.

The API includes:
e low-level Tanimoto, Tversky, and popcount operations
o Tanimoto and Tversky search algorithms based on threshold and/or k-nearest neighbors
e routines for reading and writing fingerprints
o a cross-toolkit molecule I/O API
e a cross-toolkit fingerprint type API

The following chapters give examples of how to use the API, starting with fingerprints, fingerprint I/0, and
fingerprint search.

4.1 Python 2 vs. Python 3

Python 2.7 support by the core Python developers ended at the start of 2020. The Python 2 series has
reached its effective end-of-life. It’s time for you to migrate code to Python 3.

If you are writing new code which uses chemfp then you really should start using Python 3. OpenEye stopped
shipping a Python 2.7 version of OEChem by the end of 2017, and Open Babel and RDKit stopped Python
2.7 support by 2019. Chemfp 3.5 is the last version of the commercial chemfp development track which will
support Python 2.

If you have code which works under Python 2 and you want it to work on Python 3, then there are two main
options. In some cases you can re-write all the incompatible code, so the result works under Python 3 but
not Python 2. However, that can be too big of a step.

51

chemfp Documentation, Release 3.5

Another option is to port your code to the subset of Python which works under both Python 2 and Python
3. While this is more work overall, the steps are smaller, and it’s possible to develop new features while
gradually doing the port.

A goal of the chemfp 3 series is to help with that migration. It supports both Python 2.7 and Python 3.6 or
later, with the same API.

This documentation is written with that second option in mind. The examples are shown in Python 3, but
the same code will work under Python 2.7. The only differences are in the output, which I'll detail in the
next section.

4.2 Unicode and byte strings

In chemfp 3.x, the record identifier is a Unicode string while the fingerprint is a byte string. Earlier versions
of chemfp treated both identifiers and fingerprints as byte strings. To make things more confusing, Python
2 and Python 3 use different ways to input and denote Unicode and binary strings.

Under Python 2, normal strings are byte strings, while Unicode strings are represented with the u"" syntax:

>>> "This is a byte string" # Python 2
'This is a byte string'

>>> u"This is a Unicode string"

u'This is a Unicode string'

Under Python 3, normal strings are Unicode strings, while byte strings are represented with the b"" syntax:

>>> b"This is a byte string" # Python 3
b'This is a byte string'

>>> "This is a Unicode string"

'This is a Unicode string'

Python 2.7 understands the b"" notation, and Python 3 understands the u"" notation, so the portable way
to represent a Unicode identifier and binary fingerprint is to be explicit about the string type:

>>> id
>>> fp

u"Espafia" # Works inm Python 2.7 and Python 3
b"\x00A!\xff"

While the data types are the same, the output representations are different on the two versions of Python:

>>> (id, £fp) # Python 2.7
(u'Espa\xfla', '\xO00A!\xff')

>>> (id, fp) # Python 3
('Espafia', b'\x00A!\xff"')

The output in these examples will be from Python 3. Unless otherwise stated, the equivalent output in
Python 2.7 differs only in the prefix.

4.3 Hex representation of a binary fingerprint

In Python 2 it is easy to turn a byte string into a hex-encoded string:

52 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

>>> fp = b"\xO00A!\xff" # Python 2.7
>>> fp.encode("hex")
'004121ff"

The more direct route (and faster) is to use the binascii.hexlify function:

>>> import binascii # Python 2.7
>>> binascii.hexlify(fp)
'004121ff"

In Python 3 it’s even easier to turn a byte string into a hex-encoded string:

>>> fp = b"\x00A!\xff" # Python 3
>>> fp.hex()
'004121£ff"

but that is not portable. Nor does fp.encode("hex") work, because in Python 3 byte strings do not have
an encode () method:

>>> fp.encode("hex") # Python 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'bytes' object has no attribute 'encode'

If you want a byte string as output then the portable solution is to use hexlify:

>>> import binascii # Python 3
>>> binascii.hex1lify(fp)
b'004121ff"'

However, on Python 2.7 T often want the hex-encoded version as a byte (“normal”) string, while on Python
3 I want it as a (“normal”) Unicode string, because I use hex strings for text output.

Python does not offer a portable solution, but chemfp does, in the chemfp.bitops module, named
hex_encode

>>> from chemfp import bitops # Python 2 and Python 3
>>> bitops.hex_encode (b"\x00A!\xff")
'004121£f"

The variant hez_encode_as_bytes returns a byte string, and I think is easier to remember than binascii.
hexlify:

>>> bitops.hex_encode_as_bytes(b"\x00A!\xff")
b'004121ff"

4.4 Byte and hex fingerprints

In this section you’ll learn how chemfp stores fingerprints and some of the low-level bit operations on those
fingerprints.

chemfp stores fingerprints as byte strings. Here are two 8 bit fingerprints:

4.4. Byte and hex fingerprints 53

https://docs.python.org/2/library/binascii.html#binascii.hexlify

chemfp Documentation, Release 3.5

1
<
=

>>> fpl
>>> fp2 = b"B"

The chemfp.bitops module contains functions which work on byte fingerprints. Here’s the byte Tanimoto
of those two fingerprints:

>>> from chemfp import bitops
>>> bitops.byte_tanimoto(fpl, fp2)
0.3333333333333333

To understand why, you have to know that ASCII character “A” has the value 65, and “B” has the value
66. The bit representation is:

"A" = 01000001 and "B" = 01000010

so their intersection has 1 bit and the union has 3, giving a Tanimoto of 1/3 or 0.3333333333333333 as stored
in Python’s 64 bit floating point value.

You can compute the Tanimoto between any two byte strings with the same length, as in:

>>> bitops.byte_tanimoto(b"apples&", b"oranges'")
0.58333333333333334

You'll get a ValueError if they have different lengths:

>>> bitops.byte_tanimoto(b"ABC", b"A")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: byte fingerprints must have the same length

The Tversky indez is also available. The default values for alpha and beta are 1.0, which is identical to
the Tanimoto:

>>> bitops.byte_tversky(b"apples&", b"oranges")
0.5833333333333334

>>> bitops.byte_tversky(b"apples&", b"oranges", 1.0, 1.0)
0.5833333333333334

Using alpha = beta = 0.5 gives the Dice index:

>>> bitops.byte_tversky(b"apples&", b"oranges", 0.5, 0.5)
0.7368421052631579

In chemfp, the alpha and beta may be between 0.0 and 100.0, inclusive. Values outside that range will raise
a ValueError:

>>> bitops.byte_tversky(b"A", b"B", 0.2, 101)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: beta must be between 0.0 and 100.0, inclusive

Most fingerprints are not as easy to read as the English ones I showed above. They tend to look more like:

P10\x84K\x1aN\x00\n\x01\xa6\x10\x98\\\x10\x11

which is hard to read. I usually show hex-encoded fingerprints. The above fingerprint in hex is:

54 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

503140844b1a4e000a01a610985c1011

which is simpler to read. T'll use hez_encode as the portable way to convert a byte fingerprint to a string
under Python 2 and Python 3:

>>> bitops.hex_encode(b"apples&") # Portable (returns a native string)
'6170706c657326"

>>> bitops.hex_encode(b"oranges")

'6£72616e676573"

>>> bitops.hex_decode(b"416e64726577") # (returns a byte string)
b'Andrew'

If you do not need to support Python 2.7 then it’s easier to use the Python3 specific “hex()” and “fromhex()”
methods of byte strings:

>>> b"apples&".hex() # Python 3 only!

'6170706c657326"

>>> b"oranges".hex() # Python 3 only!
'6£72616e676573"

>>> bytes.fromhex("416e64726577") # Python 3 only!
b'Andrew'

Most of the byte functions in the bitops module have an equivalent hex version, like bitops. hez_tanimoto ()
which is the hex equivalent for bitops.byte_tanimoto ():

>>> bitops.hex_tanimoto("6170706c657326", "6£72616e676573")
0.5833333333333334

>>> bitops.hex_tanimoto(u"6170706c657326", u"6£72616e676573")
0.5833333333333334

>>> bitops.hex_tanimoto(b"6170706c657326", b"6£72616e676573")
0.5833333333333334

These functions accept both byte strings and Unicode strings.

Even though hex-encoded fingerprints are easier to read than raw bytes, it can still be hard to figure out
that which bit is set in the hex fingerprint “00001000” (which is the byte fingerprint “\x00\x00\x10\x007).
For what it’s worth, bit number 20 is set, where bit 0 is the first bit.

You can get the list of “on” bits with the bitops.byte_to_bitlist () function:

>>> bitops.byte_to_bitlist(b"P1@\x84K\x1aN\x00\n\x01\xa6\x10\x98\\\x10\x11")
[4, 6, 8, 12, 13, 22, 26, 31, 32, 33, 35, 38, 41, 43, 44, 49, 50,

b1, 54, 65, 67, 72, 81, 82, 85, 87, 92, 99, 100, 103, 106, 107,

108, 110, 116, 120, 124]

That’s a lot of overhead if you only want to tell if, say, bit 41 is set. For that case use bitops.
byte_contains_bit():

>>> bitops.byte_contains_bit(b"P10\x84K\x1aN\x00\n\x01", 41)
True
>>> bitops.byte_contains_bit(b"P10\x84K\x1aN\x00\n\x01", 42)
False

The bitops.byte_from bitlist() function creates a fingerprint given a list of ‘on’ bits. By default it
generates a 1024 bit fingerprint, which is a bit too long for this documentation. I'll use 64 bits instead:

4.4. Byte and hex fingerprints 55

chemfp Documentation, Release 3.5

>>> bitops.byte_from_bitlist([0], 64)
b'\x01\x00\x00\x00\x00\x00\x00\x00"

The bit positions folded based on the modulo of the fingerprint size, so bit 65 is mapped to bit 1, as in the
following:

>>> bitops.byte_from_bitlist([0, 65], 64)
b'\x03\x00\x00\x00\x00\x00\x00\x00"

>>> bitops.byte_to_bitlist(bitops.byte_from_bitlist ([0, 65], 64))
(o, 1]

The bitops module includes other low-level functions which work on byte fingerprints, as well as corresponding
functions which work on hex fingerprints. (Hex-encoded fingerprints are decidedly second-class citizens in
chemfp, but they are citizens.) The byte-based functions are:

e byte_contains - test if the first fingerprint is contained in the second
e byte_contains_bit - test if a specified fingerprint bit is on
o byte_difference - return a fingerprint which is the difference (xor) of two fingerprints
e byte_from_bitlist - create a fingerprint given ‘on’ bit positions
e byte_intersect - return a fingerprint which is the intersection of two fingerprints
e byte_intersect_popcount - intersection popcount between two fingerprints
e byte_popcount - fingerprint popcount
e byte_tanimoto - Tanimoto similarity between two fingerprints
e byte_twersky - Tversky index between two fingerprints
e byte_to_bitlist - get a list of the ‘on’ bit positions
e byte_untion - return a fingerprint which is the union of two fingerprints
e hexz_encode - hex encode a byte string, returns the native string type
e hex_encode_as_bytes - hex encode a byte string, returns a byte string
The hex-based functions are:
e hex_contains - test if the first hex fingerprint is contained in the second
e hex_contains_bit - test if a specified hex fingerprint bit is on
o hez_difference - return a fingerprint which is the difference (xor) of two hex fingerprints
e hex_from_bitlist - create a fingerprint given ‘on’ bit positions in a hex fingerprint
e hexz_intersect - return a fingerprint which is the intersection of two hex fingerprints
e hez_intersect_popcount - intersection popcount between two hex fingerprints
e hex_tisvalid - test if the string is a hex-encoded fingerprint
e hez_popcount - hex fingerprint popcount
e hezx_tanimoto - Tanimoto similarity between two hex fingerprints
e hez_tversky - Tversky index between two hex fingerprints
e hex_to_bitlist - get a list of the ‘on’ bit positions in a hex fingerprint

e hexz_union - return a fingerprint which is the union of two hex fingerprints

56 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

e hexz_decode - convert a hex-encoded string into a byte string

There are two functions which compare a byte fingerprint to a hex fingerprint. These are somewhat faster
than the pure hex version because they don’t need to verify that the query fingerprint contain only hex
characters:

e byte_hez_tanimoto - Tanimoto similarity between a byte and a hex fingerprint

e byte_hex_tversky - Tversky index between a byte and a hex fingerprint

4.5 Fingerprint reader and metadata

In this section you’ll learn the basics of the fingerprint reader classes and fingerprint metadata.

A fingerprint record is the fingerprint plus an identifier. In chemfp, a fingerprint reader is an object which
supports iteration through fingerprint records. There some fingerprint readers, like the Fingerprintdrena
also support direct record lookup.

That’s rather abstract, so let’s work with a few real examples. You’ll need to create a copy of the “pub-
chem_ targets.fps” file generated in Generate fingerprint files from PubChem SD tags in order to follow
along.

Here’s how to open an FPS file:

>>> import chemfp
>>> reader = chemfp.open("pubchem_targets.fps")

Every fingerprint collection has a metadata attribute with details about the fingerprints. It comes from the
header of the FPS file. You can view the metadata in Python repr format:

>>> reader.metadata

Metadata(num_bits=881, num_bytes=111, type='CACTVS-E_SCREEN/1.0 extended=2',
aromaticity=None, sources=['Compound_048500001_049000000.sdf.gz"'],
software='CACTVS/unknown', date='2020-05-11T14:35:11"')

In chemfp 3.x the type, software, date and the source filenames are Unicode strings. In earlier versions of
chemfp these were byte strings.

I added a few newlines to make that easier to read, but I think it’s easier still to view it in string format,
which matches the format of the FPS header:

>>> from __future__ import print_function # Only needed in Python 2
>>> print(reader.metadata)

#num_bits=881

#type=CACTVS-E_SCREEN/1.0 extended=2

#software=CACTVS/unknown

#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-11T14:35:11

(The print statement in Python 2 was replaced with a print function in Python 3. The special future
statement tells Python 2 to use the new print function syntax of Python 3.)

All fingerprint collections support iteration. Fach step of the iteration returns the fingerprint identifier and
the fingerprint byte string. Since I know the 6th record has the id 14550010, I can write a simple loop which
stops with that record:

4.5. Fingerprint reader and metadata 57

https://docs.python.org/2/reference/simple_stmts.html#future
https://docs.python.org/2/reference/simple_stmts.html#future

chemfp Documentation, Release 3.5

>>> from chemfp import bitops
>>> for (id, fp) in reader:
print(id, "starts with", bitops.hex_encode(fp) [:20])
if id == u"48500199":
break

48500020 starts with 07de0500000000000000
48500053 starts with 07de0c00000000000000
48500091 starts with 07de8c00000000000000
48500092 starts with 07de0d00020000000000
48500110 starts with 075e0c00000000000000
48500164 starts with 07de0c00000000000000
48500177 starts with 03de0500000800000000
48500199 starts with 07de0c00000000000000

Fingerprint collections also support iterating via arenas, and several support Tanimoto search methods.

4.6 Working with a FingerprintArena

In this section you’ll learn about the FingerprintArena fingerprint collection and how to iterate through
subarenas in a collection.

Chemfp supports two format types. The FPS format is designed to be easy to read and write, but searching
through it requires a linear scan of the disk, which can only be done once. If you want to do many queries
then it’s best to load the FPS data into memory as a FingerprintArena.

Use chemfp.load_fingerprints () to load fingerprints into an arena:

>>> from __future__ import print_function # Only needed for Python 2
>>> import chemfp

>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")

>>> print(arena.metadata)

#num_bits=881

#type=CACTVS-E_SCREEN/1.0 extended=2

#software=CACTVS/unknown

#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-11T14:35:11

The fingerprints can come from an FPS file, as in this example, or from an FPB file. The FPB format is
much more complex internally, but can be loaded directly and quickly into a FingerprintArena, also with
the same function:

>>> arena = chemfp.load_fingerprints("pubchem_targets.fpb")

An arena implements the fingerprint collection API, so you can do things like iterate over an arena and get
the id/fingerprint pairs:

>>> from chemfp import bitops
>>> for id, fp in arena:
print(id, "with popcount", bitops.byte_popcount (fp))
if id == u"48656867":
break

(continues on next page)

58 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

(continued from previous page)

48942244 with popcount 33
48941399 with popcount 39
48940284 with popcount 40
48943050 with popcount 40
48656359 with popcount 41
48656867 with popcount 42

If you look closely you’ll notice that the fingerprint record order has changed from the previous section, and
that the population counts are suspiciously non-decreasing. By default load_fingerprints() on an FPS
file reorders the fingerprints into a data structure which is faster to search, though you can disable that with
the reorder parameter if you want the fingerprints to be the same as the input order.

The FingerprintArena has new capabilities. You can ask it how many fingerprints it contains, get the list
of identifiers, and look up a fingerprint record given an index:

>>> len(arena)

14967

>>> list(arena.ids[:5])

[148942244"', '48941399', '48940284', '48943050', '48656359']
>>> id, fp = arenal[6]

>>> id

'48839855'

>>> arenal[-1]1[0] # the identifier of the last record in the arena
'48985180'

>>> bitops.byte_popcount(arenal[-1][1]) # <ts fingerprint
253

An arena supports iterating through subarenas. This is like having a long list and being able to iterate over
sublists. Here’s an example of iterating over the arena to get subarenas of size 2000 (excepting the last),
and print information about each subarena:

>>> for subarena in arena.iter_arenas(2000):
print(subarena.ids[0], len(subarena))

48942244 2000
48629741 2000
48848217 2000
48873983 2000
48575094 2000
48531270 2000
48806978 2000
48584671 967
>>> arenal[0] [0]
148942244"

>>> arena[2000] [0]
'48629741"'

To help demonstrate what’s going on, I showed the first id of each record along with the main arena ids for
records 0 and 2000, so you can verify that they are the same.

Arenas are a core part of chemfp. Processing one fingerprint at a time is slow, so the main search routines
expect to iterate over query arenas, rather than query fingerprints.

That’s why the FPSReaders — and all chemfp fingerprint collections — also support the chemfp.

4.6. Working with a FingerprintArena 59

chemfp Documentation, Release 3.5

FingerprintReader. iter_arenas() method. Here’s an example of reading 25 records at a time from
the targets file:

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for arena in queries.iter_arenas(25):
print (len(arena))
25
25
<deleted additional lines saying '25'>

25
25

Those add up to 10826, which you can verify is the number of structures in the original source file.

If you have a FingerprintArena then you can also use Python’s slice notation to make a subarena:

>>> queries = chemfp.load_fingerprints("pubchem_queries.fps")
>>> queries[10:15]

<chemfp.arena.FingerprintArena object at 0x552c10>

>>> queries[10:15] .ids

['99110546', '99110547', '99123452', '99123453', '99133437']
>>> queries.ids[10:15] # a different way to get the same list
['99110546', '99110547', '99123452', '99123453', '99133437']

The big restriction is that slices can only have a step size of 1. Slices like [10:20:2] and [::-1] aren’t
supported. If you want something like that then you’ll need to make a new arena instead of using a subarena
slice. (Hint: pass the list of indices to the arena's copy method.)

In case you were wondering, yes, you can use iter_arenas and the the other FingerprintArena methods on
a subarena:

>>> queries[10:15][1:3].ids
['99110547"', '99123452']
>>> queries.ids[11:13]
['99110547"', '99123452']

4.7 Create an arena with user-specified fingerprints

In this section you’ll learn how to create an arena containing user-specified fingerprint data.

Most of the examples in this manual use fingerprints created by a cheminformatics toolkit or extracted from
an SD file. Chemfp accepts any byte string as a fingerprint, which includes, for example, novel fingerprint
types which you have created for your own research.

The first parameter of the load_fingerprints() function can be any iterator which returns a sequence of
Unicode identifier and byte string fingerprint. For example, if you have three fingerprint records where each
fingerprint contains 32-bits of data, like this:

>>> data = [(u"ID1", b"\xc4\xa7\xd2\xle"),
(u"ID2", b"\x04\x82\xd6\x08"),
(u"ID3", b"\xci\xa3\xd2\xle")]

60 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

then you can pass the list directly to load fingerprints, along with a Metadata instance to tell chemfp the
fingerprint size and type:

>>> import chemfp

>>> arena = chemfp.load_fingerprints(data,
chemfp.Metadata(num_bytes=4, type="Example/19"))

>>> len(arena)

3

What if the fingerprint data comes from a file which isn’t in FPS format? The chemfp.bitops and chemfp.
encodings modules contains functions which can help with the conversion. Suppose each line in the file
contains an id followed by a list of bit indices for the on bits:

>>> lines = ["ID1 0 1 9 10 11 14 15 16 18 19 43\n",
"ID2 0 1 2 9 10 11 12 14 18 19 20 43\n"]

The following function reads the lines, parses the id and bit list, converts the bitlist into a 64-bit byte string,
and yields the id/fingerprint pairs:

>>> def get_id_and_fp(lines):
for line in lines:
fields = line.split()
bitlist = [int(bit) for bit in fields[1:]]
yield fields[0], bitops.byte_from_bitlist(bitlist, 64)

>>> for id, fp in get_id_and_fp(lines):
print(id, repr(fp))

ID1 b'\x03\xce\r\x00\x00\x08\x00\x00"
ID2 b'\x07"\x1c\x00\x00\x08\x00\x00"

Here’s one way to use the function to create an arena:

>>> arena = chemfp.load_fingerprints(get_id_and_fp(lines),
ce metadata=chemfp.Metadata(num_bits=64))

>>>

>>> len(arena)
n2

>>> arena.get_fingerprint (0)
b'\x03\xce\r\x00\x00\x08\x00\x00"

It’s a bit cumbersome to pass the metadata into load fingerprints when the parser already knows that
information, but there’s a better way. If no metadata is passed to the load_fingerprints function then the
function will try to get it from the metadata attribute of the first function. That’s why you get an exception
if you omit the metadata:

>>> arena = chemfp.load_fingerprints(get_id_and_fp(lines))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 550, in load_fingerprints
alignment=alignment)
File "chemfp/arena.py", line 849, in fps_to_arena
metadata = fps_reader.metadata
AttributeError: 'generator' object has no attribute 'metadata’

4.7. Create an arena with user-specified fingerprints 61

chemfp Documentation, Release 3.5

Instead, wrap the metadata and id/fingerprint iterator inside of a FingerprintIterator utility class:

>>> def read_bitlist_format(lines):
return chemfp.FingerprintIterator(
chemfp.Metadata(num_bits=64),
get_id_and_fp(lines))

The result can be passed directly to load_fingerprints:

>>> arena = chemfp.load_fingerprints(read_bitlist_format(lines))
>>> len(arena)
2
>>> arenal[1]
('"ID2', b'\x07"\x1c\x00\x00\x08\x00\x00")

The Fingerprintlterator also implements the FingerprintReader. save () method, which can be used to
save the fingerprints to an FPS or FPB file. See the next section for more details.

4.8 Save a fingerprint arena

In this section you’ll learn how to save an arena in FPS and FPB formats.

This is probably the easiest section. If you have an arena (or any FingerprintReader), like:

>>> import chemfp
>>> queries = chemfp.load_fingerprints("pubchem_queries.fps")

then you can save it to an FPS file using the FingerprintReader. save () method and a filename ending
with “fps”. (You'll also get an FPS file if you specify an unknown extension.):

>>> queries.save("example.fps")

If the filename ends with “fps.gz” then the file will be saved as a gzip-compressed FPS file, and if the
filename ends with “fpb.zst” and the zstandard Python package is installed, then the file will be saved as a
zstandard-compressed FPS file.

Finally, if the name ends with “fpb”, as in:

>>> queries.save("example.fpb")

then the result will be in FPB format. The save() method can also save gzip- and zstandard-compressed
FPB files.

The save method supports a second option, format, should you for some odd reason want the format to be
different than what’s implied by the filename extension:

>>> queries.save("example.fpb", "fps") # save in FPS format

The save method supports a third option, level, which specifies the compression level. This should be an
integer appropriate for the compression library. The string aliases “min”, “default”, and “max” are mapped
to the appropriate compression level for the given format: “min” is 1; “default” is 9 for gzip and 3 for
zstandard; “max” is 9 for gzip and 19 for zstandard.

62 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

4.9 How to use query fingerprints to search for similar target fingerprints

In this section you’ll learn how to do a Tanimoto search using the previously created PubChem fingerprint
files for the queries and the targets from Generate fingerprint files from PubChem SD tags.

It’s faster to search an arena, so I'll load the target fingerprints:

>>> from __future__ import print_function # Only for Python 2.7
>>> import chemfp

>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")

>>> len(targets)

14967

and open the queries as an FPSReader.

>>> queries = chemfp.open("pubchem_queries.fps")

T’ll use chemfp. threshold_tanimoto_search() to find, for each query, all hits which are at least 0.7 similar
to the query.

>>> for (query_id, hits) in chemfp.threshold_tanimoto_search(queries, targets,
—threshold=0.7):
print(query_id, len(hits), list(hits)[:2])

99000039

641 [(3619, 0.7085714285714285), (4302, 0.7371428571428571)]
99000230 373 [(2747, 0.703030303030303), (3608, 0.7041420118343196)]
99002251 270 [(2512, 0.7006369426751592), (2873, 0.7088607594936709)]
99003537 523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392)]
99003538 523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392)]
99005028 131 [(772, 0.7589285714285714), (796, 0.7522123893805309)]
99005031 131 [(772, 0.7589285714285714), (796, 0.7522123893805309)]
99006292 308 [(805, 0.7058823529411765), (808, 0.7)]
99006293 308 [(805, 0.7058823529411765), (808, 0.7)]
99006597 0 []

... many lines omitted ...

I’'m only showing the first two hits for the sake of space. It seems rather pointless to show all 641 hits of
query id 99000039.

However, there’s a subtle problem here. The “list(hits)” returns a list of (index, score) tuples when the
targets are an arena, and (id, score) tuples when the targets are a FPS reader. (I'll talk about that more
in the next section for how that works.) It’s best to always specify how you want the results. In my case I
always want the identifiers and the scores so I'll use hits.get_ids_and_scores (), like this:

from __future__
import chemfp
targets chemfp.load_fingerprints("pubchem_targets.fps")
queries chemfp.open("pubchem_queries.fps")
for (query_id, hits) in chemfp.threshold_tanimoto_search(queries, targets, threshold=0.
~7):

print(query_id, len(hits), hits.get_ids_and_scores() [:2])

import print_function # Only for Python 2

which gives as output:

4.9. How to use query fingerprints to search for similar target fingerprints 63

chemfp Documentation, Release 3.5

99000039 641 [('48528698"',
99000230 373 [('48737535"',

0.7085714285714285), ('48529189', 0.7371428571428571)]
0.703030303030303), ('48502523', 0.7041420118343196)]
99002251 270 [('48857943', 0.7006369426751592), ('48846196', 0.7088607594936709)]
99003537 523 [('48542237', 0.7230769230769231), ('48739065', 0.7085427135678392)]
99003538 523 [('48542237', 0.7230769230769231), ('48739065', 0.7085427135678392)]
99005028 131 [('48659090', 0.7589285714285714), ('48657042', 0.7522123893805309)]
99005031 131 [('48659090', 0.7589285714285714), ('48657042', 0.7522123893805309)]
99006292 308 [('48976796', 0 0.7)]
99006293 308 [('48976796', 0 0
99006597 0 []

... many lines omitted ...

.7058823529411765) , ('48542022',

.7058823529411765) , ('48542022', 0.7)]

What you don’t see in either case is that the implementation uses the chemfp.FingerprintReader.
iter_arenas () interface on the queries so that it processes one subarena at a time. There’s a tradeoff
between a large arena, which is faster because it doesn’t often go back to Python code, or a small arena,
which uses less memory and is more responsive. You can change the tradeoff using the arena__size parameter.

If all you need is the count of the hits at or above a given threshold then wuse chemfp.
count_tanimoto_hits():

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for (query_id, count) in chemfp.count_tanimoto_hits(queries, targets, threshold=0.7):
print(query_id, count)

99000039 641
99000230 373
99002251 270
99003537 523
99003538 523
99005028 131
99005031 131
99006292 308
99006293 308
99006597 0
... many lines omitted ...

Or, if you only want the k=2 nearest neighbors to each target within that same threshold of 0.7 then use
chemfp.knearest_tanimoto_search():

>>> queries = chemfp.open("pubchem_queries.fps")
>>> for (query_id, hits) in chemfp.knearest_tanimoto_search(queries, targets, k=2,
—threshold=0.7):

print(query_id, hits.get_ids_and_scores())

99000039 [('48503376',
99000230 [('48563034',

.8784530386740331), ('48503380',
.8588235294117647), ('48731730",
99002251 [('48798046', 0.8109756097560976), ('48625236', 0.8106508875739645)]
99003537 [('48997075', 0.9035532994923858), ('48997697', 0.8984771573604061)]

0 0.8729281767955801)]
0 0
0 0
0 0
99003538 [('48997075', 0.9035532994923858), ('48997697', 0.8984771573604061)]
0 0
0 0
0 0
0 0

.8522727272727273)]

99005028 [('48651160', 0.8288288288288288), ('48848576', 0.8166666666666667)]
99005031 [('48651160', 0.8288288288288288), ('48848576', 0.8166666666666667)]
99006292 [('48945841', 0.9652173913043478), ('48737522', 0.8793103448275862)]
99006293 [('48945841', 0.9652173913043478), ('48737522', 0.8793103448275862)]

(continues on next page)

64 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

(continued from previous page)

99006597 []
... many lines omitted ...

4.10 How to search an FPS file

In this section you’ll learn how to search an FPS file directly, without loading it into a FingerprintArena.
You’ll need the previously created PubChem fingerprint files for the queries and the targets from Generate
fingerprint files from PubChem SD tags.

The previous example loaded the fingerprints into a FingerprintArena. That’s the fastest way to do multiple
searches. Sometimes you only want to do one or a couple of queries. It seems rather excessive to read the
entire targets file into an in-memory data structure before doing the search when you could search while
processing the file.

For that case, use an FPSReader as the targets file. Here I'll get the first two records from the queries file
and use it to search the targets file:

>>> from __future__ import print_function # Only for Python 2

>>> import chemfp

>>> query_arena = next(chemfp.open("pubchem_queries.fps").iter_arenas(2))
>>> query_arena

<chemfp.arena.FingerprintArena object at 0x11039c850>

>>> len(query_arena)

2

That first line is complicated. It opens the file and iterates over its fingerprint records two at a time as
arenas. The next() returns the first of these arenas, so that line is a way of saying “get the first two records
as an arena’.

Here are the k=5 closest hits against the targets file:

>>> targets = chemfp.open("pubchem_targets.fps")
>>> for query_id, hits in chemfp.knearest_tanimoto_search(query_arena, targets, k=5,
—threshold=0.0):
print ("** Hits for", query_id, "*x")
for hit in hits.get_ids_and_scores():
print("", hit)

**% Hits for 99000039 x*x*
('48503376', 0.8784530386740331)
('48503380"', 0.8729281767955801)
('48732162', 0.8595505617977528)
('48520532', 0.8540540540540541)
('48985130"', 0.8449197860962567)

**% Hits for 99000230 *x*
('48563034"', 0.8588235294117647)
('48731730', 0.8522727272727273)
('48583483', 0.8411764705882353)
('48563042', 0.8352941176470589)
('48935653', 0.8333333333333334)

To make it easier to see, here’s the code in a single chunk:

4.10. How to search an FPS file 65

chemfp Documentation, Release 3.5

from __future__ import print_function # Only for Python 2
import chemfp
query_arena = next(chemfp.open("pubchem_queries.fps").iter_arenas(2))
targets = chemfp.load_fingerprints("pubchem_targets.fps")
for query_id, hits in chemfp.knearest_tanimoto_search(query_arena, targets, k=5,
—threshold=0.0):

print ("#xHits for", query_id, "*x*")

for hit in hits.get_ids_and_scores():

print("", hit)

Remember that the FPSReader reads an FPS file. Once you’ve done a search, the file is read, and you can’t
do another search. (Well, you can; but it will return empty results.) You’ll need to reopen the file to reuse
the file, or reseek the file handle to the start position and pass the handle to a new FPSReader.

Each search processes arena__size query fingerprints at a time. You will need to increase that value if you
want to search more than that number of fingerprints with this method.

4.11 How do to a Tversky search using the Dice weights

In this section you’ll learn how to search a set of fingerprints using the more general Tversky parameters,
without loading it into a FingerprintArena. You'll need the previously created PubChem fingerprint files for
the queries and the targets from Generate fingerprint files from PubChem SD tags.

Chemfp-2.1 added support for Tversky searches. The Tversky index supports weights for the superstructure
and substructure terms to the similarity. Some people like the Dice index, which is the Tversky index with
alpha = beta = 0.5, so here are a couple of ways to search the targets based on the Dice index.

The previous two sections did a Tanimoto search by using chemfp.knearest_tanimoto_search(). The
Tversky search uses chemfp.knearest_tversky_search(), which shouldn’t be much of a surprise. Just like
the Tanimoto search code, it can take a fingerprint arena or an FPS reader as the targets.

The first example loads all of the targets into an arena, then searches using each of the queries:

from __future__ import print_function # Only for Python 2
import chemfp
queries = chemfp.open("pubchem_queries.fps")
targets = chemfp.load_fingerprints("pubchem_targets.fps")
for query_id, hits in chemfp.knearest_tversky_search(queries, targets, k=5,
threshold=0.0, alpha=0.5, beta=0.5):
print ("#xHits for", query_id, "*x*")
for hit in hits.get_ids_and_scores():
print("", hit)

The first two output records are:

*xHits for 99000039 *x*
('48503376"', 0.9352941176470588)
('48503380', 0.9321533923303835)
('48732162"', 0.9244712990936556)
('48520532', 0.9212827988338192)
('48985130', 0.9159420289855073)

**Hits for 99000230 *x*
('48563034"', 0.9240506329113924)

(continues on next page)

66 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

(continued from previous page)

('48731730', 0.9202453987730062)
('48583483', 0.9137380191693291)
('48563042', 0.9102564102564102)
('48935653"', 0.9090909090909091)

On the other hand, the following reads the first two queries into an arena, then searches the targets as an
FPS file, without loading all of the targets into memory at once:

import chemfp
queries = next(chemfp.open("pubchem_queries.fps").iter_arenas(2))
targets = chemfp.open("pubchem_targets.fps")
for query_id, hits in chemfp.knearest_tversky_search(queries, targets, k=5,
threshold=0.0, alpha=0.5, beta=0.5):
print ("#* Hits for", query_id, "*x*")
for hit in hits.get_ids_and_scores():
print("", hit)

Not surprisingly, this gives the same output as before:

**x Hits for 99000039 *x
('48503376"', 0.9352941176470588)
('48503380', 0.9321533923303835)
('48732162', 0.9244712990936556)
('48520532', 0.9212827988338192)
('48985130"', 0.9159420289855073)

** Hits for 99000230 *x*
('48563034"', 0.9240506329113924)
('48731730', 0.9202453987730062)
('48583483', 0.9137380191693291)
('48563042', 0.9102564102564102)
('48935653"', 0.9090909090909091)

4.12 FingerprintArena searches returning indices instead of ids

In this section you’ll learn how to search a FingerprintArena and use hits based on integer indices rather
than string ids.

The previous sections used a high-level interface to the Tanimoto and Tversky search code. Those are
designed for the common case where you just want the query id and the hits, where each hit includes the
target id.

Working with strings is actually rather inefficient in both speed and memory. It’s usually better to work
with indices if you can, and in the next section I'll show how to make a distance matrix using this interface.

The index-based search functions are in the chemfp.search module. They can be categorized into three
groups, with Tanimoto and Tversky versions for each group:

1. Count the number of hits:

e chemfp.search.count_tanimoto_hits_fp() - search an arena using a single fingerprint
(Tanimoto)

e chemfp.search.count_tanimoto_hits_arena() - search an arena using another arena
(Tanimoto)

4.12. FingerprintArena searches returning indices instead of ids 67

chemfp Documentation, Release 3.5

The functions ending °

chemfp.search.count_tanimoto_hits_symmetric() - search an arena using itself (Tani-
moto)

chemfp.search.count_tversky_hits_fp() - search an arena using a single fingerprint
(Tversky)

chemfp.search.count_tversky_hits_arena() - search an arena using another arena
(Tversky)

chemfp.search.count_tversky_hits_symmetric() - search an arena using itself (Tversky)

. Find all hits at or above a given threshold, sorted arbitrarily:

chemfp.search. threshold_tanimoto_search_fp () - search an arena using a single finger-
print (Tanimoto)

chemfp.search.threshold_tanimoto_search_arena() - search an arena using another
arena (Tanimoto)

chemfp.search.threshold_tanimoto_search_symmetric() - search an arena using itself
(Tanimoto)

chemfp.search. threshold_tversky_search_fp() - search an arena using a single finger-
print (Tversky)

chemfp.search. threshold_tversky_search_arena() - search an arena using another
arena (Tversky)

chemfp.search. threshold_tversky_search_symmetric() - search an arena using itself
(Tversky)

. Find the k-nearest hits at or above a given threshold, sorted by decreasing similarity:

chemfp.search.knearest_tanimoto_search_fp() - search an arena using a single finger-
print (Tanimoto)

chemfp.search.knearest_tanimoto_search_arena() - search an arena using another
arena (Tanimoto)

chemfp.search.knearest_tanimoto_search_symmetric() - search an arena using itself
(Tanimoto)

chemfp.search.knearest_tversky_search_fp() - search an arena using a single finger-
print (Tversky)

chemfp.search.knearest_tversky_search_arena () - search an arena using another arena

(Tversky)

chemfp.search.knearest_tversky_search_symmetric() - search an arena using itself
(Tversky)

<

query and target.

In the following example, I'll use the first 5 fingerprints of a data set to search the entire data set. To do

this, I load the data set as an arena, extract the first 5 records as a sub-arena, and do the search.

>>> __future__ import print_function # Only for Python 2
>>> import chemfp
>>> from chemfp import search
>>> queries = next(chemfp.open("pubchem_queries.fps").iter_arenas(5))
(continues on next page)
68 Chapter 4. Fingerprints and fingerprint search examples

_ fp” take a query fingerprint and a target arena. The functions ending “_arena”
take a query arena and a target arena. The functions ending “_ symmetric” use the same arena as both the

chemfp Documentation, Release 3.5

(continued from previous page)

>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> results search.threshold_tanimoto_search_arena(queries, targets, threshold=0.7)

The search. threshold_tanimoto_search_arena () call finds the target fingerprints which have a similarity
score of at least 0.7 compared to the query.

You can iterate over the results (which is a SearchResults) to get the list of hits for each of the queries.
The order of the results is the same as the order of the records in the query:

>>> for hits in results:
print(len(hits), hits.get_ids_and_scores() [:3])

641 [('48528698', 0.7085714285714285), ('48529189', 0.7371428571428571), ('48937990', 0.

<,7039106145251397)]

373 [('48737535', 0.703030303030303), ('48502523', 0.7041420118343196), ('48560268', 0.
=77

270 [('48857943', 0.7006369426751592), ('48846196', 0.7088607594936709), ('48855282', 0.
,710691823899371)]

523 [('48542237', 0.7230769230769231), ('48739065', 0.7085427135678392), ('48529584', 0.
~705)]

523 [('48542237', 0.7230769230769231), ('48739065', 0.7085427135678392), ('48529584', O.
—705)]

The results object don’t store the query id. Instead, you have to know that the results are in the same order
as the input as the query arena, so you can match the query arena’s id attribute, which contains the list of
fingerprint identifiers, to each result:

>>> for query_id, hits in zip(queries.ids, results):
print("Hits for", query_id)
for hit in hits.get_ids_and_scores() [:3]:
print("", hit)

Hits for 99000039
('48528698', 0.7085714285714285)
('48529189', 0.7371428571428571)
('48937990', 0.7039106145251397)
Hits for 99000230
('48737535', 0.703030303030303)
('48502523', 0.7041420118343196)
('48560268', 0.7)
Hits for 99002251
('48857943', 0.7006369426751592)
('48846196', 0.7088607594936709)
('48855282', 0.710691823899371)
Hits for 99003537
('48542237', 0.7230769230769231)
('48739065', 0.7085427135678392)
('48529584', 0.705)
Hits for 99003538
('48542237', 0.7230769230769231)
('48739065', 0.7085427135678392)
('48529584', 0.705)

What I really want to show is that you can get the same data only using the offset index for the target record

4.12. FingerprintArena searches returning indices instead of ids 69

chemfp Documentation, Release 3.5

instead of its id. The result from a Tanimoto search with a query arena is a SearchResults. Iterating over
the results gives a SearchResult object, with methods like SearchResult.get_indices_and_scores(),
SearchResult.get_ids (), and SearchResult.get_scores():

>>> for hits in results:
print(len(hits), hits.get_indices_and_scores() [:3])

641 [(3619, 0.7085714285714285), (4302, 0.7371428571428571), (4576, 0.7039106145251397)]
373 [(2747, 0.703030303030303), (3608, 0.7041420118343196), (3777, 0.7)]

270 [(2512, 0.7006369426751592), (2873, 0.7088607594936709), (3185, 0.710691823899371)]
523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392), (7554, 0.705)]

523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392), (7554, 0.705)]

>>>

>>> targets.ids[0]

148942244 "'

>>> targets.ids[1]

148941399

>>> targets.ids[3619]

'48528698"'

>>> targets.ids[4302]

'48529189'"'

1 did a few id lookups given the target dataset to show you that the index corresponds to the identifiers from
the previous code.

These examples iterated over each individual SearchResult to fetch the ids and scores, or indices and scores.
Another possibility is to ask the SearchResults collection to iterate directly over the list of fields you want.
SearchResults.iter_indices_and_scores (), for example, iterates through the get_indices_and_score
of each SearchResult.

>>> for row in results.iter_indices_and_scores():
print(len(row), rowl[:3])

641 [(3619, 0.7085714285714285), (4302, 0.7371428571428571), (4576, 0.7039106145251397)]
373 [(2747, 0.703030303030303), (3608, 0.7041420118343196), (3777, 0.7)]

270 [(2512, 0.70063694267515692), (2873, 0.7088607594936709), (3185, 0.710691823899371)]
523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392), (7554, 0.705)]

523 [(6697, 0.7230769230769231), (7478, 0.7085427135678392), (7554, 0.705)]

This was added to get a bit more performance out of chemfp and because the API is sometimes cleaner one
way and sometimes cleaner the other. Yes, I know that the Zen of Python recommends that “there should
be one— and preferably only one —obvious way to do it.” Oh well.

4.13 Access the SearchResult scores and indices as a NumPy array

In this section you’ll learn how to access the scores and indices for the search result hits as a NumPy array.
This returns a structured array view of the underlying search result hits. You will need to install NumPy
for the following to work. See the next section if you want to use ctypes or Python’s buffer API.

The following reads the targets file created in Generate fingerprint files from PubChem SD tags, randomly
selects a query fingerprint (using the seed 123), then finds the Tanimoto score between that query and all of
the fingerprints in the targets file:

70 Chapter 4. Fingerprints and fingerprint search examples

https://numpy.org/doc/stable/user/basics.rec.html
http://numpy.scipy.org/

chemfp Documentation, Release 3.5

>>> from __future__ import print_function # Only for Python 2

>>> import chemfp

>>> targets = chemfp.load_fingerprints ("pubchem_targets.fps")

>>> query_fp = targets.fingerprints.random_choice(rng=123)

>>> result = targets.threshold_tanimoto_search_fp(query_fp, threshold=0.0)

The SearchResult.get_scores () method returns the result’s scores as a Python array object, which gives
a compact way to store a list of doubles using a stock Python installation:

>>> result.get_scores() [:5]
array('d', [0.22772277227722773, 0.3, 0.31, 0.24761904761904763, 0.45054945054945056])

However, this array is a copy of the underlying scores. Making the copy doubles the amont of memory used,
and reduces the performance somewhat as it must create the new array and copy the values over to it.

Most people who use chemfp also use NumPy, which has its own array type, along with a large number of
functions which work on NumPy arrays. The SearchResult.as_numpy_array () method returns a NumPy
array view of the underlying search result hits. The term “view” means that the NumPy array doesn’t have
its own storage space but uses the same storage space as the search result object.

Warning: Do not use the NumPy view of a search result after the search result has been cleared or
freed up as that will likely cause your program to segfault. IN ADDITION, do not modify the contents
of the array as it may cause chemfp’s optimized sort algorithms to fail.

The view is implemented as a structured array with access to the index and score arrays:

>>> arr = result.as_numpy_array()

>>> arr

array ([(0, 0.22772277), (1, 0.3), (2, 0.31), .,

(14964, 0.30350195), (14965, 0.33333333), (14966, 0.30798479)1],

dtype=[('index', '<i4'), ('score', '<£f8')])

>>> arr["score"][:5]

array ([0.22772277, 0.3 , 0.31 , 0.24761905, 0.45054945])

>>> arr["index"] [:5]

array([0, 1, 2, 3, 4], dtype=int32)

T’ll reorder by decreasing score and show that the NumPy array values also change:

>>> result.reorder("decreasing-score")
>>> arr(["score"][:5]
array([1. , 1. , 0.97849462, 0.96808511, 0.96808511])

This can be further similified using the short-cut method SearchResult.get_scores_as_numpy_array():

>>> result.get_scores_as_numpy_array()

array([1. , 1. , 0.97849462, ..., 0.13432836, 0.13235294,
0.12977099]1)

>>> result.get_indices_as_numpy_array ()

array([856, 857, 907, ..., 334, 371, 217], dtype=int32)

These scores can be passed directly to something like matplotlib for plotting, which in this case shows the
distribution of similarity scores for the given query:

4.13. Access the SearchResult scores and indices as a NumPy array 71

https://docs.python.org/3/library/array.html
https://numpy.org/doc/stable/user/basics.rec.html

chemfp Documentation, Release 3.5

>>> from matplotlib import pyplot

>>> pyplot.plot(result.get_scores_as_numpy_array())
[<matplotlib.lines.Line2D object at 0x122c0b190>]
>>> pyplot.show()

4.14 Access the SearchResult scores and indices as buffer or ctypes
structure

In this section you’ll learn how to access the scores and indices for the search result hits as a ctypes structure.
This returns an array-like view of the underlying search result hits using built-in Python methods, which
may be useful if NumPy isn’t available or if NumPy’s startup overhead is too high. See the previous section
if you want to use NumPy.

The following reads the targets file created in Generate fingerprint files from PubChem SD tags, randomly
selects a query fingerprint (using the seed 123), then finds the Tanimoto score between that query and all of
the fingerprints in the targets file:

>>> from __future__ import print_function # Only for Python 2

>>> import chemfp

>>> targets = chemfp.load_fingerprints ("pubchem_targets.fps")

>>> query_fp = targets.fingerprints.random_choice(rng=123)

>>> result = targets.threshold_tanimoto_search_fp(query_fp, threshold=0.0)

The previous section showed how to access the scores and identifiers as NumPy arrays. Chemfp does not
depend on NumPy, but several part of the chemfp API are sped up by having a way to get a low-overhead
view of the underlying hits from Python. The SearchResult.as_ctypes () method returns a ctypes view
of that data:

>>> hits = result.as_ctypes()

>>> hits
<chemfp.search.Hit_Array_14967 object at 0x10cf9fac0>
>>> len(hits)

14967

>>> hits[0]

Hit (index=856, score=1.000000)

>>> hits[len(hits)//4]

Hit (index=6071, score=0.557047)

>>> hits[len(hits)//4] .score
0.5570469798657718

>>> result.reorder("increasing-score")
>>> hits[0]

Hit (index=217, score=0.129771)

The raw bytes of the search result hits are available via Python’s buffer protocol via the SearchResult.
as_buffer() method. The following show that each hit takes up 12 bytes of space.:

>>> buf = result.as_buffer()
>>> buf

<memory at 0x123597£40>

>>> len(buf)

179604

(continues on next page)

72 Chapter 4. Fingerprints and fingerprint search examples

https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/c-api/buffer.html

chemfp Documentation, Release 3.5

(continued from previous page)

>>> len(buf) / len(result)
12.0

Warning: Do not use the ctypes or buffer views of a search result after the search result has been
cleared or freed up as that will likely cause your program to segfault. IN ADDITION, do not modify the
contents of those views as it may cause chemfp’s optimized sort algorithms to fail.

T’ll be surprised if anyone uses this function directly. If you do, let me know why!

4.15 Access the fingerprint arena bytes as a NumPy array

In this section you’ll learn how to access the arena’s fingerprint data as a NumPy array. This returns a byte
view of the underlying arena data structure. If you want the fingerprint bits as 0 or 1 values, see the next
section. You will need to install NumPy for the following to work.

A FingerprintArena stores the fingerprints in a contiguous block of memory. Each fingerprint is stored as
the first arena.num_bytes bytes of a field containing arena.storage_size bytes of memory. If num_bytes
is smaller than storage_size then the field is 0-padded, that is, the remaining bytes are set to 0.

If you work with Python code then you can use chemfp’s Python API to access the fingerprints. But what
if you want to access the fingerprints from a C extension? More specifically, what if you want to access the
fingerprints from NumPy, which contains a lot of optimized routines for analyzing matrix-like data?

The Fingerprintdrena.to_numpy_array() method returns a read-only view of the fingerprint data as a
2D NumPy array with len(arena) rows and arena.storage_size columns. Each element of the matrix is
an unsigned 8 bit integer, that is, a byte.

)

The matrix is a “view” of the data, meaning that it uses the same contiguous block of memory that the

arena uses.

Warning: Do not use the NumPy view of an arena from an FPB file after the file has been closed as
that will likely cause your program to segfault.

Here is an example using MACCS fingerprints for ChEBI 187 generated by RDKit:

>>> import chemfp
>>> arena = chemfp.load_fingerprints('"chebi_maccs.fps")
>>> arr = arena.to_numpy_array()

>>> arr

array([[O, 0, 0, ..., 0, 0, o],
[o, 0, 0, ..., 0, o, 0],
[o, 0, 0, ..., 0, 0, 0],

[o, 16, 128, ..., 0, 0, 0],
[o, 16, 128, ..., 0, o, 0],
[o, O, 128, ..., 0, 0, 0]], dtype=uint8)
>>> arr.shape
(107207, 24)

While it isn’t chemically meaningful, I'll sum the bytes down the rows:

4.15. Access the fingerprint arena bytes as a NumPy array 73

http://numpy.scipy.org/

chemfp Documentation, Release 3.5

>>> arr.sum(axis=0)
array([490116, 204316, 601303, 1485108, 968167, 2407708,
2464853, 2392025, 6600791, 5761640, 5880625, 10715664,
8568501, 12248444, 11166730, 13371871, 12146087, 13559574,
17746237, 20894627, 2761788, 0, 0, 0], dtype=uint64)

The last three values are 0 because of the 0-padding. By default chemfp uses 64-bit alignment, which means
192 bits or 24 bytes for the 166-bit MACCS key fingerprints, even though only 21 bytes are needed.

If the 0 padding is a problem then you can use NumPy indexing to make a new NumPy array which only
contains the actual fingerprint bytes:

>>> unpadded_arr = arr[:,:arena.num_bytes]
>>> unpadded_arr

array([[O, 0, 0, ..., 0, 0, o],
r o, o, O, ..., o0, o0, o0,
r o, o, O, ..., 0, o0, o0,
[o, 16, 128, ..., 255, 255, 31],
[o0, 16, 128, ..., 255, 255, 31],
[o, o0, 128, ..., 255, 255, 31]], dtype=uint8)

>>> unpadded_arr.shape

(107207, 21)

>>> unpadded_arr.sum(axis=0)

array ([490116, 204316, 601303, 1485108, 968167, 2407708,
2464853, 2392025, 6600791, 5761640, 5880625, 10715664,
8568501, 12248444, 11166730, 13371871, 12146087, 13559574,
17746237, 20894627, 2761788], dtype=uint64)

4.16 Access the fingerprint bits as a NumPy array

In this section you’ll learn how to access the arena’s fingerprint bit values as a NumPy array. This returns
a new array containing the values 0 or 1. If you want a view of the underlying arena bytes, see the previous
section. You will need to install NumPy for the following to work.

Some people use fingerprint bit values as descriptors for clustering or other machine learning algorithm.
The FingerprintArena.to_numpy_array () method returns a 2D array containing bit values. The array
contains len(arena) rows. By default it returns one column for each fingerprint bit.

Here is an example using MACCS fingerprints for ChEBI 187 generated by RDKit:

>>> import chemfp

>>> arena = chemfp.load_fingerprints("chebi_maccs.fps")
>>> bitarr = arena.to_numpy_bitarray()

>>> bitarr.shape

(107207, 166)

This is a normal NumPy array, so the usual NumPy methods work. For example, here are the bits for the
fingerprint at index 1000:

>>> bitarr[1000]
array([O, o, o, o, o, o, o, o, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,

(continues on next page)

74 Chapter 4. Fingerprints and fingerprint search examples

http://numpy.scipy.org/

chemfp Documentation, Release 3.5

(continued from previous page)

o, o, o, o, o, o0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, 1, O, O,
o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
o, o, 0, 1, 0, 0, 0, 0, 0, O, O, 1, O, O, O, O, O, O, 1, O, O, O, O,
o, o, o, o0, 0, 0, 0, 0, 0, 0, 0, O, O, 1, O, O, O, O, O, O, O, O, O,
o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
o, o, o, o, o, o0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
0, 0, 0, 0, 0], dtype=uint8)

and here are the number of occurrences of each bit:

>>> bitarr.sum(axis=0)

array ([o, 2, 514, 31, 22, 53, 264, 3663,

452, 254, 4309, 215, 405, 326, 147, 1235,
2239, 256, 3632, 177, 407, 4063, 1112, 2929,
2780, 3946, 423, 2597, 11284, 2798, 481, 8993,
9241, 3179, 720, 6701, 9993, 8846, 2306, 2387,
2426, 9607, 10337, 11172, 2605, 1655, 6263, 13749,

18487, 12349, 10391, 7077, 29244, 28915, 11422, 1557,
50525, 11758, 10016, 11804, 11876, 20436, 1786, 9572,
29439, 16754, 12719, 843, 15222, 4294, 4281, 45510,
13238, 20715, 36963, 14132, 24909, 5101, 26283, 25017,
18533, 47630, 33626, 13009, 41392, 33512, 13809, 22733,
56840, 50194, 58465, 50896, 36946, 20788, 57521, 38904,
51137, 48868, 26627, 46736, 49780, 28319, 7660, 44893,
51824, 41062, 16770, 41733, 59879, 54221, 56176, 42384,
39082, 19636, 44832, 45619, 56784, 54437, 6965, 58186,
50183, 46442, 45119, 36041, 0, 48938, 64600, 55153,
58571, 28754, 62726, 71980, 41656, 18204, 31671, 61932,
72978, 56210, 69568, 68414, 40483, 60826, 64600, 45469,
62761, 81488, 553865, 56584, 57693, 69504, 57550, 78234,
75151, 83824, 79623, 71747, 89966, 73571, 93265, 78099,
77122, 66637, 83354, 100861, 88193, 0], dtype=uint64)

While the default returns the bits for each fingerprint, you can use the transpose to get which fingerprints
indices contain a given bit.

For example, there are only 5 fingerprints which set the fifth bit. Key 5 is defined as “Lanthanide” and
implemented as the SMARTS pattern: [La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lul. Which fin-
gerprints contain a lanthanide?

>>> bitarr.T[4] .nonzero()

(array ([334, 335, 338, 339, 340, 444, 455, 553, 554,
1135, 1169, 1739, 1863, 3194, 3263, 3264, 3595, 4257,
6573, 6574, 42598, 45728]),)

To make that useful I need the compound ids, so I’ll use the indices to get the ids from the arena:

>>> [arena.ids[idx] for idx in bitarr.T[4] .nonzero() [0]]
['CHEBI:33330', 'CHEBI:33331', 'CHEBI:33341', 'CHEBI:33342',
'CHEBI:33343', 'CHEBI:52622', 'CHEBI:52635', 'CHEBI:49962',
'CHEBI:49978', 'CHEBI:63020', 'CHEBI:134455', 'CHEBI:139502',
'CHEBI:32234', 'CHEBI:77566', 'CHEBI:134436', 'CHEBI:134440',
'CHEBI:53479', 'CHEBI:139496', 'CHEBI:50950', 'CHEBI:51000',

(continues on next page)

4.16. Access the fingerprint bits as a NumPy array 75

chemfp Documentation, Release 3.5

(continued from previous page)

'"CHEBI:59824', 'CHEBI:139501']

Picking out a few of these:

o CHEBI:33330 - scandium atom

e« CHEBI:33331 - yttrium atom

e CHEBI:139502 - calcium titanate

o CHEBI: 139501 - titanium(IV) bis(ammonium lactato)dihydroxide
so at least I wasn’t able to find a false positive!

The above example created the entire bit array but only used the third column. If you only want the third
column then it’s faster to pass an explicit list of the bit columns you want to to__numpy_bitarray:

>>> arena.to_numpy_bitarray([4])
array([[0],

(o],

(o],

(o],

(ol,

[0]], dtype=uint8)

>>> arena.to_numpy_bitarray([2]).sum()
22

You can ask for more than one bit column. The following computes the Pearson product-moment correlation
coefficients between columns 163 and 158 (column 163 has the most often set bit, and 158 has the second
most often):

>>> bitarr = arena.to_numpy_bitarray([163, 158])
>>> bitarr
array([[0, O],

[O, 0]}
o, ol,
[, 11,
(1, 11,

[1, 1]], dtype=uint8)
>>> import numpy
>>> numpy.corrcoef (bitarr, rowvar=0)
array([[1. , 0.64876171],

[0.64876171, 1. 1

When this section was originally written, extracting 1 column with to_ numpy_bitarray was about 20x faster
than extracting all of the columns and selecting just the desired column. The break-even point for 166 bits
was around 45 columns.

4.17 Computing a distance matrix for clustering

In this section you’ll learn how to compute a distance matrix using the chemfp API. The next section shows
an alternative way to get the similarity matrix.

76 Chapter 4. Fingerprints and fingerprint search examples

https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:33330
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:33331
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:139502
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:139501

chemfp Documentation, Release 3.5

chemfp does not do clustering. There’s a huge number of tools which already do that. A goal of chemfp in
the future is to provide some core components which clustering algorithms can use.

That’s in the future, because I know little about how people want to cluster with chemfp. Right now you
can use the following to build a distance matrix and pass that to one of those tools. (I'll use a distance
matrix of 1 - the similarity matrix.)

Since we’re using the same fingerprint arena for both queries and targets, we know the distance ma-
trix will be symmetric along the diagonal, and the diagonal terms will be 1.0. The chemfp.search.
threshold_tanimoto_search_symmetric() functions can take advantage of the symmetry for a factor of
two performance gain. There’s also a way to limit it to just the upper triangle, which cuts the memory use
in half.

Most of those tools use NumPy, which is a popular third-party package for numerical computing. You will
need to have it installed for the following to work.

import numpy # NumPy must be installed
from chemfp import search

Compute distance[i][5] = 1-Tanimoto(fp[il, fpl[7])

def distance_matrix(arena):
n = len(arena)

Start off a similarity matriz with 1.0s along the diagonal
similarities = numpy.identity(n, "d")

Compute the full similarity matriz.

The tmplementation computes the upper-triangle then copies

the upper-triangle into lower-triangle. It does mot include

terms for the dtagonal.

results = search.threshold_tanimoto_search_symmetric(arena, threshold=0.0)

Copy the results into the NumPy array.
NOTE: see below for an implementation which s much faster.
for row_index, row in enumerate(results.iter_indices_and_scores()):
for target_index, target_score in row:
similarities[row_index, target_index] = target_score

Return the distance matriz using the similarity matriz
return 1.0 - similarities

With the distance matrix in hand, it’s easy to cluster. The SciPy package contains many clustering algo-
rithms, as well as an adapter to generate a matplotlib graph. I'll use it to compute a single linkage clustering
using 100 randomly selected fingerprints:

from __future__ import print_function # Only for Python 2
import chemfp
from scipy.cluster.hierarchy import linkage, dendrogram

... insert the 'distance_matriz' function definition here ...
dataset = chemfp.load_fingerprints("pubchem_queries.fps")

dataset = dataset.sample(100) # select 100
distances = distance_matrix(dataset)

(continues on next page)

4.17. Computing a distance matrix for clustering 77

http://numpy.scipy.org/
http://scipy.org/
http://matplotlib.sourceforge.net/

chemfp Documentation, Release 3.5

(continued from previous page)

linkage_matrix = linkage(distances, "single")
dendrogram(linkage_matrix,
orientation="right",
labels = dataset.ids)

import pylab
pylab.show()

NOTE: The above code created an empty NumPy array then filled it in with the scores. This is slow because
much of the work is in Python.

Another possibility is to convert the results into a SciPy compressed sparse row matrix (see the next section),
then turn that sparse array into a NumPy array. The following distance matriz version is about 5x faster
than the earlier one, even though it makes an intermediate csr matrix, because more of the work is done at
the C level:

def distance_matrix(arena):
n = len(arena)

Compute the full similarity matrix.

The implementation computes the upper-triangle then copies

the upper-triangle into lower-triangle. It does not include

terms for the diagonal.

results = search.threshold_tanimoto_search_symmetric(arena, threshold=0.0)

Extract the results as a SciPy compressed sparse row matrix
csr = results.to_csr()

Convert it to a NumPy array

similarities = csr.toarray()

Fill in the diagonal

numpy.fill_diagonal (similarities, 1)

Return the distance matrix using the similarity matrix
return 1.0 - similarities

4.18 Convert SearchResults to a SciPy csr matrix

In this section you’ll learn how to convert a SearchResults object into a SciPy compressed sparse row matrix.

In the previous section you learned how to use the chemfp API to create a NumPy similarity matrix, and
convert that into a distance matrix. The result is a dense matrix, and the amount of memory goes as the
square of the number of structures.

If you have a reasonably high similarity threshold, like 0.7, then most of the similarity scores will be zero.
Internally the SearchResults object only stores the non-zero values for each row, along with an index to
specify the column. This is a common way to compress sparse data.

SciPy has its own compressed sparse row (“csr”) matrix data type, which can be used as input to many of
the scikit-learn clustering algorithms.

If you want to use those algorithms, call the SearchResults. to_csr() method to convert the SearchResults
scores (and only the scores) into a csr matrix. The rows will be in the same order as the SearchResult (and

78 Chapter 4. Fingerprints and fingerprint search examples

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster

chemfp Documentation, Release 3.5

the original queries), and the columns will be in the same order as the target arena, including its ids.

I don’t know enough about scikit-learn to give a useful example. (If you do, let me know!) Instead, I'll start
by doing an NxM search of two sets of fingerprints:

from __future__ import print_function # Only for Python 2
import chemfp
from chemfp import search

queries = chemfp.load_fingerprints("pubchem_queries.fps")
targets chemfp.load_fingerprints("pubchem_targets.fps")
results = search.threshold_tanimoto_search_arena(queries, targets, threshold = 0.8)

The SearchResults attribute shape describes the number of rows and columns:

>>> results.shape

(10826, 14967)

>>> len(queries)

10826

>>> len(targets)

14967

>>> >>> results[426] .get_indices_and_scores()
[(133, 0.85), (153, 0.8064516129032258)]

I’ll turn it into a SciPy csr:

>>> csr = results.to_csr()

>>> csr

<10826x14967 sparse matrix of type '<class 'numpy.float64'>'
with 369471 stored elements in Compressed Sparse Row format>

>>> csr.shape

(10826, 14967)

and look at the same row to show it has the same indices and scores:

>>> csr[426]

<1x14967 sparse matrix of type '<class 'numpy.float64'>'
with 2 stored elements in Compressed Sparse Row format>

>>> csr[426] .indices

array([133, 153], dtype=int32)

>>> csr[6].data

array([0.85 , 0.80645161])

4.19 Taylor-Butina clustering

For the last clustering example, here’s my (non-validated) variation of the Butina algorithm from JCICS
1999, 39, 747-750. See also http://www.redbrick.dcu.ie/~noel /R, clustering.html . You might know it as
Leader clustering.

First, for each fingerprint find all other fingerprints with a threshold of 0.8:

from __future__ import print_function # Only for Python 2
import chemfp

(continues on next page)

4.19. Taylor-Butina clustering 79

http://www.chemomine.co.uk/dbclus-paper.pdf
http://www.chemomine.co.uk/dbclus-paper.pdf
http://www.redbrick.dcu.ie/~noel/R_clustering.html

chemfp Documentation, Release 3.5

(continued from previous page)

from chemfp import search

arena = chemfp.load_fingerprints("pubchem_targets.fps")
results = search.threshold_tanimoto_search_symmetric(arena, threshold = 0.8)

Sort the results so that fingerprints with more hits come first. This is more likely to be a cluster centroid.
Break ties arbitrarily by the fingerprint id; since fingerprints are ordered by the number of bits this likely
makes larger structures appear first:

Reorder so the centroid with the most hits comes first.
(That's why I do a reverse search.)
Ignore the arbitrariness of breaking ties by fingerprint index
results = sorted(((len(indices), i, indices)
for (i, indices) in enumerate(results.iter_indices())),
reverse=True)

Apply the leader algorithm to determine the cluster centroids and the singletons:

Determine the true/false singletons and the clusters
true_singletons = []

false_singletons = []

clusters = []

seen = set()
for (size, fp_idx, members) in results:
if fp_idx in seen:
Can't use a centroid which ts already assigned
continue
seen.add (fp_idx)

True singletons have no netghbors within the threshold
if not members:

true_singletons.append(fp_idx)

continue

Figure out which ones haven't yet been assigned
unassigned = set(members) - seen

if not unassigned:
false_singletons.append(fp_idx)
continue

this s a new cluster
clusters.append((fp_idx, unassigned))
seen.update (unassigned)

Once done, report the results:

print(len(true_singletons), "true singletons")
print("=>", " ".join(sorted(arena.ids[idx] for idx in true_singletons)))
print ()

(continues on next page)

80 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

(continued from previous page)

print (len(false_singletons), "false singletons")
print("=>", " " join(sorted(arena.ids[idx] for idx in false_singletons)))
print ()

Sort so the cluster with the most compounds comes first,
then by alphabetically smallest id
def cluster_sort_key(cluster):

centroid_idx, members = cluster

return -len(members), arena.ids[centroid_idx]

clusters.sort (key=cluster_sort_key)

print(len(clusters), "clusters")

for centroid_idx, members in clusters:
print(arena.ids[centroid_idx], "has", len(members), "other members")
print("=>", " " join(arena.ids[idx] for idx in members))

The algorithm is quick for this small data set.

Out of curiosity, I tried this on 100,000 compounds selected arbitrarily from PubChem. It took 35 seconds
on my desktop (a 3.2 GHZ Intel Core i3) with a threshold of 0.8. In the Butina paper, it took 24 hours to
do the same, although that was with a 1024 bit fingerprint instead of 881. It’s hard to judge the absolute
speed differences of a MIPS R4000 from 1998 to a desktop from 2011, but it’s less than the factor of about
2000 you see here.

More relevent is the comparison between these numbers for the 1.1 release compared to the original numbers
for the 1.0 release. On my old laptop, may it rest it peace, it took 7 minutes to compute the same benchmark.
Where did the roughly 16-fold peformance boost come from? Money. After 1.0 was released, Roche funded
various optimizations, including taking advantage of the symmetery (2x) and using hardware POPCNT if
available (4x). Roche and another company helped fund the OpenMP support, and when my desktop reran
this benchmark it used 4 cores instead of 1.

The wary among you might notice that 2*4*4 = 32x faster, while I said the overall code was only
16x faster. Where’s the factor of 2x slowdown? It’s in the Python code! The chemfp.search.
threshold_tanimoto_search_symmetric () step took only 13 seconds. The remaining 22 seconds was in
the leader code written in Python. To make the analysis more complicated, improvements to the chemfp
API sped up the clustering step by about 40%.

With chemfp 1.0 version, the clustering performance overhead was minor compared to the full similarity
search, so I didn’t keep track of it. With chemfp 1.1, those roles have reversed!

The most recent version now is chemfp 3.4, which is about 20% faster than chemfp 1.4 for this benchmark.
And of course the hardware is faster still.

4.20 MinMax Diversity Selection using RDKit

In this section you’ll learn how to do diversity selection using RDKit’s MaxMin picker. You will also learn
how to convert chemfp fingerprints into RDKit fingerprints. You will need to install RDKit for the following
to work. You will also need to download a dataset of benzodiazepine structures.

Diversity selection finds elements which are unlike each other. One way to implement diversity selection is
to cluster all of the compounds then pick a compound from each cluster, but this requires quadratic time to
compute the similarity/distance matrix.

4.20. MinMax Diversity Selection using RDKit 81

http://rdkit.org/
http://dalkescientific.com/writings/benzodiazepine.sdf.gz

chemfp Documentation, Release 3.5

Chemfp does not implement diversity selection, though it may be added in the future if there is enough
demand. I recommend people use the optimized version of the MaxMin from RDKit, which does diversity
selection without needing to compute the full matrix.

While it is possible to have RDKit’s MaxMinPicker use native chemfp fingerprints, there is a huge perfor-
mance overhead (about 100x!) because every fingerprint distance requires a Python function call. It is far
faster to convert chemfp fingerprints to RDKit fingerprints so that all of the processing can be done in C.

T’ll start with an example of selecting 100 diverse fingerprints from the benzodiazepine data set. The first
step is to generate fingerprints. I'll use rdkit2fps to generate RDKit Morgan fingerprints.

% rdkit2fps --morgan benzodiazepine.sdf.gz -o benzodiazepine_morgan2.fps.gz

and then use the chemfp Python API to load the fingerprints. I’ll use reorder=False so the arena fingerprints
are in the same order as the input file. (The order isn’t important for this case, but may be important if
you, say, merge two data sets together where you know you want to keep the first data set and select diverse
compounds from the second.)

>>> import chemfp
>>> arena = chemfp.load_fingerprints("benzodiazepine morgan2.fps.gz",
reorder=False)

The next step is to read the FPS file and convert the chemfp fingerprints into RDKit fingerprints. This is
easy because RDKit function CreateFromBinaryText converts a chemfp fingerprint, which is just a byte
string, into the equivalent ExplicitBitVect fingerprint.

>>> from rdkit import DataStructs
>>> rdkit_fps = [DataStructs.CreateFromBinaryText(fp) for fp in arena.fingerprints]

The fingerprints attribute was added in chemfp 3.4. For older chemfp versions use:

>>> rdkit_fps = [DataStructs.CreateFromBinaryText(fp) for id, fp in arenal

Finally, use RDKit to pick 100 diverse record indices:

>>> from rdkit import SimDivFilters

>>> picker = SimDivFilters.MaxMinPicker ()

>>> picks = picker.LazyBitVectorPick(rdkit_fps, len(rdkit_fps), 100)
>>> len(picks)

100

>>> list(picks)

[10879, 8375, 2390, 4683, 3549, 6257, 9194, 9953, 96, 6860, 8016,
6034, 3197, 4213, 5762, 2323, 7531, 9894, 12279, 3398, 4607, 4827,
2874, 1608, 3234, 6128, 8710, 7691, 3006, 4898, 4372, 11609, 11401,
10614, 3861, 1295, 6936, 6192, 7121, 11577, 5092, 2523, 4926, 4614,
4956, 8762, 2261, 9184, 11666, 2828, 7767, 12027, 5000, 6126, 6266,
6097, 7966, 9208, 8064, 1327, 6241, 3392, 5730, 7744, 8485, 9299,
358, 5332, 4434, 2935, 8405, 5480, 4648, 1665, 5848, 9053, 5735,
6583, 8407, 1706, 5347, 11779, 12022, 2598, 8378, 3565, 7394, 4888,
10454, 6611, 11472, 2146, 6101, 295, 6632, 6717, 2442, 5638, 5372,
8279]

The indices match the arena order, so you can use arena.ids to get the corresponding id for each index; in
this case, PubChem ids:

82 Chapter 4. Fingerprints and fingerprint search examples

https://onlinelibrary.wiley.com/doi/abs/10.1002/qsar.200290002
http://dalkescientific.com/writings/benzodiazepine.sdf.gz

chemfp Documentation, Release 3.5

>>> arena.ids[10879]
122984485

The RDKit MaxMinPicker also lets you initialize the pick list with a set of indicies. This is useful if you
have a in-house compound data set X and want to select N diverse fingerprints from a vendor data set Y.
That algorithm might look like:

import chemfp
from rdkit import DataStructs, SimDivFilters

have_arena = chemfp.load_fingerprints("X.fps", reorder=False)
want_arena = chemfp.load_fingerprints("Y.fps", reorder=False)

Merge the two fingerprint sets together, but keep track

of which came from X.

fps = [DataStructs.CreateFromBinaryText(fp) for fp in have_arena.fingerprints]
num_have = len(fps)

fps.extend(DataStructs.CreateFromBinaryText (fp) for fp in want_arena.fingerprints)

Do the picking

num_to_pick = 100

picker = SimDivFilters.MaxMinPicker ()

have_ids = list(range(num_have))

picks = picker.LazyBitVectorPick(fps, len(fps), num_have+num_to_pick, have_ids)
newly_picked = picks[-num_to_pick:]

want_indices [idx-num_have for idx in newly_picked]

Report the picked compounds

print ("Compound to evaluate:")

for idx in want_indices:
print(want_arena.ids[idx])

To learn more about the RDKit MaxMin picker and how to use it, see Roger Sayle’s slides from the 2017
RDKit User Group meeting and Tim Dudgeon’s commentary.

4.21 Configuring OpenMP threads

In this section you’ll learn about chemfp and OpenMP threads, including how to set the number of threads
to use.

OpenMP is an API for shared memory multiprocessing programming. Chemfp uses it to parallelize the
similarity search algorithms. Support for OpenMP is a compile-time option for chemfp, and can be disabled
with --without-openmp in setup.py. Versions 4.2 of gce (released in 2007) and later support it, as do other
compilers, though chemfp has only been tested with gcc.

Chemfp uses one thread per query fingerprint. This means that single fingerprint queries are not parallelized.
There is no performance gain even if four cores are available.

(A note about nomenclature: a CPU can have one core, or it can have several cores. A single processor
computer has one CPU while a multiprocessor computer has several CPUs. I think some cores can even run
multiple threads. So it’s possible to have many more hardware threads than CPUs.)

Chemfp uses multiple threads when there are many queries, which occurs when using a query arena against
a target arena. These search methods include the high-level API in the top-level chemfp module (like

4.21. Configuring OpenMP threads 83

https://github.com/rdkit/UGM_2017/blob/master/Presentations/Sayle_RDKitDiversity_Berlin17.pdf
https://github.com/rdkit/UGM_2017/blob/master/Presentations/Sayle_RDKitDiversity_Berlin17.pdf
http://rdkit.blogspot.com/2017/11/revisting-maxminpicker.html

chemfp Documentation, Release 3.5

‘knearest__tanimoto_search’), and the arena search function in chemfp.search.

By default, OpenMP and therefore chemfp will use four threads:

>>> import chemfp
>>> chemfp.get_num_threads ()
4

You can change this through the standard OpenMP environment variable OMP_NUM__THREADS in the
shell:

% env OMP_NUM_THREADS=2 python

Python 3.7.4 (default, Aug 13 2019, 15:17:50)

[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import chemfp

>>> chemfp.get_num_threads()

2

or you can specify the number of threads directly using set_ num_ threads():

>>> chemfp.set_num_threads(3)
>>> chemfp.get_num_threads()
3

If you specify 0 or 1 thread then chemfp will not use OpenMP at all and stick with a single-threaded
implementation. (You probably want to disable OpenMP in multi-threaded programs like web servers. See
the next section for details.)

Throwing more threads at a task doesn’t always make it faster. My old desktop has one CPU with two
cores, so it’s pointless to have more than two OpenMP threads running, as you can see from some timings:

threshold_tanimoto_search_symmetric (threshold=0.8) (desktop)
#threads time (in s)

1 22.6
2 13.1
3 12.3
4 12.9
5 12.6

On the other hand, my old laptop has 1 CPU with four cores, and while my desktop beats my laptop with
single threaded peformance, once I have three cores going, my laptop is faster:

threshold_tanimoto_search_symmetric (threshold=0.8) (laptop)
#threads time (in s)

1 27.4
2 14.6
3 10.3
4 8.2
5 9.0

How many cores/hardware threads are available? That’s a really good question. chemfp implements chemp.
get_max_threads(), but that doesn’t seem to do what I want. So don’t use it, and I'll figure out a real
solution in a future release.

84 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

4.22 OpenMP and multi-threaded applications

In this section you’ll learn some of the problems of mixing OpenMP and multi-threaded code.

Do not use OpenMP and POSIX threads on a Mac. It will crash. This includes Django, which is a multi-
threaded web server. In multi-threaded code on a Mac you must either tell chemfp to be single-threaded,
using:

chemfp.set_num_threads(1)

or figure out some way to put the chemfp search code into its own process space, which is a much harder
solution.

Other OSes will let you mix POSIX and OpenMP threads, but life gets confusing. Might your web server
handle three search requests at the same time? If so, should all of those get four OpenMP threads, so that
12 threads are running in total? Can your hardware handle that many threads?

It may be better to have chemfp not use OpenMP threads when under a multi-threaded system, or have
some way to limit the number of chemfp search tasks running at the same time. Figuring out the right
solution will depend on your hardware and requirements.

4.23 Fingerprint Substructure Screening (experimental)

In this section you’ll learn how to find target fingerprints which contain the query fingerprint bit patterns
as a subset. Bear in mind that this is an experimental API.

Substructure search often uses a screening step to remove obvious mismatches before doing the subgraph
isomorphism. One way is to generate a binary fingerprint such that if a query molecule is a substructure of
a target molecule then the corresponding query fingerprint is completely contained in the target fingerprint,
that is, the target fingerprint must have ‘on’ bits for all of the query fingerprints which have ‘on’ bits.

I'll start by loading a fingerprint arena with four fingerprints, where the identifiers are Unicode strings and
the fingerprint are byte strings of length 1, with the binary form shown to the right:

>>> from __future__ import print_function # Only for Python 2

>>> import chemfp

>>> from chemfp import bitops

>>> arena = chemfp.load_fingerprints([
(u"A1", b"\x44"), # 001000100
(u"B2", b"\x6c"), # 001101100
(u"C3", b"\x95"), # 0010010101
(u"D4", b"\xea"), # 011101010

-], chemfp.Metadata(num_bits=8))

>>> for id, fp in arena:

print(bitops.hex_encode(fp), id)

44 A1

6¢c B2

95 C3

ea D4

T could use bitops.byte_contains () to search for fingerprints in a loop, in this case with a query fingerprint
which requires that the 7th bit be set (they must fit the pattern Ob*Lx**xx*x):

4.22. OpenMP and multi-threaded applications 85

chemfp Documentation, Release 3.5

>>> query_fingerprint = b"\x40" # 001000000
>>> bitops.hex_encode(query_fingerprint)
'40'
>>> for id, target_fingerprint in arena:
if bitops.byte_contains(query_fingerprint, target_fingerprint):
print(id)
Al
B2
D4

This is slow because it uses Python to do almost all of the work. Instead, use contains_fp () from the
chemfp.search module, which is faster because it’s all implemented in C:

>>> from chemfp import search

>>> result = search.contains_fp(query_fingerprint, arena)
>>> result

<chemfp.search.SearchResult object at 0x10195e090>

>>> print(result.get_ids())

['A1', 'B2', 'D4']

This is the same SearchResult instance that the similarity search code returns, though the scores are all
0.0:

>>> result.get_ids_and_scores()
[(*A1', 0.0), ('B2', 0.0), ('D4', 0.0)]

This API is experimental and likely to change. Please provide feedback. While I don’t think the current call
parameters will change, I might have it return the Tanimoto score (or Hamming distance?) instead of 0.0.
Or I might have a way to compute new scores given a SearchResult.

I also plan to support start/end parameters, to search only a subset of the arena.

There’s also a search. contains_arena() function which takes a query arena instead of only a query fin-
gerprint as the query, and returns a SearchResults:

>>> results = search.contains_arena(arena, arena)

>>> results

<chemfp.search.SearchResults object at 0x10195c2b8>

>>> for result in results:
print(result.get_ids_and_scores())

[('A1', 0.0), ('B2', 0.0)]
[('B2', 0.0)]
[¢'e3', 0.0)1
[('D4', 0.0)]

I don’t think the NxN version of the “contains” search is all that useful, so there’s no function for that case.

The implementation doesn’t yet support OpenMP, contains_arena() is only slightly faster than multiple
calls to contains_£fp().

86 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

4.24 Substructure screening with RDKit

In this section you’ll learn how to use RDKit’s pattern fingerprint for substructure screening.

RDKit has a fingerprint tuned for substructure search, though it’s marked as ‘experimental’ and subject to
change. This is the “pattern” fingerprint.

T’ll use it to make a screen for one of the PubChem files. Normally you would start with something like:

% rdkit2fps --pattern Compound_048500001_049000000.sdf.gz -o pubchem_screen.fpb

but that only gives me the identifiers and fingerprints. I want to show some of the struture as well, so I'll do
a bit of a cheat - I'll have an augmented identifier which is the PubChem id, followed by a space, followed
by the SMILES string.

I can do this because chemfp supports almost anything as the “identifier”, except newline, tab, and the NUL
character, and because I don’t need to support id lookup.

However, I have to write Python code to generate the augmented identifiers:

import chemfp

fptype = chemfp.get_fingerprint_type("RDKit-Pattern fpSize=1024")
T = fptype.toolkit

with chemfp.open_fingerprint_writer("pubchem_screen.fpb", fptype.get_metadata()) as,
—wWriter:
for id, mol in T.read_ids_and_molecules("Compound_048500001_049000000.sdf.gz"):
smiles = T.create_string(mol, "smistring") # use the 4isomeric SMILES string
fp = fptype.compute_fingerprint (mol)
Create an "identifier" of the form:
PubChem id + " " + canontical SMILES string
writer.write_fingerprint(id + " " + smiles, fp)

Now that I have the screen, I’ll write some code to actually do the screen. I'll make this be an interactive
prompt, which asks for the query SMILES string (or “quit” or “exit” to quit), parses the SMILES to a
molecule, generates the fingerprint, does the screen, and displays the first 10 results:

from __future__
import itertools
import chemfp

import chemfp.search

import print_function # Only for Python 2

fptype = chemfp.get_fingerprint_type("RDKit-Pattern fpSize=1024")
T = fptype.toolkit

screen = chemfp.load_fingerprints("pubchem_screen.fpb")
print("Loaded", len(screen), "screen fingerprints")

while 1:
Ask for the query SMILES string
query = input("Query? ") # use "raw_input()" for Python 2.7
if query in ("quit", "exit"):
break

(continues on next page)

4.24. Substructure screening with RDKit 87

http://rdkit.org/docs/source/rdkit.Chem.rdmolops.html#rdkit.Chem.rdmolops.PatternFingerprint

chemfp Documentation, Release 3.5

(continued from previous page)

See if it's a wvalid SMILES
mol = T.parse_molecule(query, "smistring", errors="ignore")
if mol is None:

print ("Could not parse query")

continue

Compute the fingerprint and do the substructure screeening
fp = fptype.compute_fingerprint (mol)

result

Print the results, up to 10.
n = len(result)

if n > 10:

chemfp.search.contains_fp(fp, screen)

print(len(result), "matches. First 10 displayed")

n:
else:

10

print (len(result), "matches.")

for augmented_id in itertools.islice(result.iter_ids(), O, n):
id, smiles = augmented_id.split()
print(id, "=>", smiles)

print ()

(In case you haven’t seen it before, the “itertools.islice()” gives me an easy way to get up to the first N items
from an iterator.)

T’ll try out the above code:

Loaded 5208 screen fingerprints
Query? clcccccl
12376 matches. First 10 displayed

48650571
48672998
48845178
48548090
48654127
48548029
48685277
48915892
48653583
48650670

=>

CCCOCC(=0)NCclccccel
CCCOCC(=0)NOCc1lccccel
C=C(Br)CNC(=S)Ncicccccl
CCNC(=0)N/N=C/cilccc(C)ccl
CCCOCC(=0)NCCSciccceccl
CCNC(=0)N/N=C/cilcccc(C)cl
COCC(C)CNC(=0)cicccccl
CNC(=0)NCCclccccclBr
CCCOCC(=0)N(C)cilcccccl
CCCOCC(=0)Ncilcccc(C)cl

Query? clccccclO
4946 matches. First 10 displayed

48548137
48651969
48980706
48661290
48653813
48651499
48981063
48659995

=>

CCNC(=0)N/N=C/clcccc(0C)cl
CCCOCC(=0)NCcilcccc(OC)cl
CCCCNC(=0)CCCclccc(0C) cecl
CCCOCC(=0)Ncilccecc(0CC)cl
CCCOCC(=0)NCCOc1cccc(C)cl
CCCOCC(=0)NCclcccccl0C
COclccc(CCCC(=0)NCC(C)C)ccl
CCCOCC(=0)Ncicccc(OCC#N) cl

(continues on next page)

88

Chapter 4. Fingerprints and fingerprint search examples

https://docs.python.org/2/library/itertools.html#itertools.islice

chemfp Documentation, Release 3.5

(continued from previous page)

48916672 => CCCCCCOclcccc(/C=N/NC(N)=0)cl
48653272 => CCCOCC(=0)NCCclccccclOC

Query? clcccccll

10 matches.

48731386 => Cclcc(CNC(=0)c2ccc(I)cc2)onl
48671550 => NC(=0)Ccilccc(0CC(=0)Nc2ccc(I)cc2)ccl
48731482 => Cclcc(CNC(=0)c2cccc(I)c2)onl
48731331 => Cclcc(CNC(=0)c2ccccc2I)onl

48741344 => CN(C)C(=0)clcccc(NC(=0)Nc2ccc(I)cc2)cl
48584231 => 0=C(Nclcccc(COCC2CC2)cl)cicccecll
48688164 => CC1CN(C(=0)c2ccc(I)cc2)CC(C) (C)01
48688205 => CC1CN(C(=0)c2cccc(I)c2)CC(C) (C)01
48946427 => N#CC1CCN(S(=0) (=0)c2ccc(I)cc2)CC1
48522115 => CC1(C)COCCN1C(=0)clccc(F)ccll

Query? Fclc(F)c(F)c(F)c(F)clF

3 matches.

48759600 => 0=C(Ncilcccncl)Nclc(F)c(F)c(F)c(F)clF
48980959 => Cclcccc2cc(C(=0)Nc3ccc(F)cc3F)ocl2
48981022 => Cclcccc2ec(C(=0)Nc3c(F)cccec3F)oc12

Query? quit

Looks reasonable.

It’s not hard to add full substructure matching, but it requires toolkit-specific code. Chemfp doesn’t try to
abstract that detail, and I'm not sure it should be part of chemfp. Instead, I'll write some RDKit-specific
code. Chemfp uses native toolkit molecules, so there’s actually only a single line of RDKit code.

T’ll also completely rewrite the code so it takes the query string on the command-line, reports all of the
screening results, identifies the true positives, and then does a brute-force verification that the screen results
are correct. Oh, and report statistics:

This program s called 'search.py'

from __future__ import print_function # Only for Python 2

import sys

import chemfp

import chemfp.search

from chemfp import rdkit_toolkit as T # Will only work with RDKit
import time

fptype = chemfp.get_fingerprint_type("RDKit-Pattern fpSize=1024")

screen = chemfp.load_fingerprints("pubchem_screen.fpb")
if len(sys.argv) != 2:
raise SystemExit("Usage: <smiles>" 7, (sys.argv[0],))

query_smiles = sys.argv[1]
start_time = time.time()

try:
query_mol = T.parse_molecule(query_smiles, "smistring")

(continues on next page)

4.24. Substructure screening with RDKit 89

chemfp Documentation, Release 3.5

(continued from previous page)

except ValueError as err:
raise SystemExit(str(err))

Compute the fingerprint and do the substructure screeening
fp = fptype.compute_fingerprint(query_mol)

result = chemfp.search.contains_fp(fp, screen)

search_time = time.time()

num_matches = 0

for augmented_id in result.get_ids():
id, smiles = augmented_id.split()
target_mol = T.parse_molecule(smiles, "smistring")
if target_mol.HasSubstructMatch(query_mol): # RDKit specific!
print(id, "matches", smiles)
num_matches += 1
else:
print(id, " ", smiles)
report_time = time.time()

Report the results
print ()
print ("= Screen search =")
print ("num targets:", len(screen))
print("screen size:", len(result))
print ("num matches:", num_matches)
print("screenout: %.1f%%" % (100.0 * (len(screen)-len(result)) / len(screen),))
if len(result) == 0:
precision = 100.0
else:
precision = (100.0*num_matches) / len(result)
print ("precision: /.1f//" % (precision,))
print("screen time: /.2f" Y (search_time - start_time,))
print ("atom-by-atom-search and report time: /.2f" 7 (report_time - search_time,))
print("total time: 7.2f" 7, (report_time - start_time,))

Reduce the computations without any screening
num_actual = 0
actual_start_time = time.time()
for augmented_id in screen.ids:
id, smiles = augmented_id.split()
target_mol = T.parse_molecule(smiles, "smistring")
if target_mol.HasSubstructMatch(query_mol): # RDKit specific!
num_actual += 1
actual_end_time = time.time()

print ()

print ("= Brute force search =")

print ("num matches:", num_actual)

print("time to test all molecules: /.2f" 7 (actual_end_time - actual_start_time,))
print("screening speedup: /.1f" 7 ((actual_end_time - actual_start_time) / (report_time -
<, start_time),))

90 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

Here’s the output with ‘clcccec1O’ on the command-line:

% python search.py clcccccl0
48548137 matches CCNC(=0)N/N=C/clcccc(0C)c1
48651969 matches CCCOCC(=0)NCclcccc(0C)cl
48980706 matches CCCCNC(=0)CCCclccc(0C)ccl
48661290 matches CCCOCC(=0)Ncicccc(0CC)cl
48653813 matches CCCOCC(=0)NCCOclcccc(C)cl

. many lines omitted ...
48930672 matches CS(=0) (=0)clccc(0c2nc(C3CC3)nc3sclc(c23)CCCC4)ccl
48673774 matches COclccc(C)ccl-niccc(C(=0)N2CCc3[nH]cd4cceccc4c3C2)nl
48551088 matches Cclcc(C)c(CN2C(=0)NC3(CCOc4cccccdld)C2=0)c(C)cl
48944841 matches CC(C) (CNS(=0) (=0)CC12CCC(CC1=0)C2(C)C)clccc2c(c1)0C02
48729925 matches 0=C(Cnlc(-c2ccccc2)nocl=0)Nciccc2c(c1)0C1(CCCC1)02

= Screen search =

num targets: 14967

screen size: 4946

num matches: 4943

screenout: 67.0%

precision: 99.9%

screen time: 0.00

atom-by-atom-search and report time: 2.99
total time: 3.00

= Brute force search =

num matches: 4943

time to test all molecules: 5.00
screening speedup: 1.7

It’s a relief to see that the versions with and without the screen give the same number of matches!

Next, ‘clcccecll’ (that’s iodobenzene):

% python search.py 'clccccclI!

48731386 matches Cclcc(CNC(=0)c2ccc(I)cc2)onl
48671550 matches NC(=0)Cclccc(0CC(=0)Nc2ccc(I)cc2)ccl
48731482 matches Cclcc(CNC(=0)c2cccc(I)c2)onl
48731331 matches Cclcc(CNC(=0)c2ccccc2I)onl

48741344 matches CN(C)C(=0)clcccc(NC(=0)Nc2ccc(I)cc2)cl
48584231 matches 0=C(Nclcccc(COCC2CC2)cl)clccececcll
48688164 matches CC1CN(C(=0)c2ccc(I)cc2)CC(C) (C)01
48688205 matches CC1CN(C(=0)c2cccc(I)c2)CC(C) (C)01
48946427 matches N#CC1CCN(S(=0) (=0)c2ccc(I)cc2)CC1
48522115 matches CC1(C)COCCN1C(=0)cilccc(F)ccll

= Screen search =

num targets: 14967

screen size: 10

num matches: 10

screenout: 99.9%

precision: 100.0%

screen time: 0.01

atom-by-atom-search and report time: 0.01

(continues on next page)

4.24. Substructure screening with RDKit 91

chemfp Documentation, Release 3.5

(continued from previous page)

total time: 0.02

= Brute force search =

num matches: 10

time to test all molecules: 5.17
screening speedup: 281.4

Now for some bad news. Try ‘[Pu]’. This doesn’t screen out many structures yet has no matched. I'll report
the search statistics:

= Screen search =

num targets: 14967

screen size: 14967

num matches: 0O

screenout: 0.0%

precision: 0.0%

screen time: 0.00

atom-by-atom-search and report time: 8.40
total time: 8.40

= Brute force search =

num matches: 0O

time to test all molecules: 5.24
screening speedup: 0.6

That’s horrible! It’s slower! What happened is that ‘[Pu]’ generates a fingerprint with only two bits set:

% echo '[Pu] plutonium' | rdkit2fps --pattern --fpSize 1024

#FPS1

#num_bits=1024

#type=RDKit-Pattern/4 fpSize=1024

#software=RDKit/2019.09.1 chemfp/3.4

#date=2020-05-13T12:12:48
000000002000
00008000
00
0000000000000000 plutonium

You know, that’s really hard to see. I'll use a bit of perl to replace the zeros with “”s:

% echo '[Pu] plutonium' | python ../rdkit2fps --pattern --fpSize 1024 \
? | perl -pe 's/0/./g'

#FPS1

#num_bits=1.24

#type=RDKit-Pattern/4 fpSize=1.24

#software=RDKit/2.19..9.1 chemfp/3.4

#date=2.2.-.5-13T12:15:19

................ plutonium

W

Ha! And it converted zeros in the header lines to “” (and it would have converted any zeros in the identifier).

92 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

T’ll just omit the header lines in the following.

Unfortunately, so many other structures also set those two bits that it isn’t an effective screen for plutonium.

4.25 Reading structure fingerprints using a toolkit

In this section you’ll learn how to use a chemistry toolkit to compute fingerprints from a given structure file.

What happens if you're given a structure file and you want to find the two nearest matches in an FPS file?
You’ll have to generate the fingerprints for the structures in the structure file, then do the comparison.

For this section you’ll need to have a chemistry toolkit. T’ll use the “chebi_maccs.fps” file gener-
ated in Using a toolkit to process the ChEBI dataset as the targets, and the PubChem file Com-
pound__099000001_099500000.sdf.gz as the source of query structures:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> from chemfp import search
>>> targets = chemfp.load_fingerprints('"chebi_maccs.fps")
>>> queries = chemfp.read_molecule_fingerprints(targets.metadata, "Compound_ 099000001 _
—099500000.sdf .gz")
>>> for (query_id, hits) in chemfp.knearest_tanimoto_search(queries, targets, k=2,
—threshold=0.0):

print(query_id, "=>", end=" ")

for (target_id, score) in hits.get_ids_and_scores():

print (" " % (target_id, score), end=" ")
print ()

99000039 => CHEBI:116650 0.870 CHEBI:105034 0.812

99000230 => CHEBI:120636 0.840 CHEBI:127468 0.839

99002251 => CHEBI:92604 0.756 CHEBI:92191 0.733

99003537 => CHEBI:112376 0.745 CHEBI:32193 0.696

99003538 => CHEBI:112376 0.745 CHEBI:32193 0.696
. many, many lines omitted ...

That’s it! Pretty simple, wasn’t it? 1 didn’t even need to explicitly specify which toolkit I wanted to use
because the read_molecule_fingerprints() got that information from the arena’s Metadata.

The new function is chemfp.read_molecule_fingerprints(), which reads a structure file and generates
the appropriate fingerprints for each one. The first parameter of this is the metadata used to configure the
reader. In my case it’s:

>>> print(targets.metadata)
#num_bits=166
#type=0penBabel-MACCS/2
#software=0OpenBabel/3.0.0 chemfp/3.4
#source=ChEBI_lite.sdf.gz
#date=2020-05-12T10:09:35

The metadata’s “type” told chemfp which toolkit to use to read molecules, and how to generate fingerprints
from those molecules.

You can pass in your own metadata as the first parameter to read_molecule_fingerprints, and as a
shortcut, if you pass in a string then it will be used as the fingerprint type.

For examples, if you have OpenBabel installed then you can do:

4.25. Reading structure fingerprints using a toolkit 93

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.5

>>> import chemfp
>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("OpenBabel-MACCS", "Compound_099000001_
—099500000.sdf.gz")
>>> for i, (id, fp) in enumerate(reader):

print(id, bitops.hex_encode(fp))

if 1 ==

break

99000039 000004000000300001c0004e9361b041dcel676elf
99000230 000000800100649f0445a7fe2aecableb8f6bdfff1f
99002251 00000000001132000088004985601140dcede3felf
99003537 00000000200020000156149a906994830c3159aelf

If you have OEChem and OEGraphSim installed and licensed then you can do:

>>> import chemfp
>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("OpenEye-MACCS166", "Compound_099000001_
—099500000.sdf .gz")
>>> for i, (id, fp) in enumerate(reader):

print(id, bitops.hex_encode(fp))

if 1 ==

break

99000039 000004000000300001c0404e93e19053dcal6bbelb
99000230 000000880100648f0445a7fe2aeabl1738f2abb7elb
99002251 00000000001132000088404985e01152dcad46b7elb
99003537 00000000200020000156149a90e994938c30592e1b

If you have RDKit installed then you can do:

>>> import chemfp
>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_099000001_
—099500000.sdf .gz")
>>> for i, (id, fp) in enumerate(reader):

print(id, bitops.hex_encode(fp))

if i ==

break

99000039 000004000000300001c0004e9361b051dcel676elf
99000230 000000800100649f0445a7fe2aeablfb8f6bdfff1f
99002251 00000000001132000088004985601150dcede3felf
99003537 00000000200020000156149a906994930c3159aelf

And if you have the CDK JAR file on your CLASSPATH and the JPype Python/Java adapter installed then
you can do:

>>> import chemfp

>>> from chemfp import bitops

>>> reader = chemfp.read_molecule_fingerprints("CDK-MACCS", "Compound_ 099000001 _
—099500000.sdf.gz")

(continues on next page)

94 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

(continued from previous page)

>>> for i, (id, fp) in enumerate(reader):
print(id, bitops.hex_encode(fp))
if i ==
break

99000039 000004000000300001c4004e83e1b053dcel6f6elf
99000230 000000800100649f0645a7fe2aecableb8febffff1f
99002251 00000000001132000088004985e01172dcedebfelf
99003537 00000000200020000356149a80e994930cb179aelf

4.26 Select a fingerprint subset using a list of indices

In this section you’ll learn how to make a new arena given a list of indices for the fingerprints to select from
an old arena.

For this section, one example will use indices will be a randomly selected subset of the indices in the
fingerprint. If that’s your goal, see the next section, Sample N fingerprints at random to learn how to use
FingerprintArena.sample (). If you want to split the arena into a training set and a test set, see the section
after that, Split into training and test sets which shows how to use Fingerprintdrena. train_test_split ().

A FingerprintArena slice creates a subarena. Technically speaking, this is a “view” of the original data.
The subarena doesn’t actually copy its fingerprint data from the original arena. Instead, it uses the same
fingerprint data, but keeps track of the start and end position of the range it needs. This is why it’s not
possible to slice with a step size other than +1.

This also means that memory for a large arena won’t be freed until all of its subarenas are also removed.

You can see some evidence for this because a FingerprintArena stores the entire fingerprint data as a set
of bytes named arena:

>>> import chemfp

>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> subset = targets[10:20]

>>> targets.arena is subset.arena

True

This shows that the targets and subset share the same raw data set. At least it does to me, the person who
wrote the code.

You can ask an arena or subarena to make a copy. This allocates new memory for the new arena and copies
all of its fingerprints there.

>>> new_subset = subset.copy()

>>> len(new_subset) == len(subset)
True

>>> new_subset.arena is subset.arena
False

>>> subset [7] [0]

'48637548'"

>>> new_subset [7] [0]

'48637548'"

4.26. Select a fingerprint subset using a list of indices 95

chemfp Documentation, Release 3.5

The FingerprintArena.copy () method can do more than just copy the arena. You can give it a list of
indices (or an iterable) and it will only copy those fingerprints:

>>> three_targets = targets.copy([3112, 0, 1234])

>>> three_targets.ids

['48942244', '48568841', '48628197']

>>> [targets.ids[3112], targets.ids[0], targets.ids[1234]]
['48628197', '48942244', '48568841']

Are you confused about why the identifiers aren’t in the same order? That’s because when you specify
indicies, the copy automatically reorders them by popcount and stores the popcount information. This
requires a bit extra overhead to sort, but makes future searches faster. Use reorder=False to leave the
order unchanged

>>> my_ordering = targets.copy([3112, 0, 1234], reorder=False)
>>> my_ordering.ids
['48628197', '48942244', '48568841']

Suppose you want to partition the data set into two parts; one containing the fingerprints at positions 0, 2,
4, .. and the other containing the fingerprints at positions 1, 3, 5, ... The range() function returns iterator
for the right length, and you can have it start from either 0 or 1 and count by twos, like this:

>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]
>>> list(range(l, 10, 2))
[1, 3, 5, 7, 9]

so the following will create the correct indices and from that the correct arena subsets:

>>> evens = targets.copy(range(0, len(targets), 2))
>>> odds = targets.copy(range(l, len(targets), 2))
>>> len(evens)

7484

>>> len(odds)

7483

(Use FingerprintArena.train_test_split () if you want to select two disjoint subsets selected at random
without replacement.)

What about getting a random subset of the data? I want to select m records at random, without replacement,
to make a new data set. (See the next section for a better way to do this using FingerprintArena. sample().)

You can see this just means making a list with m different index values. Python’s built-in random.sample
function makes this easy:

>>> import random

>>> random.sample("abcdefgh", 3)

['b', 'n', '£']

>>> random.sample("abcdefgh", 2)

('d', 'a'l

>>> random.sample([5, 6, 7, 8, 91, 2)
[7, 9]

>>> help(random.sample)

Help on method sample in module random:

(continues on next page)

96 Chapter 4. Fingerprints and fingerprint search examples

https://docs.python.org/3/library/random.html#random.sample

chemfp Documentation, Release 3.5

(continued from previous page)

sample (population, k) method of random.Random instance
Chooses k unique random elements from a population sequence or set.

To choose a sample in a range of integers, use range as an argument.
This is especially fast and space efficient for sampling from a
large population: sample (range (10000000), 60)

The last line of the help points out what do next!:

>>> random.sample(range(len(targets)), 5)
[610, 2850, 705, 1402, 2635]

>>> random.sample(range(len(targets)), 5)
[1683, 2320, 1385, 2705, 1850]

(Note: on Python 2.7 you’ll need to use “xrange()” not “range()”.)

Putting it all together, and here’s how to get a new arena containing 100 randomly selected fingerprints,
without replacement, from the targets arena:

>>> sample_indices = random.sample(range(len(targets)), 100)
>>> sample = targets.copy(indices=sample_indices)

>>> len(sample)

100

But really, see the next section for an easier way to do this.

4.27 Sample N fingerprints at random

In this section you’ll learn how to select a random subset of the fingerprints in an arena.

The previous section showed how to use the Fingerprintdrena.copy() method to create a new arena
containing a randomly selected subset of the fingerprints in an arena. This required writing some code to
specify the randomly samples indices.

Chemfp 3.4.1 added the method FingerprintArena.sample() which lets you make a random sample using
a single call:

>>> import chemfp

>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> sample_arena = targets.sample(10000)

>>> len(sample_arena)

10000

>>> sample_arena.ids[:5]

['48941399', '48940284', '48943050', '48656867', '48839855']

If you do the sample a few times you’ll see that many of the elements occur often:

>>> targets.sample(10000) .ids[:5]
['48942244', '48656867', '48966209', '48946425', '48946734']
>>> targets.sample(10000) .ids[:5]
['48942244', '48940284', '48656359', '48839855', '48946668']
>>> targets.sample(10000) .ids[:5]

(continues on next page)

4.27. Sample N fingerprints at random 97

chemfp Documentation, Release 3.5

(continued from previous page)

['48942244', '48940284', '48656359', '48656867', '48839855']
>>> targets.sample(10000) .ids[:5]
['48940284', '48656359', '48656867', '48839855', '48946668']

This is for two reasons. First, the sample size is about 2/3rds of the size of the the data set:

>>> len(targets)
14967

which means there’s a roughly 2/3rds chance that a given record will be in the sample. Second, by default
the sampled fingerprints are reordered by popcount when making the arena, which means many of the first
few identifiers are the same.

Set reorder to False to keep the fingerprints in random sample order:

>>> targets.sample (10000, reorder=False).ids[:5]
['48830242', '48946583', '48559359', '48836764', '48692192']
>>> targets.sample (10000, reorder=False).ids[:5]
['48868183"', '48703234', '48577832', '48913224', '48659805']
>>> targets.sample (10000, reorder=False).ids[:5]
['48965603', '48596355', '48691077', '48688289', '48940955']
>>> targets.sample (10000, reorder=False).ids[:5]
['48560433', '48933559', '48662000', '48958077', '48675138']

Remember that similarity search performance is better if the the fingerprints are sorted by popcount.

The above examples used num__samples=10000. If num__samples is an integer, then it’s used as the number
of samples to make. (Chemfp raises a ValueError if the size is negative or too large.) If num_samples is a
float between 0.0 and 1.0 inclusive then it’s used as the fraction of the dataset to sample. For example, the
following samples 10% of the arena, rounded down:

>>> len(targets.sample(0.1))
1496

If no rng is given then the underlying implementation uses Python’s random.sample function. That in turn
uses a random number generator (RNG) which was initialized with a hard-to-guess seed.

If you need a reproducible sample, you can pass in an integer rng value. This is used to seed a new RNG
for the sampling. In the following example, using the same seed always returns the same fingerprints:

>>> targets.sample(2, rng=123).ids
['48651340', '48778262']
>>> targets.sample(2, rng=123).ids
['48651340', '48778262']
>>> targets.sample(2, rng=789).ids
['48693989', '48507089']
>>> targets.sample(2, rng=789).ids
['48693989', '48507089']

Another option is pass in a random.Random() instance, which will be used directly as the RNG:

>>> import random
>>> my_rng = random.Random(123)
>>> targets.sample(2, rng=my_rng).ids

(continues on next page)

98 Chapter 4. Fingerprints and fingerprint search examples

http://docs.python.org/3/library/random.html#random.sample
https://docs.python.org/3/library/random.html#random.Random

chemfp Documentation, Release 3.5

(continued from previous page)

['48651340', '48778262']
>>> targets.sample(2, rng=my_rng).ids
['48730072"', '48908385']
>>> targets.sample(2, rng=my_rng).ids
['48690445', '48502715']

This may be useful if you need to make several random samples, want reproducibility, and only want to
specify one RNG seed. (Be aware that Python’s RNG may be subject to change across different versions of
Python.)

4.28 Split into training and test sets

In this section you’ll learn how to split an arena into two disjoint arenas, which can be then be used as a
training set and a test set.

The previous section, Sample N fingerprints at random showed how to use chemfp to select N fingerprints
at random from an arena. Sometimes you need two randomly selected subsets, with no overlap between the
two. For example, one might be used as a training set and the other as a test set.

Chemfp 3.4.1 added the method Fingerprintdrena. train_test_splsit () which does that. You give it the
number of fingerprints you want in the training set and/or the test set, and it returns two arenas; the first
is the training set and the second is the test set:

>>> import chemfp

>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")

>>> len(targets)

14967

>>> train_arena, test_arena = targets.train_test_split(train_size=10, test_size=5)
>>> len(train_arena)

10

>>> len(test_arena)

5

This function is modeled on the scikit learn function train_ test_split() , which allows for the sizes to be
specified as an integer number or a floating point fraction.

If a specified size is an integer, it is interpreted at the number of fingerprints to have in the corresponding set.
If a specified size is a float between 0.0 and 1.0 inclusive then it’s interpreted as the fraction of fingerprints
to select. For example, the following puts 10% of the fingerprints into the training arena and 20 fingerprints

>>> train_arena, test_arena = targets.train_test_split(train_size=0.1, test_size=20)
>>> len(train_arena), len(test_arena)
(1496, 20)

If you don’t specify the test or arena size then the training set gets 75% of the fingerprints and the test set
gets the rest:

>>> train_arena, test_arena = targets.train_test_split()
>>> len(train_arena), len(test_arena)
(11226, 3741)

If only one of train__size or test_size is specified then the other value is interpreted as the complement size,
so the entire arena is split into the two sets. In the following, 75% of the fingerprints are put into the training

4.28. Split into training and test sets 99

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

chemfp Documentation, Release 3.5

arena and 25% into the test arena:

>>> train_arena, test_arena = targets.train_test_split(train_size=0.75)
>>> len(train_arena), len(test_arena)
(11225, 3742)

It is better to let chemp figure out the complement size than to specify both sizes as a float because integer
rounding may cause a fingerprint to be left out (the test arena size is 3741 in the following when it should
be 3742):

>>> train_arena, test_arena = targets.train_test_split(train_size=0.75, test_size=0.25)
>>> len(train_arena), len(test_arena)
(11225, 3741)

By default, after the random sampling the fingerprints in each set are reordered by population count and
indexed for fast similarity search.

>>> from chemfp import bitops

>>> train_arena, test_arena = targets.train_test_split(10, 10)

>>> [bitops.byte_popcount(train_arena.get_fingerprint(i)) for i in range(10)]
[71, 118, 119, 145, 146, 159, 162, 167, 176, 196]

>>> [bitops.byte_popcount (test_arena.get_fingerprint(i)) for i in range(10)]
[e7, 116, 117, 121, 129, 131, 139, 183, 184, 193]

To keep the fingerprints in random sample order, specify reorder=_False:

>>> train_arena, test_arena = targets.train_test_split(10, 10, reorder=False)
>>> [bitops.byte_popcount (train_arena.get_fingerprint(i)) for i in range(10)]
[118, 53, 170, 110, 138, 169, 129, 125, 129, 151]
>>> [bitops.byte_popcount(test_arena.get_fingerprint(i)) for i in range(10)]
[172, 167, 123, 152, 147, 162, 156, 197, 45, 151]

The rng parameter affects how the fingerprints are samples. By default (if rng=None), Python’s default
RNG is used. If rng is an integer then it’s used as the seed for a new random.Random() instance. Otherwise
it’s assumed to be an RNG object and its sample() method is used to make the sample.

The rng parameter here works the same as in FingerprintArena.sample () so for examples see the previous
section, Sample N fingerprints at random.

4.29 Don’t reorder an arena by popcount

In this section you’ll learn about why you might want to store your fingerprints in specific order, rather than
being ordered by population count.

The previous section showed how to make an arena where the fingerprints are in a user-specified order:

>>> import chemfp

>>> targets = chemfp.load_fingerprints("pubchem_targets.fps")
>>> [targets.ids[i] for i in [3112, 0, 1234]]

['48628197"', '48942244', '48568841']

>>> targets.copy([3112, 0, 1234], reorder=False).ids
['48628197', '48942244', '48568841']

>>> targets.copy([3112, 0, 1234], reorder=True).ids
['48942244', '48568841', '48628197']

100 Chapter 4. Fingerprints and fingerprint search examples

https://docs.python.org/3/library/random.html#random.Random
https://docs.python.org/3/library/random.html#random.sample

chemfp Documentation, Release 3.5

If the reorder option is not specified, the fingerprints in the new arena will be in popcount order. Similarity
search is faster when the arena is in popcount order because it lets chemfp make an index of the different
regions, based on popcount, and use that for sublinear search.

Why would someone want search to be slower?

Sometimes data organization is more important. For one client I developed a SEA implementation, where
I compared a set of query fingerprints to about 50 other sets of target fingerprint sets. The largest set had
only few thousand fingerprints, so the overall search was fast without a popcount index.

I could have stored each target data set as its own file, but that would have resulted in about 50 data files
to manage, in addition to the original fingerprint file and the configuration file containing the information
about which identifiers are in which set.

Instead, I stored all of the target data sets in a single FPB file, where the fingerprints for the first set came
first, then the fingerprints for the second set, and so on. I also made a range file to store the set name and
the start/end range of that set in the FPB file. This reduced 50 files down to two, which was much easier to
manage.

It’s a bit fiddly to go through the details of how this works, because it requires set membership information
which is a bit complicated to extract and which won’t be used for the rest of this documentation. Instead
of walking though an example here, I’ll refer you to my essay ChEMBL target sets association network.

You can use the subranges directly as an arena slice, like arena[54:91] as the target. This will work, but
as I said earlier, the search time will be slower because the sublinear algorithm requires a popcount index.

If you need that search performance then during load time make a copy of the slice, as in arena[54:91].
copy (reorder=True), and use that as the target.

A few paragraphs ago I wrote that “I stored all of the target data sets in a single FPB file” When you load
an FPB format, the fingerprint order will be exactly as given in the file. However, if you load fingerprints
from an FPS file, the fingerprints are by default reordered. For example, given this data set:

% cat unordered_example.fps
#FPS1

0001 Recordl

ffee Record2

00f0 Record3

T’ll load it into chemfp and show that by default the records are in the order 1, 3, 2:

>>> import chemfp
>>> chemfp.load_fingerprints("unordered_example.fps").ids
['Recordl', 'Record3', 'Record2']

On the other hand, if I ask it to not reorder then the records are in the input order, which is 1, 2, 3:

>>> chemfp.load_fingerprints("unordered_example.fps", reorder=False).ids
['Recordl', 'Record2', 'Record3'l]

In short, if you want to preserve the fingerprint order as given in the input file then use the reorder=False
argument in chemfp.load_fingerprints().

4.30 Look up a fingerprint with a given id

In this section you’ll learn how to get a fingerprint record with a given id. You will need the “pub-
chem_ targets.fps” file generated in Generate fingerprint files from PubChem SD tags in order to do this

4.30. Look up a fingerprint with a given id 101

http://www.dalkescientific.com/writings/diary/archive/2017/03/27/chembl_target_sets_association_network.html

chemfp Documentation, Release 3.5

yourself.

All fingerprint records have an identifier and a fingerprint. Identifiers should be unique. (Duplicates are
allowed, and if they exist then the lookup code described in this section will arbitrarily decide which record
to return. Once made, the choice will not change.)

Let’s find the fingerprint for the record in “pubchem__ targets.fps” which has the identifier “14564126”. One
solution is to iterate over all of the records in a file, using the FPS reader:

>>> import chemfp
>>> for id, fp in chemfp.open('"pubchem_targets.fps"):

if id == "48500164":
break
. else:
raise KeyError("/r not found" % (id,))

>>> id, fpl[:5]
('48500164', b'\x07\xde\x0c\x00\x00")

I used the somewhat obscure else clause to the for loop. If the for finishes without breaking, which would
happen if the identifier weren’t present, then it will raise an exception saying that it couldn’t find the given
identifier.

If the fingerprint records are already in a FingerprintArena then there’s a better solution. Use the
FingerprintArena.get_fingerprint_by_id() method to get the fingerprint byte string, or None if the
identifier doesn’t exist:

>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")
>>> fp = arena.get_fingerprint_by_id("48500164")

>>> fp[:5]

b'\x07\xde\x0c\x00\x00'

>>> missing_fp = arena.get_fingerprint_by_id("does-not-exist")
>>> missing_fp

>>> missing_fp is None

True

Internally this does about what you think it would. It uses the arena’s id list to make a lookup table
mapping identifier to index, and caches the table for later use. Given the index, it’s very easy to get the
fingerprint.

In fact, you can get the index and do the record lookup yourself:

>>> arena.get_index_by_id("48500164")

8168

>>> arena[8168]

('48500164"', b'\x07\xde\x0c\x00\x00 .. rest omittted ..'"')

4.31 Sorting search results

In this section you’ll learn how to sort the search results.

The k-nearest searches return the hits sorted from highest score to lowest, and break ties arbitrarily. This
is usually what you want, and the extra cost to sort is small (k*log(k)) compared to the time needed to
maintain the internal heap (N*log(k)).

102 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

By comparison, the threshold searches return the hits in arbitrary order. Sorting takes up to N*log(N) time,
which is extra work for those cases where you don’t want sorted data. If you actually want it sorted, then
call SearchResult.reorder() method to sort the hits in-place:

>>> import chemfp

>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")

>>> query_fp = arena.get_fingerprint_by_id("48500164")

>>> from chemfp import search

>>> result = search.threshold_tanimoto_search_fp(query_fp, arena, threshold=0.90)
>>> len(result)

5

>>> result.get_ids_and_scores()

[('48530223"', 0.9044585987261147), ('48533220', 0.9230769230769231),
('48533212', 0.9299363057324841), ('48500164', 1.0), ('48501504',
0.906832298136646) 1]

>>>

>>> result.reorder("decreasing-score")

>>> result.get_ids_and_scores()

[('48500164', 1.0), ('48533212', 0.9299363057324841), ('48533220',
0.9230769230769231), ('48501504', 0.906832298136646),

('48530223', 0.9044585987261147)]

>>>

>>> result.reorder("increasing-score")

>>> result.get_ids_and_scores()

[('48530223"', 0.9044585987261147), ('48501504', 0.906832298136646) ,
('48533220', 0.9230769230769231), ('48533212', 0.9299363057324841),
('48500164', 1.0)]

There are currently eight different sort methods, all specified by a name string. These are
e increasing-score - sort by increasing score
e increasing-score-plus - sort by increasing score, breaking ties on increasing index
e decreasing-score - sort by decreasing score
e decreasing-score-plus - sort by decreasing score, breaking ties on increasing index
e increasing-index - sort by increasing target index
o decreasing-index - sort by decreasing target index
e reverse - reverse the current ordering
e move-closest-first - move the hit with the highest score to the first position

The first two sort by increasing score. The first one only considers the scores when sorting, and preserves
the original order of the indices for hits with the same score. The second one sorts by increasing score and,
if multiple hits have the same score, ties are broken by increasing index. This gives an absolute ordering to
the results, independent of history, but is a bit slower than the first option.

The third and fourth options sort by decreasing score. The third one only considers the scores when sorting,
and preserves the original order of the indices for hits with the same score. The fourth one sorts by decreasing
score and, if multiple hits have the same score, ties are broken by increasing index. This gives an absolute
ordering to the results, independent of history, but is a bit slower than the third option.

Note: Before chemfp 3.5 the increasing-score and decreasing-score implementations gave an absolute
order (the same as increasing-score-plus and decreasing-score-plus do now). This implementation

4.31. Sorting search results 103

chemfp Documentation, Release 3.5

detail was never documented. The behavior was changed to allow a faster sort implementation which does
not break ties for the same score.

If you find something useful for increasing-index and decreasing-index, let me know. They sort exactly
like their names describe.

The reverse method reverses the current ordering, and is mostly useful if you want to reverse the sorted
results from a k-nearest search.

The move-closest-first option exists to improve the leader algorithm stage used by the Taylor-Butina
algorithm. The newly seen compound is either in the same cluster as its nearest neighbor or it is the new
centroid. T felt it best to implement this as a special reorder term, rather than one of the other possible
options.

If you have suggestions for alternate orderings which might help improve your clustering performance, let
me know.

If you want to reorder all of the search results then you could use the SearchResult.reorder() method on
each result, but it’s easier to use SearchResults.reorder_all() and change everything in a single call. It
takes the same ordering names as reorder:

>>> from __future__ import print_function # Only for Python 2

>>> similarity_matrix = search.threshold_tanimoto_search_symmetric(

- arena, threshold=0.8)

>>> for query_id, row in zip(arena.ids, similarity_matrix):
print(query_id, "->", row.get_ids_and_scores() [:3])

48942244 > []
48941399 —> []
48940284 -> []
48943050 -> []
48656359 -> [('48656867', 0.9761904761904762), ('48656360', 0.9111111111111111), (
— '48650490"', 0.851063829787234)]
48656867 —-> [('48656360', 0.8913043478260869), ('48650490', 0.8333333333333334), (
< '48521769', 0.8)]
48839855 -> [('48839869', 0.9148936170212766), ('48839845', 0.8775510204081632), (
—'48839868', 0.8269230769230769)]
. lines deleted

>>>
>>> similarity_matrix.reorder_all("increasing-score")
>>> for query_id, row in zip(arena.ids, similarity_matrix):

print(query_id, "->", row.get_ids_and_scores() [:3])

48942244 -> []
48941399 -> []
48940284 -> []
48943050 -> []
48656359 -> [('48680086', 0.803921568627451), ('48693263', 0.803921568627451), ('48693634
—"', 0.803921568627451)]
48656867 -> [('48521769', 0.8), ('48521768', 0.803921568627451), ('48653206', 0.
-.803921568627451)]
48839855 -> [('48839868', 0.8269230769230769), ('48839845', 0.8775510204081632), (
—.'48839869', 0.9148936170212766)]
. lines deleted

For display purposes, I used [:3] to display only the first three matches. In the first block the results are

104 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

in arbitrary order, while in the second the elements are sorted so the smallest score is first.

4.32 Working with raw scores and counts in a range

In this section you’ll learn how to get the hit counts and raw scores for an interval.

The length of a SearchResult is the number of hits it contains:

>>> import chemfp

>>> from chemfp import search

>>> arena = chemfp.load_fingerprints("pubchem_targets.fps")

>>> fp = arena.get_fingerprint_by_id("48500164")

>>> result = search.threshold_tanimoto_search_fp(fp, arena, threshold=0.2)
>>> len(result)

14888

This gives you the number of hits at or above a threshold of 0.2, which you can also get by doing chemfp.
search. count_tanimoto_hits_fp():

>>> gearch.count_tanimoto_hits_fp(fp, arena, threshold=0.2)
14888

The advantage to the first version is the result also stores the hits. You can query the hit to get the number
of hits which are within a specified interval. Here are the counts of the number of hits at or above 0.5, 0.80,
and 0.95:

>>> result.count (0.5)
7785

>>> result.count (0.8)
42

>>> result.count(0.95)
1

The first parameter, min__ score, specifies the minimum threshold. If not specified it’s -infinity. The second,
max__score, specifies the maximum, and is +infinity if not specified. Here’s how to get the number of hits
with a score of at most 0.95 and 0.5:

>>> result.count (max_score=0.95)
14887

>>> result.count (max_score=0.5)
7209

If you double-check the math, and add the number above 0.5 (7785) and the number below 0.5 (7209) you’ll
get 14994, even through there are only 14888 records. The extra 106 is because by default the count interval
uses a closed range. There are 106 hits with a score of exactly 0.5:

>>> result.count (0.5, 0.5)
106

The third parameter, interval, specifies the end conditions. The default is “[]” which means that both ends
are closed. The interval “()” means that both ends are open, and “[)” and “(]” are the two half-open/half-
closed ranges. To get the number of hits below 0.5 and the number of hits at or above 0.5 then you might
use:

4.32. Working with raw scores and counts in a range 105

chemfp Documentation, Release 3.5

>>> result.count(None, 0.5, "[)")
7103

>>> result.count (0.5, None, "[]")
7785

>>> 710347785

14888

This total matches the expected count. (A min or max of None means -infinity and +infinity, respectively.)

4.33 Cumulative search result counts and scores

In this section you’ll learn some more advanced ways to work with SearchResults and SearchResult instances.

I wanted to title this section “Going to SEA”, but decided to use a more descriptive name. “SEA” refers to
the “Similarity Ensemble Approach” (SEA) work of Keiser, Roth, Armbruster, Ernsberger, and Irwin. The
paper is available online from http://sea.bkslab.org/ , though I won’t actually implement it here. Why do
I mention it? Because these chemfp methods were added specifically to make it easier to support a SEA
implementation for one of the chemfp customers.

Suppose you have two sets of structures. How well do they compare to each other? I can think of various
ways to do it. One is to look at a comparison profile. Find all NxM comparisons between the two sets. How
many of the hits have a threshold of 0.2?7 How many at 0.57 0.95?

If there are “many”, then the two sets are likely more similar than not. If the answer is “few”, then they are
likely rather distinct.

I'll be more specific. 1 want to know if the coenzyme A-like structures in ChEBI are more similar to the
penicillin-like structures than one would expect by comparing two randomly chosen subsets. To quantify
“similar”, I’ll use Tanimoto similarity of the “chebi_ maccs.fps” fingerprints, which are the 166 MACCS key-
like fingerprints from RDMACCS for the ChEBI data set. See Using a toolkit to process the ChEBI dataset
for details about why I use the —-id-tag options:

Use one of the following to create chebi_maccs. fps

oe2fps --id-tag "ChEBI ID" --rdmaccs ChEBI_lite.sdf.gz -o chebi_maccs.fps
ob2fps --id-tag "ChEBI ID" --rdmaccs ChEBI_lite.sdf.gz -o chebi_maccs.fps
rdkit2fps --id-tag "ChEBI ID" --rdmaccs ChEBI_lite.sdf.gz -o chebi_maccs.fps
cdk2fps --id-tag "ChEBI ID" --rdmaccs ChEBI_lite.sdf.gz -o chebi_maccs.fps

T used oe2fps to create RDMACCS-OpenEye fingerprints.

The CHEBI id for coenzyme A is CHEBI:15346 and for penicillin is CHEBI:17334. I'll define the “coenzyme
A-like” structures as the 256 structures where the fingerprint is at least 0.95 similar to coenzyme A, and
“penicillin-like” as the 24 structures at least 0.85 similar to penicillin. This gives 6144 total comparisons.

You know enough to do this, but there’s a nice optimization I haven’t told you about. You can get the total
count of all of the threshold hits using the chemfp.search.SearchResults.count_all () method instead
of looping over each SearchResult and calling chemfp.search.SearchResult. count ():

from __future__ import print_function # Only for Python 2
import chemfp
from chemfp import search

def get_neighbors_as_arena(arena, id, threshold):
fp = arena.get_fingerprint_by_id(id)

(continues on next page)

106 Chapter 4. Fingerprints and fingerprint search examples

http://sea.bkslab.org/
ftp://ftp.ebi.ac.uk/pub/databases/chebi/SDF/ChEBI_lite.sdf.gz

chemfp Documentation, Release 3.5

(continued from previous page)

neighbor_results = search.threshold_tanimoto_search_fp(fp, chebi,,
—threshold=threshold)

neighbor_arena = arena.copy(neighbor_results.get_indices())

return neighbor_arena

chebi = chemfp.load_fingerprints("chebi_maccs.fps")

Find the 256 neighbors of coenzyme A
coA_arena = get_neighbors_as_arena(chebi, "CHEBI:15346", threshold=0.95)
print(len(coA_arena), "coenzyme A-like structures")

Find the 24 netighbors of pentcillin
penicillin_arena = get_neighbors_as_arena(chebi, "CHEBI:17334", threshold=0.85)
print(len(penicillin_arena), "penicillin-like structures")

I'll compute a profile at different thresholds
thresholds = [0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 0.95]

Compare the two sets. (For this case the speed difference between a threshold

of 0.25 and 0.0 is not noticible, but having it makes me feel better.)

coA_against_penicillin_result = search.threshold_tanimoto_search_arena(
coA_arena, penicillin_arena, threshold=min(thresholds))

Show a similarity profile
print("Counts coA/penicillin")
for threshold in thresholds:
print (" " % (threshold,
coA_against_penicillin_result.count_all(min_
—»score=threshold)))

This gives a not very useful output:

272 coenzyme A-like structures
24 penicillin-like structures
Counts coA/penicillin

0.30 6528
0.35 6528
0.40 6523
0.45 4403
0.50 1193
0.55 0
0.60 0
0.70 0
0.80 0
0.90 0
0.95 0

It’s not useful because it’s not possible to make any decisions from this. Are the numbers high or low?
It should be low, because these are two quite different structure classes, but there’s nothing to compare it
against.

I need some sort of background reference. What I'll do is construct two randomly chosen sets, one with 256
fingerprints and the other with 24, and generate the same similarity profile with them. That isn’t quite fair,

4.33. Cumulative search result counts and scores 107

chemfp Documentation, Release 3.5

since randomly chosen sets will most likely be diverse. Instead, I'll pick one fingerprint at random, then get
its 256 or 24, respectively, nearest neighbors as the set members (place the following code at the end of the
file with the previous code):

Get background statistics for random similarity groups of the same size
import random

Find a fingerprint at random, get its k neighbors, return them as a new arena
def get_random_fp_and_its_k_neighbors(arena, k):

fp = arena[random.randrange(len(arena))] [1]

similar_search = search.knearest_tanimoto_search_fp(fp, arena, k)

return arena.copy(similar_search.get_indices())

Il construct 1000 pairs of sets this way, accumulate the threshold profile, and compare the CoA /penicillin
profile to it:

Initialize the threshold counts to O
total_background_counts = dict.fromkeys(thresholds, 0)

REPEAT = 1000
for i in range (REPEAT):
Select background sets of the same size and accumulate the threshold count totals
setl = get_random_fp_and_its_k_neighbors(chebi, len(coA_arena))
set2 = get_random_fp_and_its_k_neighbors(chebi, len(penicillin_arena))
background_search = search.threshold_tanimoto_search_arena(setl, set2,
—»threshold=min(thresholds))
for threshold in thresholds:
total_background_counts[threshold] += background_search.count_all(min_
—.score=threshold)

print ("Counts coA/penicillin background")
for threshold in thresholds:
print (" " % (threshold,
coA_against_penicillin_result.count_all(min_
—,score=threshold),
total_background_counts[threshold] /,
— (REPEAT+0.0)))

Your output should now have something like this at the end:

Counts coA/penicillin background

0.30 6528 2798
0.35 6528 2273
0.40 6523 1789
0.45 4403 1301
0.50 1193 988
0.55 0 656
0.60 0 411
0.70 0 160
0.80 0 54
0.90 0 15
0.95 0 0

This is a bit hard to interpret. Clearly the coenzyme A and penicillin sets are not closely similar, but
for low Tanimoto scores the similarity is higher than expected. That difficulty is okay for now because I

108 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

mostly wanted to show an example of how to use the chemfp API. If you want to dive deeper into this sort
of analysis then read a three-part series I wrote at http://www.dalkescientific.com/writings/diary /archive/
2017/03/20/fingerprint_set_similarity.html on using chemfp to build a target set association network using
ChEMBL.

The SEA paper actually wants you to use the raw score, which is the sum of the hit scores in a given range,
and not just the number of hits. No problem! Use SearchResult.cumulative_score() for the cumulative
scores for an individual result, or SearchResults. cumulative_score_all () for the cumulative scores across
all of the results. The two functions compute almost identical values for the whole data set:

>>> sum(row.cumulative_score(min_score=0.5, max_score=0.9)
for row in coA_against_penicillin_result)
605.5158868869943
>>> coA_against_penicillin_result.cumulative_score_all(min_score=0.5, max_score=0.9)
605.5158868869953

The cumulative methods, like the count method you learned about in the previous section, also take the
interval parameter for when you don’t want the default of “[]”.

You may wonder why these two values aren’t exactly the same. They differ because floating point addition
is not associative. The first computes the sum for each result, then the sum of sums. The second computes
the sum by adding each score to the cumulative sum.

I get a different result if I sum up the values in reverse order:

>>> sum(list(row.cumulative_score(min_score=0.5, max_score=0.9)
o for row in coA_against_penicillin_result)[::-1])
605.5158868869959

Which is the “right” score? The cumulative_score_all() method at least matches the one you might write
if you computed the sum directly:

>>> total_score = 0.0
>>> for row_scores in coA_against_penicillin_result.iter_scores():
for score in row_scores:
if 0.5 <= score <= 0.9:
total_score += score

>>> total_score
605.5158868869953

4.34 Writing fingerprints with a fingerprint writer

In this section you’ll learn how to create a fingerprint file using the chemfp fingerprint writer API.

You probably don’t need this section. In most cases you can save the contents of an FPS reader or fingerprint
arena by using the FingerprintReader. save () method, as in the following examples:

chemfp.open("pubchem_targets.fps").save("example.fps")
chemfp.open("pubchem_targets.fps").save("example.fpb")
chemfp.open("pubchem_targets.fpb") .save("example.fps.gz")

The structure-based fingerprint readers also implement the save method so you could simply write:

4.34. Writing fingerprints with a fingerprint writer 109

http://www.dalkescientific.com/writings/diary/archive/2017/03/20/fingerprint_set_similarity.html
http://www.dalkescientific.com/writings/diary/archive/2017/03/20/fingerprint_set_similarity.html

chemfp Documentation, Release 3.5

import chemfp

reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_099000001_
—099500000.sdf .gz")

reader.save("example.fps") # or "ezample.fpb"

However, if you generate the fingerprints yourself, or want more fine-grained control over the writer param-
eters then read on!

(If you don’t have RDKit installed then use “OpenBabel-MACCS” for Open Babel’s MACCS fingerprints,
“OpenEye-MACCS166” for OpenEye’s, or “CDK-MACCS” for CDK'’s.)

Here’s an example of the fingerprint writer API. I open the writer, ask it to write a fingerprint id and the
fingerprint, and then close it.

>>> import chemfp
>>> writer = chemfp.open_fingerprint_writer("example.fps")
>>> writer.write_fingerprint ("ABC123", b"\0\0\0\0\0\3\2\1")
>>> writer.close()

I’ll ask Python to read the file and print the contents:

>>> from __future__ import print_function # Only for Python 2
>>> print(open("example.fps").read())

#FPS1

0000000000030201 ABC123

Of course you don’t need to use chemfp to write this file. It’s simple enough that you could get the same
result in fewer lines of normal Python code. The advantage starts to be useful when you want to include
metadata.

>>> metadata = chemfp.Metadata(num_bits=64, type="Example-FP/0")

>>> writer = chemfp.open_fingerprint_writer("example.fps", metadata)
>>> writer.write_fingerprint ("ABC123", b"\0\0\0\0\0\3\2\1")

>>> writer.close()

>>>

>>> print(open("example.fps") .read())

#FPS1

#num_bits=64

#type=Example-FP/0

0000000000030201 ABC123

Even then, native Python code is probably easier to use if you know what the header lines will be, because
it’s a bit of a nuisance to create the chemfp.Metadata yourself.

On the other hand, if you have a chemfp fingerprint type you can just ask it for the correct metadata instance:

>>> fptype = chemfp.get_fingerprint_type ("RDKit-MACCS166")
>>> metadata = fptype.get_metadata()

>>> metadata

Metadata(num_bits=166, num_bytes=21, type='RDKit-MACCS166/2',
aromaticity=None, sources=[], software='RDKit/2019.09.1
chemfp/3.4', date='2020-05-13T13:34:37")

Putting the two together, and switching to a 21 byte fingerprint instead of an 8 byte fingerprint, gives:

110 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

>>> from __future__ import print_function # Only for Python 2

>>> import chemfp

>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")

>>> writer = chemfp.open_fingerprint_writer("example.fps", fptype.get_metadata())
>>> writer.write_fingerprint ("ABC123", b

< "\0\1\2\3\4\5\6\7\x08\x09\x0A\x0B\x0C\x0D\x0E\xOF\x10\x11\x12\x13\x14")
>>> writer.close()

>>>

>>> print(open("example.fps") .read())

#FPS1

#num_bits=166

#type=RDKit-MACCS166/2

#software=RDKit/2019.09.1 chemfp/3.4

#date=2020-05-13T13:35:23

000102030405060708090a0b0c0d0e0£1011121314 ABC123

In real life that fingerprint comes from somewhere. The high-level structure-based fingerprint reader has a
handy metadata attribute:

>>> filename = "Compound_099000001_099500000.sdf.gz"

>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
>>> print(reader.metadata)

#num_bits=166

#type=RDKit-MACCS166/2

#software=RDKit/2019.09. 1chemfp/3.4
#source=Compound_099000001_099500000.sdf .gz

#date=2020-05-13T13:36:11

By the way, note that this includes the source filename, which FingerprintType.get_metadata () can’t
automatically do. (See Merging multiple structure-based fingerprint sources for an example of how to pass
that information to get_ metadata().)

A structure-based fingerprint reader is just like any other reader, so you can iterate over the (id, fingerprint)
pairs:

>>> from chemfp import bitops
>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
>>> for count, (id, fp) in enumerate(reader):
print(id, "=>", bitops.hex_encode(fp))
if count ==
break

99000039 => 000004000000300001c0004e9361b051dcel676elf
99000230 => 000000800100649f0445a7fe2aeablfb8f6bdfff1f
99002251 => 00000000001132000088004985601150dcede3felf
99003537 => 00000000200020000156149a906994930c3159aelf
99003538 => 00000000200020000156149a906994930c3159aelf
99005028 => 00000000000000008000004e84683ca49100f7falf

You probably already see how to combine this with Fingerprintiriter.write_fingerprint () to generate
the FPS output. The key part would look like:

for id, fp in reader:
writer.write_fingerprint(id, fp)

4.34. Writing fingerprints with a fingerprint writer 111

chemfp Documentation, Release 3.5

While that would work, there’s a better way. The chemfp fingerprint writer has a Fingerprintiriter.
write_fingerprints () method which takes a list or iterator of (id, fingerprint) pairs. Here’s a better way
to write the code:

import chemfp

filename = "Compound_099000001_099500000.sdf.gz"

reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
writer = chemfp.open_fingerprint_writer("example.fps", reader.metadata)
writer.write_fingerprints(reader)

writer.close()

reader.close()

Note: See the next section for an even better solution

which uses a context manager.

This produces output which starts:

#FPS1

#num_bits=166

#type=RDKit-MACCS166/2

#software=RDKit/2019.09.1 chemfp/3.4
#source=Compound_099000001_099500000.sdf .gz
#date=2020-05-13T13:38:31
000004000000300001c0004e9361b051dcel676elf 99000039
000000800100649f0445a7fe2aeablfb8f6bdfff1f 99000230
00000000001132000088004985601150dce4e3felf 99002251
00000000200020000156149a906994930c3159aelf 99003537

Why is write_fingerprints “better” than multiple calls to write_fingerprint? I think it more directly
describes the goal of writing all of the fingerprints, rather than the mechanics of unpacking and repacking
the (id, fingerprint) pairs. I had hoped that there would be performance improvement, because there’s less
Python function call overhead, but my timings show no differences.

However, there’s a still better way, which is to use a context manager to close the files automatically, rather
than calling close () explicitly. I'll leave that for the next section.

4.35 Fingerprint readers and writers are context managers

In this section you’ll learn how the fingerprint readers and writers can be used as a context manager.

The previous section ended with the following code:

import chemfp

filename = "Compound_099000001_099500000.sdf.gz"

reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
writer = chemfp.open_fingerprint_writer("example.fps", reader.metadata)
writer.write_fingerprints(reader)

writer.close()

reader.close()

This reads a PubChem file with RDKit, generates MACCS fingerprints, and saves the results to “exam-
ple.fps”.

The two FingerprintWriter.close() lines ensure that the reader and writer files are closed. This isn’t
required for a simple script, because Python will close the files automatically at the end of the script, or
when the garbage collector kicks in.

112 Chapter 4. Fingerprints and fingerprint search examples

https://www.python.org/dev/peps/pep-0343/

chemfp Documentation, Release 3.5

However, since the writer may buffer the output, you have to close the file before you or another program
can read it. It’s good practice to always close the file when you’re done with it, as otherwise there are ways
to get really confused about why you don’t have a complete file.

Even with the explicit close calls, if there’s an exception in FingerprintWriter.write_fingerprints ()
then the files will be left open. In older-style Python this was handled with a try/finally block, but that’s
verbose. Instead, chemfp’s readers and writers implement modern Python’s context manager API, to make
it easier to close files automatically at just the right place. Here’s what the above looks like with a context
manager:

import chemfp
filename = "Compound_099000001_099500000.sdf.gz"
with chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename) as reader:
with chemfp.open_fingerprint_writer("example.fps", reader.metadata) as writer:
writer.write_fingerprints(reader)

Isn’t that nice and short? Just bear in mind that it’s even more succinctly written as:

import chemfp

filename = "Compound_099000001_099500000.sdf.gz"

with chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename) as reader:
reader.save ("example.fps")

4.36 Write fingerprints to stdout or a file-like object

In this section you’ll learn how to write fingerprints to stdout, and how to write them to a BytesIO instance.

The previous section showed examples of passing a filename string to chemfp. open_fingerprint_writer().
If the filename argument is None then the writer will write to stdout in uncompressed FPS format:

>>> import chemfp

>>> writer = chemfp.open_fingerprint_writer(None,

. chemfp.Metadata(num_bits=16, type="Experiment/1"))
#FPS1
#num_bits=16

#type=Experiment/1

>>> writer.write_fingerprint ("QWERTY", b"AA")
4141 QWERTY

>>> yriter.write_fingerprint ("SHRDLU", b"\0\1")
0001 SHRDLU

>>> yriter.close()

The filename argument may also be a file-like object, which is defined as any object which implements the
method write(s) where s is a byte string. A i0.ByteslO instance is one such file-like object. It gives access
to the output as a byte string:

>>> from __future__ import print_function # Only for Python 2

>>> import chemfp

>>> from io import BytesIO

>>> f = BytesIOQ)

>>> writer = chemfp.open_fingerprint_writer(f, chemfp.Metadata(num_bits=16, type=
—"Experiment/1"))

>>> print(f.getvalue() .decode("utf8")) # convert byte string to text

(continues on next page)

4.36. Write fingerprints to stdout or a file-like object 113

https://docs.python.org/2/library/io.html#io.BytesIO

chemfp Documentation, Release 3.5

(continued from previous page)

#FPS1
#num_bits=16
#type=Experiment/1

>>> writer.write_fingerprint ("ETAOIN", b"00")

>>> writer.close()

>>> print(f.getvalue() .decode("utf8")) # convert byte string to text
#FPS1

#num_bits=16

#type=Experiment/1

3030 ETAOIN

You can see that closing the fingerprint writer does not close the underlying file-like object. (If it did then
you couldn’t get access to the string content, which gets deleted when the StringlO is closed.)

You can also write an FPB file to a file-like object, if it supports seek() and tell() and binary writes. This
means that you cannot write an FPB format to stdout, but you can write it to a BytesIO instance.

>>> import chemfp

>>> from io import BytesIO

>>> f = BytesI0OQ)

>>> writer = chemfp.open_fingerprint_writer(f, format="fpb")
>>> yriter.write_fingerprint("ID123", b"\x01\xfe")

>>> yriter.close()

>>> len(f.getvalue())

2269

4.37 Writing fingerprints to an FPB file

In this section you’ll learn how to write an FPB file.

The FPS file is a text format which was designed to be easy to read and write. The FPB file is a binary
format which is designed to be fast to load. Internally it stores the fingerprints in a way which can be
mapped directly to the arena data structure. However, writing this format yourself is not easy.

Instead, let chemfp do it for you. With the chemfp.open_fingerprint_writer() function, the difference
between writing an FPS file and an FPB file is a matter of changing the extension. Here’s a simple example:

>>> import chemfp

>>> yriter = chemfp.open_fingerprint_writer("simple.fpb")

>>> writer.write_fingerprints([("first", b"\xff\xff"), ("second", b"ZZ"), ("third", b
<"\1\2")1)

>>> writer.close()

Almost all you need to know is to use the “.fpb” extension instead of “.fps”. The rest of this section goes into
low-level details that might be enlightening, but probably aren’t that directly useful for most people.

It’s hard to show the content of the FPB file, because it is binary. I'll do a character dump to show the first
96 bytes:

% od -c simple.fpb
0000000 F P B 1 \r \no \0o N0 \r \No \o N0 \O \O \O \O

(continues on next page)

114 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

(continued from previous page)

0000020 M E T A # n u m _ b i t s = 1 6
0000040 \n # \NO \0O N0 \NO N0 \O \O A R E NOO2 \O \O
0000060 N0 \b N0 \O \O 002 \O \O 001 002 \O \O \O \O \O \O
0000100 Z Z \NO N\NO \O \NO \NO \O 377 377 \O \O \O \O \O \oO
0000120 H N0 \0 \0o \o \0o \0 \0o P 0 P C \No \0o \Oo \O

The first eight bytes are the file signature. Following that are a set of blocks, with eight bytes for the length,
a four byte block type name, and then the block content. Here you can see the “META”data block, followed
by the “AREN”a block containing the fingerprint data, followed by the start of the “POPC”ount block with
the popcount index information.

That’s probably a bit too much detail for you. I’'ll use chemfp to read the file and show the contents:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp

>>> reader = chemfp.open("simple.fpb")

>>> print(reader.metadata)

#num_bits=16

>>> from chemfp import bitops
>>> for id, fp in reader:
print(id, "=>", bitops.hex_encode(fp))

third => 0102
second => baba
first => ffff

Unlike the FPS format, the FPB format requires a num__bits in the metadata. Since I didn’t give the writer
that information, it figured it out from the number of bytes in the first written fingerprint.

You can see that record order is different than the input order. While the FPS fingerprint writer preserves
input order, the FPB writer will reorder the records by population count, so the records with fewer ‘on’ bits
come first. It then creates a popcount index, to mark the start and end location of all of the fingerprints
with a given popcount. This is used to pre-compute the popcount for a fingerprint, and quickly reject some
of the similarity search space.

Use the reorder parameter to control if the fingerprints should be reordered. The default is True, and False
will preserve the input order:

>>> yriter = chemfp.open_fingerprint_writer("simple.fpb", reorder=False)
>>> writer.write_fingerprints([("first", b"\xff\xff"), ("second", b"ZZ"), ("third", b
~"\1\2")1)
>>> yriter.close()
>>>
>>> reader = chemfp.open("simple.fpb")
>>> for id, fp in reader:
print(id, "=>", bitops.hex_encode(fp))

first => ffff
second => baba
third => 0102

You might think it’s a bit useless to preserve input order, because the performance won’t be as fast. It’s

4.37. Writing fingerprints to an FPB file 115

chemfp Documentation, Release 3.5

actually proved useful for one project, where the targets were broken up into clusters, and cluster membership
was done using a SEA analysis. Rather than have a few dozen separate fingerprint files, I stored everything
in the same file (including duplicate fingerprints), and used a configuration file which specified the cluster
name and its range in the file. This made it a lot easier to organize the data, and since there were only a
few thousand fingerprints sublinear search performance wasn’t needed.

The FPB fingerprint writer also has an alignment option. If you look very carefully at the character dump
you can see that the fingerprints are eight byte aligned:

0000040 \n # NO \NO NO \NO \NO \NO \NO A R E NOO2 \O \O
0000060 N0 \b \O \O \O 002 \O \O 001 002 \O \O N\O \NO \O \O
0000100 Z Z N0 NO N0 NO \O N\O 377 377 N0 \O \O N\NO \O \O
0000120 H N0 N0 N0 \No \0o \0o \0 P 0O P C \NO \NO \O \O

The “AREN?” is the start of the arena block, the next four bytes (“002 0 0 0 0”) are the number of bytes
in a fingerprint, in this case 2. The four bytes after that (“b 0 0 0”) are the number of bytes allocated for
each fingerprint; “b” is the escape code for backspace, or ASCII 8. Yes, 8 bytes are used even though the
fingerprints only have 2 bytes in them. This is because the FPB format expects to be able to use the 8 byte
“POPC” assembly instruction, if available, because that has the fastest performance.

After the storage size field is a byte for the spacer length. The “002” means two NUL spacer characters
follow. This is used to put the start of the first fingerprint on the eight byte boundary, so there will be no
alignment issues with using the POPC instruction. (This is not that important for recent Intel processors,
but Intel isn’t the only processor in the world.)

Finally you see the fingerprints; the first fingerprint is “001 002”, followed by six NUL characters to fill up
the 8 bytes of storage, the second is “Z Z” followed by six more NUL pad characters, etc.

If you are really working with a two byte fingerprint, then six NUL characters is likely a waste of space. You
can ask chemfp to use a two byte alignment instead:

>>> import chemfp

>>> yriter = chemfp.open_fingerprint_writer("simple.fpb", alignment=2)

>>> writer.write_fingerprints([("first", b"\xff\xff"), ("second", b"ZZ"), ("third", b
<"\1\2")7)

>>> writer.close()

giving:

% od -c simple.fpb

0000000 F P B 1 \Xr \n N0 N0 \r N0 \NOo N0 N0 \O \O \O
0000020 M E T A # n u m _ b i t s = 1 6
0000040 \n 017 \0O \NO \NO \O \NO \NO \O A R E N O002 \O \O
0000060 \0 002 \O \O \O \O 001 002 Z Z 377 377 H \0 \O \O
0000100 N0 N0 N0 N0 P O P C NO NO \NO NO NO NO \O \O

If you stare at it long enough you’ll see that the storage size is now two bytes, and that the fingerprints are
arranged without any padding. (Actually, since chemfp’s two byte popcount uses character pointers, you
could even use 1 byte alignment without a performance hit. But all this will do is save you at most one byte
of spacer.)

Going in the other direction, it’s possible to specify up to 256 bytes of alignment. This is far beyond any
conceivable use. Even the AVX instructions need only 256 bits, or 32 byte alignment, and that’s not a
requirement, only a performance optimization to avoid a cache line split.

(If some future instruction set needs a larger alignment then the FPB format acquire a new block type which
provides the right alignment.)

116 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

4.38 Specify the output fingerprint format

In this section you’ll learn about the format option to the fingerprint writer.

By default chemfp.open_fingerprint_writer() uses the destination filename’s extension to determine if
it should write an FPS file (“fps”), a gzip compressed FPS file (“fps.gz”), a zstandard compressed FPS file
(“fps.zst”) or an FPB file (“fpb”). If it doesn’t recognize the extension, or if the filename is None (to write
to stdout) then it will assume the FPS format.

If the destination is a file-like object then things become a bit more complicated. If the object has a name
attribute, which is the case with real file objects, then that will be examined for any known extension. That’s
why the following writes the output in fps.gz format:

>>> import chemfp

>>> f = open("example.fps.gz", "wb") # must be in binary mode!
>>> writer = chemfp.open_fingerprint_writer(f)

>>> writer.write_fingerprint ("ABC", b"\0\0\0\0")

>>> writer.close()

>>> f.close()

>>> open("example.fps.gz", "rb").read() # must be in binary mode!
b"\x1f\x8b\x08\x08K\xfc\xbb~\x02\xffexample.fps\x00S ... mode deleted
>>>

>>> import gzip

>>> print(gzip.open("example.fps.gz") .read())

b '#FPS1\n00000000\tABC\n"

>>> print(gzip.open("example.fps.gz") .read() .decode("utf8"))
#FPS1

00000000 ABC

There’s a large amount of magic behind the scenes to connect the filename in the Python open() call to the
chemfp output format.

The other solution is to just tell it which format to use, with the format parameter. For example, if you
want to send the output to stdout in gzip compressed FPS format then do:

writer = chemfp.open_fingerprint_writer(None, format="fps.gz")

If you want to save an FPB file to a BytesIO instance then do:

from io import BytesIO
f = BytesI0Q)
writer = chemfp.open_fingerprint_writer(f, format="fpb")

And if you really want to save to a file with an “fpb” extension but have it as an FPS file, then do:

writer = chemfp.open_fingerprint_writer("really_an_fps_file.fpb", format="fps")

But that would be silly.

4.39 Merging multiple structure-based fingerprint sources

In this section you’ll learn how to merge multiple fingerprint scores into a single file, and include the full list
of source filenames.

The structure-based fingerprint readers include a source filename in the metadata:

4.38. Specify the output fingerprint format 117

chemfp Documentation, Release 3.5

>>> from __future__ import print_function # Only for Python 2

>>> import chemfp

>>> filename = "Compound_099000001_099500000.sdf.gz"

>>> reader = chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename)
>>> print(reader.metadata)

#num_bits=166

#type=RDKit-MACCS166/2

#software=RDKit/2019.09.1 chemfp/3.4
#source=Compound_099000001_099500000.sdf .gz

#date=2020-05-13T13:57:58

If you have a single input file and a single output file then you can save the reader to an FPS or FPB file
directly:

>>> reader.save("example.fpb")
>>> reader.close()

Strictly speaking, the close () is rarely necessary as the garbage collector will close the file during finalization.
Still, it’s good practice to close file, and to use a context manager to ensure that the file is always closed.
Here’s what that looks like:

>>> with chemfp.read_molecule_fingerprints("RDKit-MACCS166", filename) as reader:
reader.save("example.fpb")

However you create it, the output file will have the original metadata:

>>> arena = chemfp.open("example.fpb")

>>> print(arena.metadata)

#num_bits=166

#type=RDKit-MACCS166/2
#software=RDKit/2019.09.1 chemfp/3.4
#source=Compound_099000001_099500000.sdf.gz
#date=2020-05-13T13:58:42

What happens if you want to want to merge multiple files? How does the output fingerprint file get the
correct metadata?

T’ll demonstrate the problem by computing fingerprints from two structure files. I'll get the fingerprint type
and ask it to create a metadata instance:

>>> from __future__ import print_function # Only for Python 2

>>> import chemfp

>>> filenames = ["Compound_099000001_099500000.sdf.gz", "Compound_048500001_049000000.
—sdf.gz"]

>>> fptype = chemfp.get_fingerprint_type ("RDKit-MACCS166")

>>> print(fptype.get_metadata())

#num_bits=166

#type=RDKit-MACCS166/2

#software=RDKit/2019.09.1 chemfp/3.4

#date=2020-05-13T14:00:13

The problem is that I also want to include the filenames as source fields in the metadata. The fingerprint
type doesn’t have this information. Instead, I’ll them in through the sources parameter, which takes a string
or a list of strings:

118 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

>>> metadata = fptype.get_metadata(sources=filenames)
>>> print (metadata)

#num_bits=166

#type=RDKit-MACCS166/2

#software=RDKit/2019.09.1 chemfp/3.4
#source=Compound_099000001_099500000.sdf .gz
#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-13T14:00:34

What remains is to pass this metadata to the fingerprint writer, then loop through the structure filenames
to compute the fingerprints and send them to the writer:

>>> with chemfp.open_fingerprint_writer("example.fpb", metadata=metadata) as writer:
for filename in filenames:
with fptype.read_molecule_fingerprints(filename) as reader:
writer.write_fingerprints(reader)

Here’s a quick check to see that the metadata was saved correctly:

>>> print(chemfp.open("example.fpb") .metadata)
#num_bits=166

#type=RDKit-MACCS166/2
#software=RDKit/2019.09.1 chemfp/3.4
#source=Compound_099000001_099500000.sdf . gz
#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-13T14:00:34

If your toolkit can’t parse one of the records then it will raise an exception. You likely want it to ignore
errors, which you can do with the errors option to chemfp.read_molecule_fingerprints (). The final code
for this section looks like:

import chemfp

filenames = ["Compound_099000001_099500000.sdf.gz", "Compound_048500001_049000000.sdf.gz

‘-)”]

fptype = chemfp.get_fingerprint_type ("RDKit-MACCS166")
metadata = fptype.get_metadata(sources=filenames)

with chemfp.open_fingerprint_writer("example.fpb", metadata=metadata) as writer:
for filename in filenames:
with fptype.read_molecule_fingerprints(filename, errors="ignore") as reader:
writer.write_fingerprints(reader)

4.40 Merging multiple fingerprint files

In this section you’ll learn how to make a modified copy of a metadata instance.

The previous section merged multiple structure-based fingerprints, and used the fingerprint type to get the
correct metadata instance.

4.40. Merging multiple fingerprint files 119

chemfp Documentation, Release 3.5

What if you want to merge several existing fingerprint files, and those use a fingerprint type that chemfp
doesn’t understand? In that case there is no chemfp fingerprint type, and therefore no get_metadata ()
method to call. Instead, you’ll need some other way to make a chemfp.Metadata instance.

I'll work through a solution, and start by using sdf2fps to extract the PubChem/CACTVS fingerprints from
two PubChem SD files:

% sdf2fps —--pubchem Compound_099000001_099500000.sdf.gz -o Compound_099000001_099500000.
—fps

% sdf2fps --pubchem Compound_048500001_049000000.sdf.gz -o Compound_048500001_049000000.
—fps

% head -7 Compound_099000001_099500000.fps | fold

#FPS1

#num_bits=881

#type=CACTVS-E_SCREEN/1.0 extended=2

#software=CACTVS/unknown

#source=Compound_099000001_099500000.sdf .gz

#date=2020-05-13T14:03:21
07de0d000000000000000000000000000000000000003c06010020010000008d2£00007800080000
0030148379203c034£13080015c0acee2a00410104ac4004101b851d261b10065£03ab8£29a41106

69001393e338d1017100000000204000000000000010200000000000000000 99000039
% head -7 Compound_048500001_049000000.fps | fold
#FPS1

#num_bits=881

#type=CACTVS-E_SCREEN/1.0 extended=2

#software=CACTVS/unknown

#source=Compound_048500001_049000000.sdf .gz

#date=2020-05-13T14:03:34
07de05000000000000000000000000000080060000000c0600000000000012802£00007800080000
00b01483£920cc0b6d9309001de0e44e2e004501b48548059099051d2e1911174503998d29041016
69401313£40801007010000000000000040800000000000002000000000000 48500020

Of course you could just ignore the header data, which is what the following does:

import chemfp
filenames = ["Compound_099000001_099500000.fps", "Compound_048500001_049000000.fps"]

with chemfp.open_fingerprint_writer("merged_pubchem.fps") as writer:
for filename in filenames:
with chemfp.open(filename) as reader:
writer.write_fingerprints(reader)

but then you’ll be left with no metadata in the FPS header:

% head -3 merged_pubchem.fps | fold

#FPS1
07de0d000000000000000000000000000000000000003c060100a0010000008d2£00007800080000
0030148379203c034£13080015c0acee2a00410104ac4004101b851d261b10065£03ab8£29a41106
69001393e338d41017100000000204000000000000010200000000000000000 99000039
07de1c000200000000000000000000000080040000003c0200000000000000800300007820080200
00b034870b604ce04103204211009542090e43100824040010119971301370664c21addce99c1427
6b881995e1398a405000010000000000008000000000000000000000000000 99000230

While you could do that, the metadata keeps track of potentially useful information, so it’s better to add it.

120 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

For that matter, metadata usually isn’t useful until some time after the fingerprints are generated. People
tend to put off writing code until it’s needed, but by then it’s too late. I've tried to make chemfp’s API easy,
to encourage people to add the right metadata from the start.

There are a couple of ways to add the right metadata. The classic way is to make your own chemfp.Metadata
with the right values:

>>> metadata = chemfp.Metadata(num_bits=881, type="CACTVS-E_SCREEN/1.0 extended=2",
software="CACTVS/unknown", sources=["Compound_099000001_099500000.sdf.gz",

.. "Compound_048500001_049000000.sdf .gz"])

>>> print (metadata)

#num_bits=881

#type=CACTVS-E_SCREEN/1.0 extended=2

#software=CACTVS/unknown

#source=Compound_099000001_099500000.sdf .gz

#source=Compound_048500001_049000000.sdf.gz

The downside is this requires knowing all of the fields beforehand. Another option is to copy the metadata
from the first fingerprint file, and ask the copy () to use a new list of sources:

>>> from __future__ import print_function # Only for Python 2

>>> import chemfp

>>> reader = chemfp.open("Compound_099000001_099500000.fps")

>>> metadata = reader.metadata.copy()

>>> metadata.sources

['Compound_099000001_099500000.sdf.gz"']

>>> metadata = reader.metadata.copy(sources=[
u'"Compound_099000001_099500000.sdf.gz",

. u"Compound_048500001_049000000.sdf.gz"])

>>> print(metadata)

#num_bits=881

#type=CACTVS-E_SCREEN/1.0 extended=2

#software=CACTVS/unknown

#source=Compound_099000001_099500000.sdf.gz

#source=Compound_048500001_049000000.sdf .gz

#date=2020-05-13T14:03:21

Now to put the pieces together. I'll make one pass through the fingerprint files to get the sources, and then
another pass to generate the output. If you only have a handful of files then this works nicely:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> filenames = ["Compound_099000001_099500000.fps", "Compound_048500001_049000000.fps"]
>>> sources = []
>>> for filename in filenames:
with chemfp.open(filename) as reader:
sources.extend (source.metadata.sources)

>>> sources

['Compound_048500001_049000000.sdf.gz', 'Compound_048500001_049000000.sdf.gz"']
>>> metadata = reader.metadata.copy(sources=sources) # use the last reader
>>> print (metadata)

#type=CACTVS-E_SCREEN/1.0 extended=2

#software=CACTVS/unknown

(continues on next page)

4.40. Merging multiple fingerprint files 121

chemfp Documentation, Release 3.5

(continued from previous page)

#source=Compound_048500001_049000000.sdf.gz
#source=Compound_048500001_049000000.sdf.gz
#date=2020-05-13T14:03:34

>>> with chemfp.open_fingerprint_writer ("merged_pubchem.fps", metadata=metadata) as,
—wWriter:
for filename in filenames:
with chemfp.open(filename) as reader:
writer.write_fingerprints(reader)

This code assumes that the fingerprints are compatible, that is, that the fingerprints are the same size, and
the fingerprint types and other metadata fields are compatible. The next section shows how to detect if
there are compatibility problems.

4.41 Check for metadata compatibility problems

In this section you’ll learn how to detect compatibility mismatches between two metadata instances, and
between a metadata and a fingerprint.

In the previous section you learned how to merge multiple fingerprint files, which all happened to have the
same fingerprint type. What happens if they are different types?

There are actually a few possible problems:
e the fingerprint lengths are different (very bad)
o the fingerprint types are different (probably bad)
o the software is from different versions (probably okay)

The chemfp.check_metadata_problems () function compares two metadata objects and returns a list of
possible problems:

>>> from __future__ import print_function # Only for Python 2
>>> import chemfp
>>> rdkit_metadata = chemfp.get_fingerprint_type("RDKit-MACCS166") .get_metadata()
>>> openeye_metadata = chemfp.get_fingerprint_type("OpenEye-MACCS166") .get_metadata()
>>> problems = chemfp.check_metadata_problems(rdkit_metadata, openeye_metadata)
>>> len(problems)
2
>>> for problem in problems:
print (problem)

WARNING: query has fingerprints of type 'RDKit-MACCS166/2' but
target has fingerprints of type 'OpenEye-MACCS166/3'

INFO: query comes from software 'RDKit/2020.03.1 chemfp/3.4' but
target comes from software 'OEGraphSim/2.4.3 (20191016) chemfp/3.4'

In this case the fingerprint types are different, but since the fingerprint lengths are the same it’s not an error,
only a warning. The software field is also not identical, but as that’s not so significant it’s listed as “info”.

The returned problem objects are chemfp.ChemFPProblem() instances, which have useful attributes:

122 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

>>> for problem in problems:
print ("Problem:")

print(" severity:", problem.severity)

print(" category:", problem.category)

print(" description:", problem.description)
Problem:

severity: warning

category: type mismatch

description: query has fingerprints of type 'RDKit-MACCS166/2' but target has,
—fingerprints of type 'OpenEye-MACCS166/3'
Problem:

severity: info

category: software mismatch

description: query comes from software 'RDKit/2020.03.1 chemfp/3.4' but target comes,
—from software 'OEGraphSim/2.4.3 (20191016) chemfp/3.4'

The idea is that the category text won’t change, so your code can figure out what’s going on, while the

description is subject to change and hopefully improvement. The severity is one of “info”, “warning” and
“error”.

>>> rdkitl_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=512").get_
—metadata()
>>> rdkit2_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024").get_
—metadata()
>>> problems = chemfp.check_metadata_problems(rdkitl_metadata, rdkit2_metadata)
>>> for problem in problems:

print (problem)

ERROR: query has 512 bit fingerprints but target has 1024 bit fingerprints
WARNING: query has fingerprints of type 'RDKit-Fingerprint/2 minPath=1
maxPath=7 fpSize=512 nBitsPerHash=2 useHs=1' but target has

fingerprints of type 'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024
nBitsPerHash=2 useHs=1'

A chemfp.ChemFPProblem is derived from Exception, so you can raise it directly if you want:

>>> for problem in chemfp.check_metadata_problems(rdkitl_metadata, rdkit2_metadata):
if problem.severity == "error":
raise problem

Traceback (most recent call last):

File "<stdin>", line 3, in <module>
chemfp.ChemFPProblem: ERROR: query has 512 bit fingerprints but target has 1024 bit,
—fingerprints

You might have noticed that the error message uses the words “query” and “target”. Chemfp is designed
around similarity searches, so I expect the default to compare query metadata to target metadata.

On the other hand, the previous section merged multiple fingerprint files, where “query” and “target” don’t
make sense. Instead, you can give alternative names via the query name and target _name parameters:

>>> rdkitl_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=512") .get_
—metadata()

(continues on next page)

4.41. Check for metadata compatibility problems 123

chemfp Documentation, Release 3.5

(continued from previous page)

>>> rdkit2_metadata = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024").get_
—metadata()
>>> for problem in chemfp.check_metadata_problems(rdkitl_metadata, rdkit2_metadata,
"file #1", "file #14"):
if problem.severity == "error":
print (problem)

ERROR: file #1 has 512 bit fingerprints but file #14 has 1024 bit fingerprints

T’ll use this to update the code from the previous section to raise an exception on errors, print warnings
to stderr, and do nothing about “info” problems, and add a MACCS fingerprint file to the list of files to
process, so I can show what happens if there’s a problem:

from __future__ import print_function # Only for Python 2
import sys
import chemfp

filenames = ["Compound_099000001_099500000.fps",
"Compound_048500001_049000000.fps",
"chebi_maccs.fps"]

Create the correct metadata with all of the sources from all of the files.
metadata = None
sources = []
for filename in filenames:
with chemfp.open(filename) as reader:
if metadata is None:
metadata = reader.metadata.copy()
first_filename = filename
else:
Check for compatibility problems
for problem in chemfp.check_metadata_problems(metadata, reader.metadata,
repr(first_filename),
repr(filename)) :

if problem.severity == "error":
raise problem
elif problem.severity == "warning":

sys.stderr.write(str(problem) + "\n")
sources.extend(reader.metadata.sources)

if metadata is not Nome:
metadata = metadata.copy(sources=sources)

Merge the files using the new metadata
with chemfp.open_fingerprint_writer("merged_pubchem.fps", metadata=metadata) as writer:
for filename in filenames:
with chemfp.open(filename) as reader:
writer.write_fingerprints(reader)

When I run that code with the mismatched fingerprint types, I get the error message:

124 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

Traceback (most recent call last):
File "x.py", line 23, in <module>
raise problem
chemfp.ChemFPProblem: ERROR: 'Compound_099000001_099500000.fps' has 881 bit fingerprintsy
—but 'chebi_maccs.fps' has 166 bit fingerprints

I then removed the chebi_maccs.fps and manually changed the fingerprint type in Com-
pound__048500001__049000000.fps, so I could demonstrate what a warning message looks like:

WARNING: 'Compound_099000001_099500000.fps' has fingerprints of type
"CACTVS-E_SCREEN/1.0 extended=2' but 'Compound_048500001_049000000.fps"
has fingerprints of type 'CACTVS-E_SCREEN/1.0 extended=DIFFERENT_VALUE'
Traceback (most recent call last):
File "/Users/dalke/cvses/cfp-3x/docs/x.py", line 23, in <module>
raise problem

chemfp.ChemFPProblem: ERROR: 'Compound_099000001_099500000.fps' has
881 bit fingerprints but 'chebi_maccs.fps' has 166 bit fingerprints

(In case you're wondering what the type string means, those are the actual CACTVS parameters that
PubChem uses, according to the CACTVS author, Wolf-Dietrich Thlenfeldt.)

Lastly, sometimes the query is a simple byte string. There’s not really much to compare, but you use
chemfp.check_fingerprint_problems () to see if the fingerprint length is compatible with a metadata
instance:

>>> import chemfp

>>> metadata = chemfp.get_fingerprint_type("RDKit-MACCS166") .get_metadata()
>>> chemfp.check_fingerprint_problems(b"\0\0\0\0", metadata)
[ChemFPProblem('error', 'num_bytes mismatch', 'query contains 4

bytes but target has 21 byte fingerprints')]

The simsearch command-line tool uses this function to check if the query fingerprint, which is entered as
hex as a command-line parameter, is compatible with the target fingerprints.

4.42 How to write very large FPB files

In this section you’ll learn how to write an FPB file even when fingerprint data is so large that the intermediate
data doesn’t all fit into memory at once.

By default the FPB format will reorder the fingerprints to be in popcount order. (Use reorder=False option
to preserve the input order.) This requires intermediate storage in order to sort all of the records. By default
the writer will use memory for this, but the implementation may require about two to three times as much
memory as the raw fingerprint size.

That is, if you have 50 million fingerprints, with 1024 bits per fingerprint, plus 10 bytes for the name, then
the fingerprint arena requires about 6 GiB of memory, plus 0.5 GiB for the ids, and another ~1 GiB for the
id lookup table.

That calculation gives the minimum amount of memory needed. The actual implementation may preallocate
up to twice as much memory as the current size, in order to handle growth gracefully, and there is some
additional overhead. You may be left with the case where you have 12 GiB of RAM, and where the final
FPB file is only 8 GiB in size, but where the intermediate storage requires 15 GiB of RAM.

Or you may want to build that data set on a machine with 6 GiB of RAM, and copy the result over to the
production machine with a lot more memory.

4.42. How to write very large FPB files 125

chemfp Documentation, Release 3.5

If that happens, then use the maz_spool_size option to specify the maximum number of bytes to store in
memory before switching to temporary files for additional storage. This should be about 1/3 of the available
RAM because there can be two different temporary file “spools”; each of which can use up to maz_spool_size
bytes of RAM.

For example, the following will use at most about 4 GiB of RAM:

writer = chemfp.open_fingerprint_writer(
"pubchem.fpb", max_spool_size = 2 * 1024 * 1024 * 1024)

Note: do not make this too small. The merge step opens all of the temporary files in order to make the final
FPB output file. If you specify a spool size of 50 MiB then you’ll end up creating several hundred files for
PubChem, which may exceed the resource limits for the number of open file descriptors for a process. When
that happens you’ll get an exception like:

IOError: [Errno 24] Too many open files

Where does the FPB writer store the temporary files? It uses Python’s tempfile module to create the
temporary files in a directory. Quoting from that documentation, “The default directory is chosen from a
platform-dependent list, but the user of the application can control the directory location by setting the
TMPDIR, TEMP or TMP environment variables.”

Environment variables give one way to specify an alternate directory. Or you can specify it directly using
the tmpdir parameter, as in:

writer = chemfp.open_fingerprint_writer(
"pubchem.fpb", max_spool_size = 2 * 1024 * 1024 * 1024,
tmpdir = "/scratch")

This can be very important on some cluster machines with a small local /tmp but a large networked scratch
disk.

4.43 FPS fingerprint writer errors

In this section you’ll learn how the FPS fingerprint writer handles errors, and how to change the error
handling behavior.

It’s hard but not impossible to have the FPS writer raise an exception:

>>> import chemfp
>>> wyriter = chemfp.open_fingerprint_writer(None)
#FPS1
>>> writer.write_fingerprint("Tab\tHere", b"\0")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/fps_io.py", line 550, in write_fingerprint
raise_tb(err[0], err[1])
File "chemfp/fps_io.py", line 467, in _fps_writer_gen
location)
File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)
File "<string>", line 1, in raise_tb
chemfp.ParseError: Unable to write an identifier containing a tab: 'Tab\tHere', file '
—.<stdout>', line 1, record #1

126 Chapter 4. Fingerprints and fingerprint search examples

https://docs.python.org/2/library/tempfile.html

chemfp Documentation, Release 3.5

The FPS file format simply doesn’t support tab characters in the indentifier, nor newline characters, for that
matter. It also doesn’t allow empty identifiers.

As you saw, the default error action is to raise an exception.

Sometimes it’s okay to ignore errors. For example, you might process a large number of structures, where
you know that a few of them have missing, or poorly formed, identifiers, and where it’s okay to omit those
records.

The errors parameter can be used to change the error handler. The value of “report” tells the parser to skip
failing record and write an error message written to stderr. The value of “ignore” simply skips the record:

>>> wyriter = chemfp.open_fingerprint_writer(None, errors='"report")

#FPS1

>>> writer.write_fingerprint("", b"\0\0\0\0")

ERROR: Unable to write a fingerprint with an empty identifier, file '<stdout>', line 1,
—record #1. Skipping.

>>>

>>> writer = chemfp.open_fingerprint_writer(None, errors="ignore")

#FPS1

>>> yriter.write_fingerprint("", b"\0")

>>> yriter.write_fingerprint("Tab\tHere", b"\0")

Granted, this feature isn’t so important for Fingerprintiriter.write_fingerprint () because catching
the exception isn’t hard to do. It’s a bit more useful for bulk conversions with FingerprintWriter.
write_fingerprints (), like:

import chemfp
with chemfp.read_molecule_fingerprints("RDKit-MACCS166", "Compound_099000001_099500000.
—sdf.gz") as reader:
with chemfp.open_fingerprint_writer("example.fps", reader.metadata, errors="report"),
—as writer:
writer.write_fingerprints(reader)

Note that the FPB writer ignores the errors parameter and treats all errors as “strict”.

4.44 FPS fingerprint writer location

In this section you’ll learn how to get information like the number of lines and number of records written to
an FPS file.

T’ll start by saying that this feature isn’t all that useful. It exists because of parallelism to the toolkit
structure writers, and I wanted to experiment to see if it could be useful in the future.

The FPS fingerprint writer has a location attribute. This can be used to get some information about
the state of the output writer. The most basic is the output filename. If the output is None or an unnamed
file object then a fake filename will be used:

>>> import chemfp

>>> writer = chemfp.open_fingerprint_writer("example.fps")
>>> writer.location.filename

'example.fps'

>>> yriter = chemfp.open_fingerprint_writer(None)

#FPS1

(continues on next page)

4.44. FPS fingerprint writer location 127

chemfp Documentation, Release 3.5

(continued from previous page)

>>> ywriter.location.filename
'<stdout>'

At this point the signature line has been written, so the file is at line 1, but no record have been written:

>>> writer.location.lineno

1

>>> writer.location.recno

0

>>> writer.location.output_recno
0

Each of these values is incremented by one after adding a valid record:

>>> writer.write_fingerprint ("FPOO1", b"\xAO\xFE")
alOfe FP0OO1

>>> writer.location.lineno

2

>>> writer.location.recno

1

>>> writer.location.output_recno

1

If however the record is invalid then the recno will increase by one because it’s the number of records
sent to the writer, but the other values do not increase because they only change when a record is written
successfully:

>>> yriter.write_fingerprint("", b"\xAO\xFE")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/fps_io.py", line 550, in write_fingerprint
raise_tb(err[0], err[1])
File "chemfp/fps_io.py", line 475, in _fps_writer_gen
location)
File "chemfp/io.py", line 87, in error
_compat.raise_tb(ParseError(msg, location), None)
File "<string>", line 1, in raise_tb
chemfp.ParseError: Unable to write a fingerprint with an empty identifier, file '<stdout>
—', line 2, record #2
>>> writer.location.lineno
2
>>> writer.location.recno
2
>>> writer.location.output_recno
1

This is perhaps more clearly shown if I try to write four records at one, where two contain errors, and where
I’'ve asked the writer to “report” errors rather than raise an exception:

>>> metadata = chemfp.Metadata(type="Experiment/1", software="AndrewDalke/1")

>>> yriter = chemfp.open_fingerprint_writer(None, metadata=metadata, errors="report")
#FPS1

#type=Experiment/1

(continues on next page)

128 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

(continued from previous page)

#software=AndrewDalke/1

>>> writer.location.lineno

3

>>> writer.location.recno

0

>>> writer.location.output_recno

0

>>> yriter.write_fingerprints([("A", b"\0\0"), ("\t", b"\0o\1"), ("", b"\0\2"), ("B", b
~"\0\3")1)

0000 A

ERROR: Unable to write an identifier containing a tab: '\t', file '<stdout>', line 4,
—record #2. Skipping.

ERROR: Unable to write a fingerprint with an empty identifier, file '<stdout>', line 4,
—record #3. Skipping.

0003 B

>>> writer.location.recno

4

>>> writer.location.output_recno
2

>>> writer.location.lineno

5

There are three lines in the header; the signature, the type line, and the software line. I tried to write four
fingerprints, but two were invalid. It wrote the valid fingerprint “A” to stdout, report the two invalid records
to stderr, and write the valid fingerprint “B” to stdout. Thus, two records were actually output, which is
why output_recno is 2, while four records were sent to the writer, which is why recno is 4. The three
header lines and the two lines of output give five lines of output, so the final 1ineno is 5.

In case you hadn’t figured it out, the location information is used to make the exception and error message.
That explains why both of the error reports say the error is on “line 4”; that’s the line that would have been
output if there were no error.

Note that the FPB writer does not have a location, and it ignores the location parameter.

4.45 MACCS dependency on hydrogens

In this section you’ll learn how the RDKit MACCS fingerprints differ if there are explicit or implicit hydro-
gens.

Note: A goal of this is to show that MACCS key generation isn’t as easy as you might think it is!

One of my long-term goals is to get a good cross-toolkit implementation of the MACCS keys. It’s very odd
how the MACCS keys are the de facto fingerprint for cheminformatics, but the toolkits don’t give the same
answers. Over the years, I've found bugs or incomplete definitions in all of the toolkits I've looked at, which
I’ve reported and have since been fixed.

If you use RDKit, Open Babel, or CDK then your toolkit implements MACCS keys that were derived from
the ones that Greg Landrum developed for RDKit. The portable portion uses hand-translated SMARTS
definitions for most of the MACCS key definitions. A couple keys, like key 125 (“at least two aromatic
rings”) cannot be represented as SMARTS. RDKit had special code for these definitions, but Open Babel
does not.

Even with a portable SMARTS definition, I would expect to see some differences between the toolkits, if
only because they have different aromaticity models. One toolkit might call something an aromatic ring,

4.45. MACCS dependency on hydrogens 129

chemfp Documentation, Release 3.5

while another says it’s aliphatic.

Unfortunately, the SMARTS patterns used in those programs give different results if you have explicit
hydrogens or implicit hydrogens. I’ll demonstrate with using RDKit, because that has a reader_arg to
specify if T want to remove hydrogens from the input structure or not. (Here “remove” means to make them
implicit.)

T’ll use RDKit twice to read the first molecule from a file and compute the RDKit fingerprint; the first time
I keep the hydrogens and the second time I remove them:

>>> import chemfp

>>> from chemfp import bitops

>>> filename = "Compound_099000001_099500000.sdf.gz"

>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")

>>>

>>> with_h_reader = fptype.read_molecule_fingerprints(filename,

ce reader_args={"removeHs": False})

>>> with_h_id, with_h_fp = next(with_h_reader)

>>> with_h_id, bitops.hex_encode(with_h_£fp)

('99000039', '000004000000300001c4004e93e1b053dcel6f6elf"')

>>>

>>> without_h_reader = fptype.read_molecule_fingerprints(filename,
reader_args={"removeHs": Truel})

>>> without_h_id, without_h_fp = next(without_h_reader)

>>> without_h_id, bitops.hex_encode(without_h_£fp)

('99000039', '000004000000300001c0004e9361b051dcel676elf")

If you look closely you’ll see that they have two different fingerprints! I’ll make it easier to see by reporting
the bits which are only in one or the other fingerprint:

>>> with_h_bits = set(bitops.byte_to_bitlist(with_h_£fp))

>>> without_h_bits = set(bitops.byte_to_bitlist(without_h_£fp))
>>> sorted(with_h_bits - without_h_bits) # only with hydrogens
[74, 111, 121, 147]

>>> sorted(without_h_bits - with_h_bits) # only without hydrogens
(]

The molecule with explicit hydrogens sets four more bits than the one with implicit hydrogens.

Why is that? The RDKit (and hence Open Babel and CDK) definitions often use “*” to match an atom, when
the corresponding MACCS definition is supposed to exclude hydrogens. A hydrogen-independent version
would use “[!#1]” instead. By default RDKit removes normal explicit hydrogens, so this isn’t usually a
problem. As far as I can tell, Open Babel always removes them from an SD file, so again this isn’t really a
problem. (Well, except for hydrogens with an explicit isotope number.)

The list [74, 111, 121, 147] are bit numbers. The corresponding keys are 75, 112, 122, and 148. T looked at
how key 122 is defined in various sources:

Definitions for key 112 (bit 111)
MACCS: AA(A) (M)A
RDKit: k~*%(~%) (~%)~x
OpenBabel: *~*(~*) (~*)~*
CDK: *~%(~%) (~%)~%
chemfp's RDMACCS—*: [!#1]~x(~[!#1]) (~[!#1])~[!#1]
0'Donnell: *~*(~%) (~%)~%

130 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

(“O’Donnell” here comes from Table A.4 of TJ O’Donnell’s Design and Use of Relational Databases in
Chemistry.)

If you know SMARTS you can see how an explicit H will lead to a different match than an implicit one,
except for chemfp’s own attempt at making a cross-toolkit MACCS implementation. I’ll test out RDMACCS-
RDKit, which is chemfp’s implementation of the MACCS 166 fingerprint using RDKit:

>>> chemfp_maccs = chemfp.get_fingerprint_type ("RDMACCS-RDKit")

>>>

>>> with_h_reader = chemfp_maccs.read_molecule_fingerprints(filename,
.. reader_args={"removeHs": Falsel})

>>> with_h_id, with_h_fp = next(with_h_reader)

>>> with_h_id, bitops.hex_encode(with_h_£fp)

('99000039', '000004000000300001c0004e9361b051dcel676el1f"')

>>>

>>> without_h_reader = chemfp_maccs.read_molecule_fingerprints(filename,
.. reader_args={"removeHs": Truel})

>>> without_h_id, without_h_fp = next(without_h_reader)

>>> without_h_id, bitops.hex_encode(without_h_£fp)

('99000039', '000004000000300001c0004e9361b051dcel676el1f"')

>>>

>>> with_h_fp == without_h_fp

True

What a relief that they are the same!

If you want to use the OEChem, Open Babel, or CDK-based RDMACSS implemenations, the correspond-
ing fingerprint type names are “RDMACCS-OpenEye”, “RDMACCS-OpenBabel”, or “RDMACCS-CDK”
respectively, and the command-line option for oe2fps, 0b2fps and cdk2fps is ——rdmaccs.

WARNING: the RDMACCS fingerprints have not been fully validated! Validation is hard. A chemfp goal
is to make that easier.

To finish, I was curious about the differences in RDKit’s native MACCS166 implementation across all of
the records in the file, so T wrote some code. It’s a direct evolution of the code you already saw. (Note: for
Python 2 T use itertools.izip() as a replacement for the generator-based zip() in Python 3.)

from __future__
import itertools
from collections import Counter
import chemfp

from chemfp import bitops

import print_function # Only for Python 2

zip = getattr(itertools, "izip", zip) # Support Python2 and Python3

filename = "Compound_099000001_099500000.sdf.gz"

with_h_fingerprints = chemfp.read_molecule_fingerprints(
"RDKit-MACCS166", filename, reader_args={"removeHs": False})

without_h_fingerprints = chemfp.read_molecule_fingerprints(
"RDKit-MACCS166", filename, reader_args={"removeHs": True})

extra_with_h = Counter()

extra_without_h = Counter()

num_records = 0O

for (id1l, with_h_fp), (id2, without_h_fp) in zip(with_h_fingerprints,

(continues on next page)

4.45. MACCS dependency on hydrogens 131

http://www.crcpress.com/product/isbn/9781420064421
http://www.crcpress.com/product/isbn/9781420064421

chemfp Documentation, Release 3.5

(continued from previous page)

without_h_fingerprints):
num_records += 1
assert idl == id2, (id1l, id2)
if with_h_fp != without_h_fp:
with_h_keys = set(bitno+1 for bitno in bitops.byte_to_bitlist(with_h_=fp))
without_h_keys = set(bitno+1l for bitno in bitops.byte_to_bitlist(without_h_£fp))
only _with_h = sorted(with_h_keys - without_h_keys)
only_without_h = sorted(without_h_keys - with_h_keys)
print(idl, "with:", only_with_h, "without:", only_without_h)
extra_with_h.update(only_with_h)
extra_without_h.update(only_without_h)

print ("\nNumber of records:", num_records)
print ("\nCounts that were only with hydrogens:")
for key, count in extra_with_h.most_common() :
print (" "% (key, count))
print ("\nCounts that were only without hydrogens:")
for key, count in extra_without_h.most_common() :
print (" " % (key, count))

In case you were wondering, the report summary starts:

Number of records: 10826

Counts that were only with hydrogens:
112 6851
150 3345
144 3209
122 2807
138 2767
66 2763
148 2372
155 2311
126 684
76 682
75 412
81 407
128 344
118 173
156 96
107 24
90 18
108 15
129 9
132 2

Now you can see why I used key 112 in my elaboration - it’s the one that causes the most problems!

132 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

4.46 Create similarity search web service

In this section you’ll learn how to write a simple WSGI-based web service which does a similarity search
given an SDF record.

I found it a bit difficult to write this section because few people will write a WSGI service directly. I think
most people use Django, but a Django example would require several different files to make it work. There
are other web frameworks I could use, like Flask, but I eventually decided to limit myself to what’s available
in the standard library, that is, the wsgiref module.

I’'m going to write a WSGI server named “simple_ server.py” which takes an SDF record as input and returns
the top 5 hits from a specified database. If there’s a GET request then the result is a simple form. The form
sends a POST request to the server, with the SDF record in the query parameter g¢.

By the way, if the target fingerprint data set is large then you should use an FPB file to get the best startup
performance.

Let’s get started. The first part is a comment about what the code does and some imports:

This is a very simple fingerprint search server.
I call it 'simple_server.py'.

Usage: simple_server <fingerprint_filename> [port]

A GET to the server (default uses port 80) returns a simple form.
The form has a single text box, to paste the SDF query or queries.
The POST query wariable 'q' contains the SDF contents.

The search finds the nearest 5 queries for each query record.

The result is a simple list of query ids and tts matches.

R T SR I S

import argparse
from wsgiref.simple_server import make_server
import cgi

import chemfp

The server will return an HTML form for a GET request:

Create a simple form.

def query_form(environ, start_response):
status = '200 OK' # HTTP Status
headers = [('Content-type', 'text/html')] # HTTP Headers
start_response(status, headers)

The returned object is going to be printed.
Must be a byte string for Python 3.
return [b"""<html>
<head>
<title>Simple fingerprint search</title>
</head>
<body>
<form method="POST">
Paste in SDF records(s):

<textarea name="q" type="text" rows="20" cols="80"></textarea>

(continues on next page)

4.46. Create similarity search web service 133

https://docs.python.org/2/library/wsgiref.html

chemfp Documentation, Release 3.5

(continued from previous page)

<button type="submit">Search!</button>
</form>

</body>

</html>

g

T’ll use the argparse module to handle the command-line arguments:

Command-line parameters
parser = argparse.ArgumentParser("simple_search",
description="Simple fingerprint web server with SDF,
—input")
parser.add_argument ("filename",
help="chemfp fingerprint filename")

parser.add_argument ("port", type=int, default=8080, nargs="7",
help="port to use (default is 8080)")

The heavy work is in the ‘main’ function. It starts with some setup to load the fingerprints and make sure
the fingerprint type is available:

def main():
args = parser.parse_args()

Load the arena, get the type, and make sure I can handle the type.
arena = chemfp.load_fingerprints(args.filename)
print("Loaded /s fingerprints from /»" 7, (len(arena), args.filename))

type = arena.metadata.type
if type is None:
parser.error("File /r does not contain a fingerprint type" 7 (args.filename,))

try:

fptype = chemfp.get_fingerprint_type(type)
except KeyError as err:

parser.error(str(err))

It then defines the WSGI app, which returns the query_ form() for a GET request, or processes the form for
a POST request. I think the embedded comments explain things enough:

... continue the 'main' function ...
This ©s the WSGI app, defined inside of main

def fingerprint_search_app(environ, start_response):
Is this a GET or a POST? If a GET, return the query form
if environ["REQUEST_METHOD"] != "POST":
return query_form(environ, start_response)

Get the query data from the POST

post_env = environ.copy()

post = cgi.FieldStorage(
fp=environ['wsgi.input'],

(continues on next page)

134 Chapter 4. Fingerprints and fingerprint search examples

chemfp Documentation, Release 3.5

(continued from previous page)

environ=post_env,
keep_blank_values=True,
)
q = post.getfirst("q", "")
The underlying toolkit code may require "\n" instead of "\r\n" strings.
q = q.replace("\r\n", "\n")

For each input record, do a search, get the results, and build up the output,
—lines.
Ignore any records that can't be parsed.

output = ["Search against /» using k=5 and threshold=0.0\n\n" % (args.filename,)]

The next three lines use chemfp to convert the record into a
fingerprint, do the search for the top 5 hits, get the ids
and scores for the hits, and make the output text.

for query_id, fp in fptype.read_molecule_fingerprints_from_string(q, "sdf",,
—errors="ignore"):
results = arena.knearest_tanimoto_search_fp(fp, k=5, threshold=0.0)
text = " ".join("/s (/.3f)" % (id, score) for (id, score) in results.get_
—.ids_and_scores())
output.append("/s => /s\n" % (query_id, text))

Return the results in plain text.
status = '200 OK' # HTTP Status
headers = [('Content-type', 'text/plain')] # HITP Headers

start_response(status, headers)

Python 3 requires bytes, not strings, so convert to UTF-8
return [line.encode("utf8") for line in output]

The main function ends with some code to start the WSGI server using the correct port:

... end of the 'main' function ...

Make the server and rTun it. (Use C to kill <t.)

httpd = make_server('', args.port, fingerprint_search_app)
print("Serving fingerprint search on port /s..." 7 (args.port,))

httpd.serve_forever()

Finally, code to start things rolling:

if name_ == "__main__":
main()

T’ll start the server using a ChEBI-derived data set:

% python simple_server.py rdkit_chebi.fps
Loaded 106965 fingerprints from 'rdkit_chebi.fps'
Serving fingerprint search on port 8080...

4.46. Create similarity search web service 135

chemfp Documentation, Release 3.5

then direct the browser to http://127.0.0.1:8080/ . I pasted in the first three records from ChEBI itself,

pressed “Search!”; and got the result:

Search against 'rdkit_chebi.fps' using k=5 and threshold=0.0

=> CHEBI:90 (1.000) CHEBI:15600 (1.000) CHEBI:23053 (1.000) CHEBI:33992 (1.000)

—.CHEBI:58994 (1.000)
=> CHEBI:165 (1.000) CHEBI:4999 (1.000) CHEBI:36612 (1.000) CHEBI:132827 (0.977),

—CHEBI:15994 (0.944)
=> CHEBI:598 (1.000) CHEBI:52595 (1.000) CHEBI:144315 (0.965) CHEBI:17389 (0.716)

—.CHEBI:134138 (0.716)

I don’t think I'll continue this WSGI example in future documentation as that API is too low-level and
seldom used by web developers. If you think otherwise, let me know.

136 Chapter 4. Fingerprints and fingerprint search examples

http://127.0.0.1:8080/

CHAPTER D

Fingerprint family and type examples

This chapter describes how to use the fingerprint family and fingerprint type API added in chemfp 2.0.

5.1 Fingerprint families and types

In this section you’ll learn the difference between a fingerprint family and a fingerprint type. You will need
Compound_ 099000001 099500000.sdf.gz from PubChem to work though all of the examples.

Chemfp distinguishes between a “fingerprint family” and a “fingerprint type.” A fingerprint family describes
the general approach for doing a fingerprint, like “the OpenEye path-based fingerprint method”, while a
fingerprint type describes the specific parameters used for a given approach, such as “the OpenEye path-
based fingerprint method using path lengths between 0 and 5 bonds, where the atom types are based on
the atomic number and aromaticity, and the bond type is based on the bond order, mapped to a 256 bit
fingerprint.”

(In object-oriented terms, a fingerprint family is the class and a fingerprint type is an instance of the class.)

T'll use chemfp.get_fingerprint_family () to get the FingerprintFamily for “OpenEye-Path”. On the
laptop where I’'m writing the documentation, this resolves to what chemfp calls version “2”:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp

>>> family = chemfp.get_fingerprint_family("OpenEye-Path")

>>> family

FingerprintFamily (<OpenEye-Path/2>)

The fingerprint family can be called like a function to return a FingerprintType. If you call it with no
arguments it will use the defaults parameters for that family. T'll do that, then use get_type() to get the
fingerprint type string, which is the canonical representation of the fingerprint family name, version, and
parameters:

137

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.5

>>> fptype = family()

>>> fptype.get_type()

'OpenEye-Path/2 numbits=4096 minbonds=0 maxbonds=5,
—atype=Arom|AtmNum|Chiral|EqHalo|FCharge |HvyDeg|Hyb btype=0rder|Chiral’

A 4096 bit fingerprint is rather large. I'll make a new OpenEye-Path fingerprint type, but this time with
only 256 bits. That’s small enough that the resulting fingerprint will fit on a line of documentation. All of
the other parameters will be unchanged:

>>> fptype = family(numbits=256)

>>> fptype

<chemfp.openeye_types.0OpenEyePathFingerprintType_v2 object at 0x10b9c4e90>
>>> print (fptype.get_metadata())

#num_bits=256

#type=0OpenEye-Path/2 numbits=256 minbonds=0 maxbonds=5
—atype=Arom|AtmNum|Chiral |EqHalo|FCharge |HvyDeg|Hyb btype=0rder|Chiral
#software=0EGraphSim/2.4.3 (20191016) chemfp/3.5

#date=2020-06-16T14:41:07

This time I used FingerprintType. get_metadata () to give information about the fingerprint. This returns
a new Metadata instance which describes the fingerprint type, and if you print a Metadata it displays the
metadata information as an FPS header.

Once you have the fingerprint type you can create fingerprints, including directly from a SMILES string, as
in the following:

>>> from chemfp import bitops

>>> fp = fptype.parse_molecule_fingerprint("clcccccl0", "smistring")
>>> bitops.hex_encode(fp)
'0012250160901000080c002810000400201000900054880442000€8040201000'

and from a structure file:

>>> for id, fp in fptype.read_molecule_fingerprints("Compound_099000001_099500000.sdf.gz
'—>"):

print(id, bitops.hex_encode(fp))

if int(id) > 99003537: break

99000039 b7£1ff7cf3£377ebf37ff6ffefbbcOfffe69fffbfdfefedf77f5dffee0f7£907
99000230 f££d5f775cffbd790£97£5£797fbefdcd3fcf73efdf5fdfbf7fe6d49df60£d5303
99002251 babff7ebfbfd3ce77decb9aef9abbbeef7615cd3dfbefc0e7f78effc7dfd9a07
99003537 defbbff7f4f57f6fbdfffab35ffddb77fef7dfddfafffffddff77fedeb97£107
99003538 defbbff7f4f57f6fbdfffab35ffddb77fef7dfddfafffffddff77fedeb97£107

For more examples of using get_metadata see Merging multiple structure-based fingerprint sources.

Even though I used the fingerprint family to get the type, I did that more for pedagogical reasons. Most
times you can get the fingerprint type directly using chemfp.get_fingerprint_type(). You can call it
using a fingerprint type string or by passing in the parameters in the optional second parameter::

>>> fptype = chemfp.get_fingerprint_type("OpenEye-Path numbits=256")
>>> fptype = chemfp.get_fingerprint_type("OpenEye-Path", {"numbits": 2563})

See get_fingerprint_type() and get_type() for examples on how to use get_fingerprint_type.

138 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.5

5.2 Fingerprint family

In this section you’ll learn about the attributes and methods of a fingerprint family.

The get_fingerprint_family () function takes the fingerprint family name (with or without a version) and
returns a FingerprintFamtly instance:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")

It will raise a ValueError if you ask for a fingerprint family or version which doesn’t exist:

>>> chemfp.get_fingerprint_family("whirl")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1996, in get_fingerprint_family
return _family_ registry.get_family(family_name)
File "chemfp/types.py", line 1258, in get_family
raise err
chemfp.types.FingerprintTypeValueError: Unknown fingerprint type 'whirl'
>>> chemfp.get_fingerprint_family("RDKit-Fingerprint/1")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1996, in get_fingerprint_family
return _family_registry.get_family(family_name)
File "chemfp/types.py", line 1258, in get_family
raise err
chemfp.types.FingerprintTypeValueError: Unable to use RDKit-Fingerprint/1: This version,
—of RDKit does not support the RDKit-Fingerprint/1 fingerprint

The fingerprint family has several attributes to ask for the name or parts of the name:

>>> family

FingerprintFamily (<RDKit-Fingerprint/2>)
>>> family.name

'RDKit-Fingerprint/2'

>>> (family.base_name, family.version)
('RDKit-Fingerprint', '2')

It also has a toolkit attribute, which is the underlying chemfp toolkit that can create molecules for this
fingerprint:

>>> family.toolkit

<module 'chemfp.rdkit_toolkit' from 'chemfp/rdkit_toolkit.pyc'>
>>> family.toolkit.name

'rdkit'

See the chapter Toolkit API examples for many examples of how to use a toolkit.

The get_defaults () method returns the default arguments used to create a fingerprint type, which is handy
when you’ve forgotten what all of the arguments are:

>>> family.get_defaults()
{'minPath': 1, 'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

5.2. Fingerprint family 139

chemfp Documentation, Release 3.5

If you call the family as a function, you’ll get a FingerprintType. You can check to see that the fingerprint
type’s keyword arguments match the defaults:

>>> fptype = family()

>>> fptype.fingerprint_kwargs

{'minPath': 1, 'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

Call the fingerprint family with keyword arguments to use something other than the default parameters:

>>> fptype = family(fpSize=1024, maxPath=6)

>>> fptype.fingerprint_kwargs

{'minPath': 1, 'maxPath': 6, 'fpSize': 1024, 'nBitsPerHash': 2,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

If you have the keyword arguments as a dictionary you can use the “**” syntax to apply the dictionary
as keyword arguments, but I think it’s clearer to call the FingerprintFamily. from_kwargs () method to
create the fingerprint type:

>>> kwargs = {"fpSize": 512, "maxPath": 5}

>>> fptype = family(**kwargs) # Acceptable

>>> fptype.get_type()

'RDKit-Fingerprint/2 minPath=1 maxPath=5 fpSize=512 nBitsPerHash=2 useHs=1'
>>> fptype = family.from_kwargs(kwargs) # Better

>>> fptype.get_type(O)

'RDKit-Fingerprint/2 minPath=1 maxPath=5 fpSize=512 nBitsPerHash=2 useHs=1'

(Currently family (¥*kwargs) forwards the the call to family.from_kwargs (kwargs) so there is a slight
performance advantage to using from_kwargs().)

Sometimes the fingerprint parameters come from a string, for example, from command-line arguments or a
web form. In chemfp a dictionary of text keys and values are called “text settings”. The fingerprint family
has a helper function to process them and create a kwargs dictionary with the correct data types as values:

>>> family.get_kwargs_from_text_settings({
"fpSize": "128",

C. "nBitsPerHash": "1",

)
{'minPath': 1, 'maxPath': 7, 'fpSize': 128, 'nBitsPerHash': 1,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

Note: This method is not as advanced as the corresponding code in the toolkit Format API. It does
not understand namespaces. It will also raise an exception if called with an unsupported parameter:

>>> family.get_kwargs_from_text_settings({

.. "unsupported parameter": "-12.34",
N)

Traceback (most recent call last):

chemfp.types.FingerprintTypeValueError: Unsupported fingerprint parameter name
— 'unsupported parameter'

If you have text settings then you probably want to call chemfp.
get_fingerprint_type_from text_settings() directly instead of going through the fingerprint
family:

140 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.5

>>> fptype = chemfp.get_fingerprint_type_from_text_settings("RDKit-Fingerprint",
{"fpSize": "512", "nBitsPerHash": "3", "maxPath": "6"1})

>>> fptype.get_type()

'RDKit-Fingerprint/2 minPath=1 maxPath=6 fpSize=512 nBitsPerHash=3 useHs=1'

See Create a fingerprint using text settings for more examples of how to use this function.

5.3 Fingerprint family discovery

In this section you’ll learn how to get the available fingerprint families, both as a set of name strings and a
list of FingerprintFamily instances.

Even though chemfp knows about the OpenEye fingerprints, those fingerprints might not be available on
your system if you don’t have OEChem and OEGraphSim installed and licensed. Chemfp has a discovery
system which will probe to see which fingerprint types are available and determine their version numbers.

If you just want the available family names, use chemfp.get_fingerprint_family_names():

>>> import chemfp

>>> chemfp.get_fingerprint_family_names()

{'OpenBabel-FP3', 'OpenEye-MDLScreen', 'CDK-Daylight',
'CDK-GraphOnly', 'OpenBabel-ECFPO', 'CDK-Pubchem', 'OpenEye-Path',
'RDMACCS-OpenEye', 'CDK-FCFP2', 'CDK-FCFP4', 'RDMACCS-RDKit',
'OpenBabel-MACCS', 'CDK-Hybridization', 'RDKit-SECFP',
'RDKit-Morgan', 'OpenEye-Circular', 'ChemFP-Substruct-OpenEye',
'CDK-AtomPairs2D', 'CDK-ECFPO', 'CDK-Substructure', 'CDK-ECFP2',
'ChemFP-Substruct-RDKit', 'RDMACCS-OpenBabel', 'RDMACCS-CDK',
'CDK-Extended', 'RDKit-AtomPair', 'OpenEye-SMARTSScreen',
'OpenBabel-ECFP4', 'OpenEye-Tree', 'OpenBabel-ECFP2', 'CDK-EState',
'OpenBabel-ECFP10', 'CDK-FCFP6', 'RDKit-Avalon', 'OpenBabel-FP2',
'RDKit-Torsion', 'CDK-ECFP4', 'CDK-ECFP6', 'RDKit-MACCS166',
'CDK-ShortestPath', 'ChemFP-Substruct-OpenBabel', 'CDK-MACCS',
'OpenBabel-FP4', 'ChemFP-Substruct-CDK', 'OpenBabel-ECFP8',
'RDKit-Pattern', 'OpenEye-MoleculeScreen', 'OpenEye-MACCS166',
'"CDK-FCFPO', 'OpenBabel-ECFP6', 'RDKit-Fingerprint'}

Bear in mind that this might take a few seconds to run, since it will try to load the Python packages for
each supported toolkit. (Once done, that list is cached so subsequent calls are fast.)

You can ask the function to return only those fingerprints generated from a given toolkit then use the
toolkit_name parameter. The following returns the Open Babel fingerprints:

>>> chemfp.get_fingerprint_family_names(toolkit_name="openbabel")
{'OpenBabel-ECFP8', 'OpenBabel-ECFP4', 'OpenBabel-MACCS',
'OpenBabel-FP3', 'OpenBabel-ECFP2', 'OpenBabel-ECFP10',
'OpenBabel-ECFPO', 'OpenBabel-FP2', 'RDMACCS-OpenBabel',
'ChemFP-Substruct-OpenBabel', 'OpenBabel-ECFP6', 'OpenBabel-FP4'}

The function returns a set of base names, which don’t contain the version information. Most likely you want
to sort it before displaying it more nicely:

>>> from __future__ import print_function # Only needed in Python 2
>>> for name in sorted(chemfp.get_fingerprint_family_names()):

(continues on next page)

5.3. Fingerprint family discovery 141

chemfp Documentation, Release 3.5

(continued from previous page)

print (name)

CDK-AtomPairs2D
CDK-Daylight
CDK-ECFPO

CDK-ECFP2

CDK-ECFP4

CDK-ECFP6

CDK-EState
CDK-Extended
CDK-FCFPO

CDK-FCFP2

CDK-FCFP4

CDK-FCFP6
CDK-GraphOnly
CDK-Hybridization
CDK-MACCS
CDK-Pubchem
CDK-ShortestPath
CDK-Substructure
ChemFP-Substruct-CDK
ChemFP-Substruct-OpenBabel
ChemFP-Substruct-OpenEye
ChemFP-Substruct-RDKit
OpenBabel-ECFPO
OpenBabel-ECFP10
OpenBabel-ECFP2
OpenBabel-ECFP4
OpenBabel-ECFP6
OpenBabel-ECFP8
OpenBabel-FP2
OpenBabel-FP3
OpenBabel-FP4
OpenBabel-MACCS
OpenEye-Circular
OpenEye-MACCS166
OpenEye-MDLScreen
OpenEye-MoleculeScreen
OpenEye-Path
OpenEye-SMARTSScreen
OpenEye-Tree
RDKit-AtomPair
RDKit-Avalon
RDKit-Fingerprint
RDKit-MACCS166
RDKit-Morgan
RDKit-Pattern
RDKit-SECFP
RDKit-Torsion
RDMACCS-CDK
RDMACCS-0OpenBabel
RDMACCS-0OpenEye

(continues on next page)

142

Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.5

(continued from previous page)

RDMACCS-RDKit

I’ll run chemfp in a configuration where only the OpenEye toolkits are available and show that chemfp only
knows about the OEChem/OEGraphSim fingerprint types:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp

>>> print("\n". join(sorted(chemfp.get_fingerprint_family_names())))
ChemFP-Substruct-0OpenEye

OpenEye-Circular

OpenEye-MACCS166

OpenEye-MDLScreen

OpenEye-MoleculeScreen

OpenEye-Path

OpenEye-SMARTSScreen

OpenEye-Tree

RDMACCS-0OpenEye

It’s still possible to get a list of all fingerprint family names, including those which aren’t actually available
for the given Python installation, by setting the include unavailable parameter to True:

>>> print("\n".join(sorted(chemfp.get_fingerprint_family_names(include_
—unavailable=True))))
CDK-AtomPairs2D
CDK-Daylight

CDK-ECFPO

CDK-ECFP2

CDK-ECFP4

CDK-ECFP6

CDK-EState
CDK-Extended

CDK-FCFPO

CDK-FCFP2

CDK-FCFP4

CDK-FCFP6
CDK-GraphOnly
CDK-Hybridization
CDK-KlekotaRoth
CDK-MACCS

CDK-Pubchem
CDK-ShortestPath
CDK-Substructure
ChemFP-Substruct-CDK
ChemFP-Substruct-OpenBabel
ChemFP-Substruct-0OpenEye
ChemFP-Substruct-RDKit
OpenBabel-ECFPO
OpenBabel-ECFP10
OpenBabel-ECFP2
OpenBabel-ECFP4
OpenBabel-ECFP6
OpenBabel-ECFP8

(continues on next page)

5.3. Fingerprint family discovery 143

chemfp Documentation, Release 3.5

(continued from previous page)

OpenBabel-FP2
OpenBabel-FP3
OpenBabel-FP4
OpenBabel-MACCS
OpenEye-Circular
OpenEye-MACCS166
OpenEye-MDLScreen
OpenEye-MoleculeScreen
OpenEye-Path
OpenEye-SMARTSScreen
OpenEye-Tree
RDKit-AtomPair
RDKit-Avalon
RDKit-Fingerprint
RDKit-MACCS166
RDKit-Morgan
RDKit-Pattern
RDKit-SECFP
RDKit-Torsion
RDMACCS-CDK
RDMACCS-OpenBabel
RDMACCS-0penEye
RDMACCS-RDKit

The list of base names is pretty useful, but sometimes you want more details, like the specific version number,
and the default number of bits. The FingerprintFamily includes the attributes to get the name and version
but it doesn’t have a way to get the default number of bits. Instead, I'll use the FingerprintFamily to make
a FingerprintType with the default parameters, then ask the new fingerprint type its number of bits.

This means I need a list of FingerprintFamily instances, which is conveniently available from chemfp.
get_fingerprint_families (). (Remember, this may take a few seconds the first time it’s called, because
it tries to load all of the available fingerprints. Once determined, this information is cached.)

As a result, you can make a list of all available fingerprint methods and their default number of bits with

the following:

>>> for family in chemfp.get_fingerprint_families():
print(family.name, family().num_bits)

CDK-AtomPairs2D/2.0 780
CDK-Daylight/2.0 1024
CDK-ECFP0/2.0 1024
CDK-ECFP2/2.0 1024
CDK-ECFP4/2.0 1024
CDK-ECFP6/2.0 1024
CDK-EState/2.0 79
CDK-Extended/2.0 1024
CDK-FCFP0/2.0 1024
CDK-FCFP2/2.0 1024
CDK-FCFP4/2.0 1024
CDK-FCFP6/2.0 1024
CDK-GraphOnly/2.0 1024
CDK-Hybridization/2.0 1024

(continues on next page)

144 Chapter 5.

Fingerprint family and type examples

chemfp Documentation, Release 3.5

(continued from previous page)

CDK-MACCS/2.0 166
CDK-Pubchem/2.0 881
CDK-ShortestPath/2.0 1024
CDK-Substructure/2.0 307
ChemFP-Substruct-CDK/1 881
ChemFP-Substruct-OpenBabel/1 881
ChemFP-Substruct-OpenEye/1 881
ChemFP-Substruct-RDKit/1 881
OpenBabel-ECFP0/1 4096
OpenBabel-ECFP10/1 4096
OpenBabel-ECFP2/1 4096
OpenBabel-ECFP4/1 4096
OpenBabel-ECFP6/1 4096
OpenBabel-ECFP8/1 4096
OpenBabel-FP2/1 1021
OpenBabel-FP3/1 55
OpenBabel-FP4/1 307
OpenBabel-MACCS/2 166
OpenEye-Circular/2 4096
OpenEye-MACCS166/3 166
OpenEye-MDLScreen/1 896
OpenEye-MoleculeScreen/1 896
OpenEye-Path/2 4096
OpenEye-SMARTSScreen/1 896
OpenEye-Tree/2 4096
RDKit-AtomPair/2 2048
RDKit-Avalon/1 512
RDKit-Fingerprint/2 2048
RDKit-MACCS166/2 166
RDKit-Morgan/1 2048
RDKit-Pattern/4 2048
RDKit-SECFP/1 2048
RDKit-Torsion/2 2048
RDMACCS-CDK/2 166
RDMACCS-OpenBabel/2 166
RDMACCS-OpenEye/2 166
RDMACCS-RDKit/2 166

The output here is a bit fancy. If you only want the version information then you could just look at the list,
since a family’s repr shows the versioned name:

>>> chemfp.get_fingerprint_families()
[FingerprintFamily (<CDK-AtomPairs2D/2.0>),
FingerprintFamily (<CDK-Daylight/2.0>),
FingerprintFamily (<CDK-ECFP0/2.0>),
FingerprintFamily (<CDK-ECFP2/2.0>),
FingerprintFamily (<CDK-ECFP4/2.0>),
FingerprintFamily (<CDK-ECFP6/2.0>),
FingerprintFamily (<CDK-EState/2.0>),
FingerprintFamily (<CDK-Extended/2.0>),
FingerprintFamily (<CDK-FCFP0/2.0>),
FingerprintFamily (<CDK-FCFP2/2.0>),

(continues on next page)

5.3. Fingerprint family discovery 145

https://docs.python.org/3/library/functions.html#repr

chemfp Documentation, Release 3.5

(continued from previous page)

FingerprintFamily (<CDK-FCFP4/2.0>),
FingerprintFamily (<CDK-FCFP6/2.0>),
FingerprintFamily (<CDK-GraphOnly/2.0>),
FingerprintFamily (<CDK-Hybridization/2.0>),
FingerprintFamily (<CDK-MACCS/2.0>),
FingerprintFamily (<CDK-Pubchem/2.0>),
FingerprintFamily (<CDK-ShortestPath/2.0>),
FingerprintFamily (<CDK-Substructure/2.0>),
FingerprintFamily (<ChemFP-Substruct-CDK/1>),
FingerprintFamily (<ChemFP-Substruct-OpenBabel/1>),
FingerprintFamily (<ChemFP-Substruct-OpenEye/1>),
FingerprintFamily (<ChemFP-Substruct-RDKit/1>),
FingerprintFamily (<OpenBabel-ECFP0/1>),
FingerprintFamily (<OpenBabel-ECFP10/1>),
FingerprintFamily (<OpenBabel-ECFP2/1>),
FingerprintFamily (<OpenBabel-ECFP4/1>),
FingerprintFamily (<OpenBabel-ECFP6/1>),
FingerprintFamily (<OpenBabel-ECFP8/1>),
FingerprintFamily (<OpenBabel-FP2/1>),
FingerprintFamily (<OpenBabel-FP3/1>),
FingerprintFamily (<OpenBabel-FP4/1>),
FingerprintFamily (<OpenBabel-MACCS/2>),
FingerprintFamily (<OpenEye-Circular/2>),
FingerprintFamily (<OpenEye-MACCS166/3>),
FingerprintFamily (<OpenEye-MDLScreen/1>),
FingerprintFamily (<OpenEye-MoleculeScreen/1>),
FingerprintFamily (<OpenEye-Path/2>),
FingerprintFamily (<OpenEye-SMARTSScreen/1>),
FingerprintFamily (<OpenEye-Tree/2>),
FingerprintFamily (<RDKit-AtomPair/2>),
FingerprintFamily (<RDKit-Avalon/1>),
FingerprintFamily (<RDKit-Fingerprint/2>),
FingerprintFamily (<RDKit-MACCS166/2>),
FingerprintFamily (<RDKit-Morgan/1>),
FingerprintFamily (<RDKit-Pattern/4>),
FingerprintFamily (<RDKit-SECFP/1>),
FingerprintFamily (<RDKit-Torsion/2>),
FingerprintFamily (KRDMACCS-CDK/2>),
FingerprintFamily (<KRDMACCS-OpenBabel/2>),
FingerprintFamily (<RDMACCS-OpenEye/2>),
FingerprintFamily (<KRDMACCS-RDKit/2>)]

On the other hand, that’s a rather dense block of text.

Use the toolkit_name parameter to get only those fingerprint families for a given toolkit:

>>> chemfp.get_fingerprint_families(toolkit_name="rdkit")
[FingerprintFamily (<ChemFP-Substruct-RDKit/1>),
FingerprintFamily (<RDKit-AtomPair/2>),

FingerprintFamily (<RDKit-Avalon/1>),

FingerprintFamily (<RDKit-Fingerprint/2>),
FingerprintFamily (KRDKit-MACCS166/2>),

(continues on next page)

146 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.5

(continued from previous page)

FingerprintFamily (<RDKit-Morgan/1>),
FingerprintFamily (<RDKit-Pattern/4>),
FingerprintFamily (<RDKit-SECFP/1>),
FingerprintFamily (<RDKit-Torsion/2>),
FingerprintFamily (<KRDMACCS-RDKit/2>)]

Finally, use chemfp.has_fingerprint_family () to test if a fingerprint family is available:

>>> chemfp.has_fingerprint_family("OpenEye-Tree")
True

>>> chemfp.has_fingerprint_family("OpenEye-Tree/2")
True

>>> chemfp.has_fingerprint_family("OpenEye-Tree/1")
False

It understands both version and unversioned names.

5.4 get_fingerprint_type() and get_type()

In this section you’ll learn how to get a fingerprint type given its type string, and how to specify fingerprint
parameters as a dictionary.

The easiest way to get a specific FingerprintType is with chemfp.get_fingerprint_type():

>>> import chemfp

>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint")

>>> fptype

<chemfp.rdkit_types.RDKitFingerprintType_v2 object at 0x10cfedbl0>

The fingerprint type has a FingerprintType.get_type() method, which returns the canonical fingerprint
type string:

>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=2048 nBitsPerHash=2 useHs=1'

This is canonical because chemfp ensures that all fingerprint type strings with the same parameter values
have the same type string.

I left out the version number in the fingerprint name when I asked for the fingerprint, so chemfp gives me
the most recent supported version. I could have included the version in the name, which is useful if you
want to prevent a version mismatch between your data sets. If the version doesn’t exist, the function will
raise a ValueError:

>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint/2")
>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint/1")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/Users/dalke/cvses/cfp-3x/docs/chemfp/__init__.py", line 2088, in get_
—fingerprint_type

return types.registry.get_fingerprint_type(type, fingerprint_kwargs)

File "/Users/dalke/cvses/cfp-3x/docs/chemfp/types.py", line 1322, in get_fingerprint_

—type

(continues on next page)

5.4. get_fingerprint_type() and get_type() 147

chemfp Documentation, Release 3.5

(continued from previous page)

raise err
chemfp.types.FingerprintTypeValueError: Unable to use RDKit-Fingerprint/1: This version
—of
RDKit does not support the RDKit-Fingerprint/1 fingerprint

I can also specify some or all of the parameters myself in the type string, instead of accepting the default
values:

>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024 maxPath=6")
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=6 fpSize=1024 nBitsPerHash=2 useHs=1'

You can also pass in the parameters as a Python dictionary, though you still need at least the base name of
the fingerprint family:

>>> fp_kwargs = {
"maxPath": 6,
. "fpSize": 512,
R
>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint", fp_kwargs)
>>> fptype.get_type()

'RDKit-Fingerprint/2 minPath=1 maxPath=6 fpSize=512 nBitsPerHash=2 useHs=1'

If a parameter is specified in both the type string and the dictionary then the dictionary value will be used:

>>> fptype = chemfp.get_fingerprint_type("RDKit-Fingerprint fpSize=1024 minPath=2",
o {"fpSize": 128})

>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=2 maxPath=7 fpSize=128 nBitsPerHash=2 useHs=1'

5.5 Create a fingerprint using text settings

In this section you’ll learn how to get a fingerprint type using text settings.

The fingerprint keywords arguments (“kwargs”) are a dictionary whose keys are fingerprint parameter names
and whose values are native Python objects for those parameters. Here is a fingerprint kwargs dictionary
for the RDKit-Fingerprint:

{'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2, 'minPath': 1, 'useHs': 1}

Text settings are a dictionary where the dictionary keys are still parameter names but where the dictio-
nary values are string-encoded parameter values. Here is the equivalent text settings for the above kwargs
dictionary:

{'maxPath': '7', 'fpSize': '2048', 'nBitsPerHash': '2', 'minPath': '1l', 'useHs': '1'}

A text settings dictionary typically comes from command-line parameters or a configuration file, where
everything is a string. The fingerprint family has a method to convert text settings to kwargs:

>>> import chemfp
>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")

(continues on next page)

148 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.5

(continued from previous page)

>>> kwargs = family.get_kwargs_from_text_settings({"fpSize": "4096"})
>>> kwargs

{'minPath': 1, 'maxPath': 7, 'fpSize': 4096, 'nBitsPerHash': 2,
'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

The kwargs can then be used to get the specified fingerprint type from the family:

>>> fptype = family.from_kwargs (kwargs)

>>> fptype

<chemfp.rdkit_types.RDKitFingerprintType_v2 object at 0x100£68610>

>>> fptype.get_type()

'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

It’s a bit tedious to go through all those steps to process some text settings. Instead, call chemfp.
get_fingerprint_type_from_text_settings():

>>> fptype = chemfp.get_fingerprint_type_from_text_settings(

o "RDKit-Fingerprint", {"fpSize": "4096"})
>>> fptype.get_type()
'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

The parameters in the text settings have priority should the fingerprint type string and the text settings
both specify the same parameter name, as in this example where the fingerprint type string specifies a 1024
bit fingerprint while the text settings specifies a 4096 bit fingerprint:

>>> fptype = chemfp.get_fingerprint_type_from_text_settings("RDKit-Fingerprint,
~fpSize=1024")

>>> fptype.get_type()

'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=1024 nBitsPerHash=2 useHs=1'
>>>

>>> fptype = chemfp.get_fingerprint_type_from_text_settings(

"RDKit-Fingerprint fpSize=1024", {"fpSize": "4096"})

>>> fptype.get_type()

'RDKit-Fingerprint/2 minPath=1 maxPath=7 fpSize=4096 nBitsPerHash=2 useHs=1'

At present there is no support for parameter namespaces, and unknown parameter names will raise an
exception:

>>> fptype = chemfp.get_fingerprint_type_from_text_settings(
c "RDKit-Fingerprint", {"fpSize": "4096", "spam": "eggs"})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 2101, in get_fingerprint_type_from_text_settings
return types.registry.get_fingerprint_type_from_text_settings(type, settings)
File "chemfp/types.py", line 1350, in get_fingerprint_type_from_text_settings
raise value_err
chemfp.types.FingerprintTypeValueError: Error with type 'RDKit-Fingerprint':
Unsupported fingerprint parameter name 'spam'

This may change in the future; let me know what’s best for you.

For now, if you want to remove unexpected names from a dictionary then use the fingerprint family’s
get_defaults() to get the default kwargs as a dictionary, and use the keys to filter out the unknown
parameters:

5.5. Create a fingerprint using text settings 149

chemfp Documentation, Release 3.5

>>> family = chemfp.get_fingerprint_family("RDKit-Fingerprint")

>>> defaults = family.get_defaults()

>>> defaults

{'minPath': 1, 'maxPath': 7, 'fpSize': 2048, 'nBitsPerHash': 2,

'useHs': 1, 'fromAtoms': None, 'branchedPaths': 1, 'useBondOrder': 1}

>>> settings = {"maxPath": "8", "unknown": "mystery"}

>>> new_settings = dict((k, v) for (k,v) in settings.items() if k in defaults)
>>> new_settings

{'maxPath': '8'}

5.6 FingerprintType properties and methods

In this section you’ll learn about the FingerprintType properties and methods.

T’ll start by getting CDK’s Daylight-like fingerprint using the default parameters:

>>> fptype = chemfp.get_fingerprint_type("CDK-Daylight")

>>> fptype

<chemfp.cdk_types.CDKDaylightFingerprintType_v20 object at 0x100b5ddc0>

>>> fptype.get_type()

'CDK-Daylight/2.0 size=1024 searchDepth=7 pathLimit=42000 hashPseudoAtoms=0'

The “CDK-Daylight/2” is the fingerprint name, which is decomposed into the base_name “CDK-Daylight”
and the version “2”:

>>> fptype.name

'CDK-Daylight/2.0'

>>> fptype.base_name, fptype.version
('CDK-Daylight', '2.0")

The number of bits for the fingerprint is num_bits, and fingerprint_kwargs is a fingerprint parameters as
a dictionary of Python values:

>>> fptype.num_bits

1024

>>> fptype.fingerprint_kwargs

{'size': 1024, 'searchDepth': 7, 'pathLimit': 42000, 'hashPseudoAtoms': O}

Each fingerprint type has a toolkit, which is the chemfp toolkit that can make molecules used as input to
the fingerprint type. (This would be None if there were no toolkit.) Given a fingerprint type it’s easy to
figure out the toolkit.name of the toolkit it’s associated with:

>>> fptype.toolkit.name
'cdk!

The software attribute gives information about the software used to generate the fingerprint. For RDKit,
Open Babel, and CDK this is the same as the toolkit.software string. On the other hand, OpenEye
distributes OEChem and OEGraphSim as two different libraries. These map quite naturally to chemfp’s
concepts of fingerprint type and toolkit, so the “software” field for its fingerprint type and toolkit differ:

>>> oefptype = chemfp.get_fingerprint_type("OpenEye-Tree")
>>> oefptype.software

(continues on next page)

150 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.5

(continued from previous page)

'0EGraphSim/2.4.3 (20191016) chemfp/3.5'
>>> oefptype.toolkit.software
' '0EChem/20191016"

Finally, FingerprintType.get_fingerprint_family () returns the fingerprint family for a given fingerprint
type:

>>> fptype.get_fingerprint_family()
FingerprintFamily (<CDK-Daylight/2.0>)

5.7 Convert a structure record to a fingerprint

In this section you’ll learn how to use a fingerprint type to convert a structure record into a fingerprint.

The FingerprintType method parse_molecule_fingerprint () parses a structure record and returns the
fingerprint as a byte string. The following uses Open Babel to get the MACCS fingerprint for phenol:

>>> import chemfp
>>> from chemfp import bitops
>>> fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")

>>> fptype

<chemfp.openbabel_types.OpenBabelMACCSFingerprintType_v2 object at 0x10cfedc10>
>>> fp = fptype.parse_molecule_fingerprint("clcccccl0", "smistring")

>>> fp

b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00D\x80\x10\x1e"
>>> bitops.hex_encode(fp)
'00000000000000000000000000000140004480101e'

The parameters to parse_molecule_fingerprint() are identical to the toolkit’s parse_molecule() func-
tion. For example, the following shows that the SMILES “Q” raises a chemfp.ParseError with the default
errors mode, and returns None when errors is “ignore”:

>>> fptype.parse_molecule_fingerprint("Q", "smistring")

% Open Babel Error in ParseSimple

SMILES string contains a character 'Q' which is invalid
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "chemfp/types.py", line 1021, in parse_molecule_fingerprint

mol = self.toolkit.parse_molecule(content, format, reader_args=reader_args,

<,errors=errors)

File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot parse the SMILES 'Q'

(While the error is ignored at the Python level, Open Babel writes a warning messages to stderr at the C++
level.)

See Parse and create SMILES for information about using parse_molecule() and the distinction between

“smistring”, “smi” and other SMILES formats. See Specify alternate error behavior for more about the errors
parameter.

5.7. Convert a structure record to a fingerprint 151

chemfp Documentation, Release 3.5

5.8 Convert a structure record to an id and fingerprint

In this section you’ll learn how to use a fingerprint type to extract the id from a structure record, convert
the structure record into a fingerprint, and return the (id, fingerprint) pair.

The previous section showed how to convert a structure record into a fingerprint. Sometimes you’ll also
want the identifier. The FingerprintType method parse_id_and_molecule_fingerprint () does both in
the same call.

>>> fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")

>>> fptype.parse_id_and_molecule_fingerprint("clccccclO phenol", "smi')

('phenol', b

< "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x010\x00\x04\x00\x10\x1a")

(If the identifier is not present then the function may return None or the empty string, depending on the
format and underlying implementation.)

The parameters to parse_id_and_molecule_fingerprint are identical to the ‘toolkit.
parse_id_and_molecule() function. For example, the following shows the difference in using two
different delimiter types in the reader args:

>>> record = "C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a"

>>> fptype.parse_id_and_molecule_fingerprint(record, "smi", reader_args={"delimiter":
—"to-eol"})

('vitamin a', b

— '"\x00\x00\x00\x08\x00\x00\x02\x00\x02\n\x02\x80\x04\x98\x0c\x00\x00\x140\x14\x18")
>>> fptype.parse_id_and_molecule_fingerprint(record, "smi", reader_args={"delimiter":
—"space"})

('vitamin', b
—'"\x00\x00\x00\x08\x00\x00\x02\x00\x02\n\x02\x80\x04\x98\x0c\x00\x00\x140\x14\x18")

The id_tag and errors parameters are also supported, though I won’t give examples. See Read ids and
molecules using an SD tag for the id to learn how to use the id_ tag and Specify a SMILES delimiter through
reader__args and Multi-toolkit reader _args and writer _args for examples of using reader__args.

5.9 Make a specialized id and molecule fingerprint parser

In this section you’ll learn how to make a specialized function for computing the fingerprints given many
individual structure records.

Sometimes the structure input comes as a set of individual strings, with one record per string. For example,
the input might come from a database query, where the cursor returns each field of each row as its own term,
and you want to convert each of them into a fingerprint.

One way to do this through successive calls to FingerprintType.parse_molecule_fingerprint ():

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp

>>> from chemfp import bitops

>>>

>>> smiles_list = ["C", "0=0", "C#N"]

>>>

>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")

(continues on next page)

152 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.5

(continued from previous page)

>>> for smiles in smiles_list:
fp = fptype.parse_molecule_fingerprint(smiles, "smistring")
print(bitops.hex_encode(fp), smiles)

000000000000000000000000000000000000008000 C
000000000000000000000000200000080000004008 0=0
000000000001000000000000000000000000000001 C#N

There is some overhead in this because the parameters, like format (“smistring” in this case) are (re)validated
for each call, and sometimes extra work is done to ensure that the call is thread-safe. (The overhead is higher
if there are complex reader args, and if the underlying fingerprinter is very fast.)

Another solution is to use make_id_and_molecule_fingerprinter_parser() to create a specialized parser
function for a given set of parameters. The parameters are only validated once, and the returned parser
function takes only the record as input and returns the (id, fingerprint) pair:

>>> import chemfp

>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")

>>> id_and_fp_parser = fptype.make_id_and_molecule_fingerprint_parser("smi")

>>> id_and_fp_parser("clccccclO phenol")

('phenol', b

— "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00D\x80\x10\x1e")

The parameters to make_id_and_molecule_fingerprint_parser are identical to toolkit.
make_td_and_molecule_parser().

T’ll use the new function to parse the smiles_list from earlier:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> from chemfp import bitops
>>>
>>> smiles_list = ["C", "0=0", "C#N"]
>>>
>>> fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")
>>> id_and_fp_parser = fptype.make_id_and_molecule_fingerprint_parser("smistring")
>>>
>>> for smiles in smiles_list:
id, fp = id_and_fp_parser(smiles)
print(bitops.hex_encode(fp), smiles)

000000000000000000000000000000000000008000 C
000000000000000000000000200000080000004008 0=0
000000000001000000000000000000000000000001 C#N

For OpenEye-MACCS166, creating and using a specialized parser is about 10% faster than using the
parse_molecule_ fingerprint() when the query is isocane (C20H42). For OpenBabel-MACCS it’s about 5%,
for CDK-MACCS it’s slighly less than 5%, and for RDKit-MACCS166 it’s around 1%.

The performance differences are in part due to the performance differences of the SMILES parsers in the
underlying toolkit and in part because of differences in how the toolkits handle parsing. Chemfp does
not guarantee that the function returned by make_id_and_molecule_parser() may be called by different
threads at the same time. (Instead, make a function for each thread.) This means the OEChem version
re-use a single molecule object, which reduces some memory allocation overhead. While the RDKit and
Open Babel implementations always create a new molecule each time, adding some overhead.

5.9. Make a specialized id and molecule fingerprint parser 153

chemfp Documentation, Release 3.5

In addition, RDKit’s native MACCS implementation maps key 1 to bit 1, while the other toolkits and chemfp
map key 1 to bit 0. Chemfp normalizes RDKit-MACCS by shifting all of the bits left, and this translation
code hasn’t yet been optimized (though it appears to take only about 2% of the overall time).

You may have noticed that there’s a parse_molecule_fingerprint()
and a make_id_and_molecule_fingerprint_parser() but there isn’t a
parse_id_and_molecule_fingerprint() or make_molecule_fingerprint_parser(). This is simply
a matter of time. I haven’t needed those functions, they are quite easy to emulate given what’s available,
and I was getting bored of writing test cases.

Let me know if they would be useful for your code.

5.10 Read a structure file and compute fingerprints

In this section you’ll learn how to use a fingerprint type to read a structure file, compute fin-
gerprints for each one, and iterate over the resulting (id, fingerprint) pairs. You will need Com-
pound_ 099000001 099500000.sdf.gz from PubChem.

The read_molecule_fingerprints() method of a FingerprintType reads a structure file and computes
the fingerprint for each molecule. It will also extract the record identifier. It returns an iterator of the
(id, fingerprint) pairs. For example, the following uses OEChem/OEGraphSim to compute the MACCS166
fingerprint for a PubChem file, and prints the identifier, the number of keys set in the fingerprint, and the
hex-encoded fingerprint:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import bitops

Uncomment the fingerprint type you want to use.

fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")

#fptype = chemfp.get_fingerprint_type("RDKit-MACCS166")

#fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")

#fptype = chemfp.get_fingerprint_type("CDK-MACCS")

for id, fp in fptype.read_molecule_fingerprints("Compound_099000001_099500000.sdf.gz"):
print (" " % (id, bitops.byte_popcount(fp), bitops.hex_encode(fp)))

The first few lines of chemfp output are:

99000039 46 000004000000300001c0404e93e19053dcal6bbelb
99000230 67 000000880100648£0445a7fe2aeabl1738f2abb7elb
99002251 45 00000000001132000088404985e01152dca46b7elb
99003537 44 00000000200020000156149a90e994938c30592e1b
99003538 44 00000000200020000156149a90e994938c30592e1b

However, in most cases you should use the top-level helper function chemfp.
read_molecule_fingerprints(), which does the fingerprint type lookup and the call to
read_molecule_fingerprints:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import bitops

for id, fp in chemfp.read_molecule_fingerprints("CDK-MACCS",

(continues on next page)

154 Chapter 5. Fingerprint family and type examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.5

(continued from previous page)

"Compound_099000001_099500000.sdf .gz") :
print("/s /3d Js" 7 (id, bitops.byte_popcount(fp), bitops.hex_encode(fp)))

The helper function accepts both a type string, as shown here, and a Metadata object. On the other
hand, the helper function does not support fingerprint kwargs, so in that case you have to go through the
FingerprintType.

The read_molecule_fingerprints method takes the same parameters as the toolkit.
read_ids_and_molecules (), including id_tag, errors, and location. I won’t cover those details again here.
Instead, see Read ids and molecules from an SD file at the same time.

5.11 Structure-based fingerprint reader location

In this section you’ll learn more about the location attribute of the structure-based fingerprint iterator
returned by read_molecule fingerprints and read_molecule_fingerprints from_ string.

Four related functions implement structure-based fingerprint readers:
e chemfp.read_molecule_fingerprints ()
e chemfp.read_molecule_fingerprints_from_string()
e FingerprintType.read_molecule_fingerprints()
e FingerprintType.read_molecule_fingerprints_from_ string()

They all return a FingerprintIterator. Just like with the BaseMoleculeReader classes, the Fingerprint-
Iterator has a location attribute that can be used to get more information about the internal reader state.
The toolkit section has more details about how to get the current record number (see Location informa-
tion: filename, record_format, recno and output_recno) and, if supported by the parser implementation for
a format, the line number and byte ranges for the record (see Location information: record position and
content).

It’s also possible to get the current molecule object using the location’s “mol” attribute. This isn’t so
important for the toolkit API since all of the molecule readers return the molecule object. It’s more useful
in the fingerprint iterator, which doesn’t.

NOTE: accessing the molecule this way is somewhat slow, because it requires several Python function
calls. It should mostly be used for error reporting; the following is meant as an example of use, and not a
recommended best practice.

The following uses the location’s mol to report the SMILES string for every molecule whose MACCS finger-
print sets at most 6 keys:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import bitops

from openeye.oechem import OECreateSmiString, OEThrow, OEErrorLevel_Fatal
OEThrow.SetLevel (OEErrorLevel_Fatal) # Disable warnings

fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")

with fptype.read_molecule_fingerprints("Compound_099000001_099500000.sdf.gz") as reader:
location = reader.location
for id, fp in reader:

(continues on next page)

5.11. Structure-based fingerprint reader location 155

chemfp Documentation, Release 3.5

(continued from previous page)

popcount = bitops.byte_popcount (fp)
if popcount > 6:

continue
smiles = OECreateSmiString(location.mol)
print (" " % (id, popcount, smiles))

The output from the above is:

99116624 6 C(C(C1)(C1L)C1)(F)Cl
99116625 6 C(C(C1) (C1L)C1)(F)Cl
99118955 6 C(C(C(C1)(CL)CL) (F)CL) (C(F) (FF) (F)F
99118956 6 C(C(C(C1)(C1)C1)(F)C1) (C(F) (F)F)(F)F

The above code imports the OEChem toolkit to disable warnings about “Stereochemistry corrected on atom
number”, and to call OECreateSmiString directly.

While chemfp has no cross-platform method to silence warnings, it does have a cross-toolkit solution to
generate the SMILES string, which is only slightly more complicated than using the native API.

I need to use the fingerprint type object to get the underlying “toolkit”, which is a portability layer on top
of the actual cheminformatics toolkit with functions to parse a string into a molecule and vice versa:

>>> import chemfp

>>> fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")

>>> fptype.toolkit

<module 'chemfp.openeye_toolkit' from 'chemfp/openeye_toolkit.py'>
>>> T = fptype.toolkit

>>> mol = T.parse_molecule("0C", "smistring")

>>> T.create_string(mol, "smistring")

ICOI

I’ll use the toolkit’s create_string() method to make the SMILES string for each molecule which passes
the filter:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import bitops

fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")
T = fptype.toolkit

with fptype.read_molecule_fingerprints("Compound_099000001_099500000.sdf.gz") as reader:
location = reader.location
for id, fp in reader:
popcount = bitops.byte_popcount (fp)
if popcount > 6:

continue
smiles = T.create_string(location.mol, "smistring")
print (" " % (id, popcount, smiles))

When should you use a toolkit-specific API and when to use the portable one?

That depends on you. There’s definitely a portability vs. performance tradeoff because the new
create_string function will always require an extra function call over the native API. If you work with

156 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.5

a given toolkit a lot then you're going to be more familiar with it than this brand new chemfp API. Plus,
calling a function to create another function is somewhat unusual.

On the other hand, it’s trivial to change the above code to work with any of the fingerprint types that chemfp
supports.

5.12 Read fingerprints from a string containing structures

In this section you’ll learn how to use a fingerprint type to read a string containing a set of structure records,
compute fingerprints for each one, and iterate over the resulting (id, fingerprint) pairs.

The read_molecule_fingerprints_from_string () method of the FingerprintType takes as input a string
containing structure records and returns an iterator over the (id, fingerprint) pairs.

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp

>>> from chemfp import bitops

>>> fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")

>>> content = "C methane\n" + "CC ethane\n"
>>> print(content, end="")

C methane

CC ethane

>>> reader = fptype.read_molecule_fingerprints_from_string(content, '"smi'
>>> for (id, fp) in reader:
print(id, bitops.hex_encode(fp))

methane 000000000000000000000000000000000000008000
ethane 000000000000000000000000000000000000108000
>>>

In most cases you should use the top-level helper function chemfp.
read_molecule_fingerprints_from_string (), which is slightly easier to call:

from __future__ import print_function # Only needed in Python 2
import chemfp
from chemfp import bitops
content = ("C methane\n"
"CC ethane\n")
reader = chemfp.read_molecule_fingerprints_from_string("OpenBabel-MACCS",
content, "smi")
for (id, fp) in reader:
print(id, bitops.hex_encode(fp))

The helper function accepts both a type string, as shown here, and a Metadata object. The helper function
does not support fingerprint kwargs so in that case you must go through the fingerprint type.

The method takes the same parameters as toolkit.read_ids_and_molecules_from_string(), including
the id_tag, errors, location, and reader _args. See Read from a string instead of a file for more about that
function.

5.12. Read fingerprints from a string containing structures 157

chemfp Documentation, Release 3.5

5.13 Structure-based fingerprint reader errors

In this section you’ll learn how to use the errors option for the “read molecule fingerprints” functions,
including how to use the experimental support for a callback error handler.

The four structure reader functions (chemfp.read_molecule_fingerprints(), chemfp.
read_molecule_fingerprints_from_string (), FingerprintType.read_molecule_fingerprints(),
and FingerprintType.read_molecule_fingerprints_from_string()) take the standard errors option.
By default it is “strict”, which means that it raises an exception when there are errors, and stops processing.

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp
>>> from chemfp import bitops
>>> content = ("C methane\n" +
"Q Q-ane\n" +
. "0=0 molecular oxygen\n")
>>> with chemfp.read_molecule_fingerprints_from_string(
"RDKit-MACCS166", content, "smi'") as reader:
for (id, fp) in reader:
print(id, bitops.hex_encode(fp))

methane 000000000000000000000000000000000000008000
[11:10:34] SMILES Parse Error: syntax error while parsing: Q
[11:10:34] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
Traceback (most recent call last):

File "<stdin>", line 3, in <module>

. traceback lines omitted ...

File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot parse the SMILES 'Q', file '<string>', line 2, record
—#2: first line is 'Q Q-ane'

The default is “strict” because you should be the one to decide if you really want to ignore errors, not me.
Specify errors="ignore" to ignore errors, or use “report” to have chemfp write its own error messages to
stderr:

>>> with chemfp.read_molecule_fingerprints_from_string(
"RDKit-MACCS166", content, "smi", errors="ignore") as reader:
for (id, fp) in reader:
print(id, bitops.hex_encode(fp))

methane 000000000000000000000000000000000000008000

[11:11:50] SMILES Parse Error: syntax error while parsing: Q

[11:11:50] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
molecular oxygen 000000000000000000000000200000080000004008

Of course, this depends on the underlying toolkit implementation. Some toolkit/format combinations don’t
let chemfp know there was an error, such as most of the OEChem-based formats.

5.14 Experimental error handler

In this section you’ll learn about the experimental API for writing your own error handler.

158 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.5

In the previous section you learned about the “strict”, “report”, and “ignore” error handlers. What if you
want something different? Chemfp has an experimental feature where the errors can be any object with the
method “error(message, location)”. You might send the results to a log file, or display it in a GUI, ... or send
it to a speech synthesizer and hear all of the error messages go by.

NOTE: This error handler API is experimental and may change in the future.

The following creates an error handler which counts the number of errors, and for each one reports the error
number, the filename (which is “<string>” if the input is from a string), and the error message:

>>> class ErrorCounter(object):
def __init__(self):
self.num_errors = 0
def error(self, message, location):
self .num_errors += 1
print("Failure #/d from file : "% (
self .num_errors, location.filename, message))

>>> error_handler = ErrorCounter ()
>>> # ... use 'content' from the previous section
>>> with chemfp.read_molecule_fingerprints_from_string(
"RDKit-MACCS166", content, "smi", errors=error_handler) as reader:
for (id, fp) in reader:
print(id, bitops.hex_encode(fp))

methane 000000000000000000000000000000000000008000

[11:13:56] SMILES Parse Error: syntax error while parsing: Q

[11:13:56] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
Failure #1 from file '<string>': RDKit cannot parse the SMILES 'Q'
molecular oxygen 000000000000000000000000200000080000004008

Let me know if you use the API and have ideas for improvements.

The toolkit documentation includes another example of how to write an error handler.

5.15 Compute a fingerprint for a native toolkit molecule

In this section you’ll learn how to compute a fingerprint given a toolkit molecule.

All of the previous sections assumed the inputs were structure record(s), either as a string or from a file.
What if you already have a native toolkit molecule and want to compute its fingerprint? In that case, use
the FingerprintType. compute_fingerprint () method:

>>> import chemfp

>>> fptype = chemfp.get_fingerprint_type("OpenBabel-MACCS")

>>> mol = fptype.toolkit.parse_molecule("clcccccl0", "smistring")

>>> mol

<openbabel.openbabel.0BMol; proxy of <Swig Object of type 'OpenBabel::0BMol *' at,
—0x10b134db0> >

>>> fptype.compute_fingerprint (mol)
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01@\x00D\x80\x10\x1e"

This can be useful when you want to compute multiple fingerprint types for the same molecule. For example,
I’ll compare Open Babel’s MACCS implementation with chemfp’s own MACCS implementation for Open
Babel:

5.15. Compute a fingerprint for a native toolkit molecule 159

chemfp Documentation, Release 3.5

from __future__ import print_function # Only needed in Python 2
import chemfp

from chemfp import openbabel_toolkit as T

from chemfp import bitops

fptypel = chemfp.get_fingerprint_type("OpenBabel-MACCS")
fptype2 = chemfp.get_fingerprint_type("RDMACCS-OpenBabel")

with T.read_ids_and_molecules("Compound_099000001_099500000.sdf.gz") as reader:
for id, mol in reader:
fpl = fptypel.compute_fingerprint (mol)
fp2 = fptype2.compute_fingerprint (mol)
if fpl !'= fp2:
bitsl = set(bitops.byte_to_bitlist(fpl))
bits2 = set(bitops.byte_to_bitlist(£fp2))
print(id, "in 0B:", sorted(bitsl-bits2), "in RDMACCS:", sorted(bits2-bitsl))
else:
print(id, "equal")

Almost half (7929 of 10826) of the output were lines of the form:

99000039 in 0B: [] in RDMACCS: [124]

I was curious, so I investigated the differences. Key 125 (the MACCS keys start at 1 while chemfp bit
indexing starts at 0) is defined as “Aromatic Ring > 1”. Open Babel doesn’t support this bit because it only
allows key definitions based on SMARTS, and this query cannot be represented as SMARTS.

Note: compute_fingerprint() is thread-safe. If an underlying chemistry toolkit object is not thread-safe
then chemfp will duplicate that object before computing the fingerprint.

5.16 Fingerprint many native toolkit molecules

In this section you’ll learn how to generate a fingerprint given many native toolkit molecules.

Sometimes you have a list of molecules and you want to compute fingerprints for each one. In the following
I’ll load 10826 molecules from an SD file using OEChem:

>>> import chemfp

>>>

>>> fptype = chemfp.get_fingerprint_type("OpenEye-MACCS166")

>>> T = fptype.toolkit

>>>

>>> with T.read_molecules("Compound_099000001_099500000.sdf.gz") as reader:
mols = [T.copy_molecule(mol) for mol in reader]

. various OEChem warnings omitted ...
>>> len(mols)
10826

NOTE: for performance reasons, some of the toolkit implementations will reuse a molecule object. I call
toolkit.copy_molecule() to force a copy of each one. A future version of chemfp will likely support a new
reader__args parameter to ask the reader implementation to always return a new molecule.

160 Chapter 5. Fingerprint family and type examples

chemfp Documentation, Release 3.5

You know from the previous section how to compute the fingerprint one molecule at a time using
FingerprintType.compute_fingerprint():

>>> fps = [fptype.compute_fingerprint(mol) for mol in mols]

You can also process all of them at once using FingerprintType.compute_fingerprints():

>>> fps = list(fptype.compute_fingerprints(mols))

The plural in the name compute_fingerprints() is the hint that it can take multiple molecules. It returns
a generator, so I used Python’s 1ist () to convert it to an actual list.

Why call compute_fingerprints instead of compute_fingerprint? The main reason is that it expresses
your intent more clearly than setting up a for-loop. But to be honest, the original reason was that I expected
it would be faster than calling the compute_fingerprint many times, because the underlying code could
skip some overhead.

By design, compute_fingerprint is thread-safe, which means chemfp sometimes makes extra objects to keep
that promise. On the other hand, compute_fingerprints, which processes a sequential series of molecules,
can reuse internal objects across the series instead of creating new ones. In principle this should be a bit
faster. In practice, nearly all of the time is spent in generating the fingerprints. The overhead adds less than

1%.

5.17 Make a specialized molecule fingerprinter

In this section you’ll learn how to make a specialized function to compute a fingerprint for a molecule.
However, there is very little reason for you to use this function.

The FingerprintType.compute_fingerprint() method is thread-safe. Some of the underlying toolkit
implementations can use code which isn’t thread-safe. For example, OEGraphSim writes its fingerprint
information to an OEFingerPrint instance, and replaces its previous value. A thread-safe implementation
would make a new OEFingerPrint for each call, which a non-thread-safe implementation could reuse it, and
save a small bit of allocation overhead.

The FingerprintType.make_fingerprinter () method returns a non-thread-safe fingerprinter function,
which is potentially faster beause it doesn’t need to keep the thread-safe promise.

Here’s an example of the two APIs. First, a bit of preamble to get things set up with a couple of molecules:

>>> import chemfp

>>> from chemfp import bitops

>>>

>>> fptype = chemfp.get_fingerprint_type("OpenBabel-FP2")

>>> moll = fptype.toolkit.parse_molecule("clcccccl0", "smistring")
>>> mol2 = fptype.toolkit.parse_molecule("0=0", "smistring")

The thread-safe APT calls the compute_fingerprint () method:

>>> bitops.byte_popcount (fptype.compute_fingerprint (moll))
12

>>> bitops.byte_popcount (fptype.compute_fingerprint (mol2))
1

The non-thread-safe version uses make_fingerprinter to create a new fingerprinter function, which I've
assigned to calc_ fingerprint, and then call directly:

5.17. Make a specialized molecule fingerprinter 161

chemfp Documentation, Release 3.5

>>> calc_fingerprint = fptype.make_fingerprinter()
>>> bitops.byte_popcount(calc_fingerprint(moll))
12

>>> bitops.byte_popcount(calc_fingerprint (mol2))

The keen-eyed will note that I could have written the first code as:

>>> compute_fingerprint = fptype.compute_fingerprint
>>> bitops.byte_popcount (compute_fingerprint(moll))
12

>>> bitops.byte_popcount (compute_fingerprint(mol2))

1

and gotten the same answer, which means there is little API need for a special “make_ fingerprinter()”
function, except for performance.

I timed the performance differences using the following:

import chemfp
import time

def main(Q):
fptype = chemfp.get_fingerprint_type("OpenBabel-FP2")
T = fptype.toolkit

with T.read_molecules("Compound_099000001_099500000.sdf.gz") as reader:
mols = list(reader)

compute_fingerprint = fptype.compute_fingerprint
calc_fingerprint = fptype.make_fingerprinter()

tl = time.time()

fpsl = [compute_fingerprint(mol) for mol in mols]
t2 = time.time()
fps2 = [calc_fingerprint(mol) for mol in mols]

t3 = time.time()

assert fpsl == fps2

print ("compute_fingerprint():", t2-t1)
print ("make_fingerprinter():", t3-t2)
print ("ratio:", (t2-t1)/(t3-t2))
print("1/ratio:", (t3-t2)/(t2-t1))

main()

With the Open Babel 3.0.0 fingerprints, the performance improvement was roughly 10%.

162 Chapter 5. Fingerprint family and type examples

CHAPTER 6

Toolkit APl examples

This chapter gives many examples of how to use the toolkit API. For an overview of the toolkit API func-
tions, see chemfp. toolkit. For details about actual toolkit implementations, see chemfp. openeye_toolkit,
chemfp.openbabel_toolkit, chemfp.rdkit_toolkit, and chemfp.text_toolkit.

Fingerprint search usually starts with a structure record, and not a fingerprint. The functions chemfp.
read_molecule_fingerprints () and chemfp.read_molecule_fingerprints_from_string() give a quick
way to read a file or string containing structure records as the corresponding fingerprints.

Sometimes you want more control over the process. You might want to generate multiple fingerprints for the
same structure and not want to reparse the structure record multiple times. Or you might want to return
the search results as extra fields to the query SDF record instead of a simple list of values.

Chemfp uses a third-party chemistry toolkit to parse the records into a molecule, or compute the fingerprint
for a given molecule. It’s not hard to write your own Open Babel, OEChem/OEGraphSim, or RDKit code
to handle any of these or similar tasks. The problem comes in when you want to mix multiple fingerprint
types, like to compare the default RDKit fingerprint to Open Babel’s FP2 fingerprint. You end up writing
very different code for essentially the same fingerprint task.

There’s an old saying in computer science; all problems can be solved with another layer of indirection. The
chemfp toolkit API follows that tradition. It’s a common API for molecule I/O which works across the three
supported toolkits. It’s also my best effort at implementing a next generation API.

Bear in mind that it is only an I/O API. Chemfp is a fingerprint toolkit and it will not gain a common
molecule API. For that, look toward Cinfony.

6.1 Get a chemfp toolkit

In this section you’ll learn how to load a “toolkit” — a portable API layer above the actual chemistry toolkit
—and how to check if a toolkit is available and has a valid license.

Each toolkit I/O adapter is implemented as a chemfp submodule. If you know the underlying chemistry
toolkit is installed you can import the adapter directly:

163

http://code.google.com/p/cinfony/

chemfp Documentation, Release 3.5

>>> from chemfp import openbabel_toolkit
>>> from chemfp import openeye_toolkit
>>> from chemfp import rdkit_toolkit

Use chemfp.get_toolkit_names () to get the available toolkit names:

>>> chemfp.get_toolkit_names()
set(['openeye', 'rdkit', 'openbabel'])

This will try to import each module, which means it may take a second or more depending on the shared
library load time for your system. (This overhead only occurs once.) The function returns a list of the
modules that could be loaded and have a valid license.

You can use chemfp.get_toolkit () to get the correct toolkit module given a name; it raises a ValueError
if the underlying toolkit isn’t installed or the toolkit name is unknown:

>>> chemfp.get_toolkit("rdkit")

<module 'chemfp.rdkit_toolkit' from 'chemfp/rdkit_toolkit.pyc'>

>>> chemfp.get_toolkit ("openeye")

<module 'chemfp.openeye_toolkit' from 'chemfp/openeye_toolkit.pyc'>

>>> chemfp.get_toolkit("openbabel")

<module 'chemfp.openbabel_toolkit' from 'chemfp/openbabel_toolkit.pyc'>

Existence isn’t enough to know if you can use a toolkit. OEChem requires a license. Each I/O adapter
implements chemfp.toolkit.is_licensed(). It returns True for Open Babel and RDKit and the value of
OEChemIsLicensed() for OEChem:

>>> from __future__ import print_function # Only needed in Python 2
>>> for name in chemfp.get_toolkit_names():
T = chemfp.get_toolkit(name)
print ("Toolkit (/s) is licensed? " % (T.name, T.software, T.is_licensed()))

Toolkit 'openeye' (0OEChem/20191016) is licensed? True
Toolkit 'openbabel' (OpenBabel/3.0.0) is licensed? True
Toolkit 'rdkit' (RDKit/2020.03.1) is licensed? True

(Thanks OpenEye for an no-cost developer license to their toolkit!) There is currently no way to check if
OEGraphSim is licensed; you’ll need to use native OpenEye code instead.

For fun I also showed the software attribute, which gives more detailed information about the toolkit version
in a standardized format.

Finally, use chemfp.has_toolkit() to check if a toolkit is available. In the following, I used one of my
local testing environments which has OEChem installed but not the other toolkits. (I use venv to create and
manage these virtual environments; it’s a very useful tool.):

>>> chemfp.has_toolkit("openeye")
True

>>> chemfp.has_toolkit("openbabel")
False

>>> chemfp.has_toolkit("rdkit")
False

The other option is to catch the ValueError raised when trying to get an unavailable toolkit:

164 Chapter 6. Toolkit APl examples

https://docs.python.org/3/library/venv.html

chemfp Documentation, Release 3.5

>>> chemfp.get_toolkit("openeye")
<module 'chemfp.openeye_toolkit' from 'chemfp/openeye_toolkit.py'>
>>> chemfp.get_toolkit("rdkit")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1907, in get_toolkit
raise ValueError("Unable to get toolkit : " % (toolkit_name, err))
ValueError: Unable to get toolkit 'rdkit': No module named rdkit
>>> chemfp.get_toolkit("cdk")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/__init__.py", line 1929, in get_toolkit
raise ValueError("Toolkit is not supported" 7 (toolkit_name,))
ValueError: Toolkit 'cdk' is not supported

This is a bit more complicated to do, but does have the advantage of giving access to an error message.

6.2 Parse and create SMILES

In this section you’ll learn how to parse a SMILES into a molecule, convert a molecule into a SMILES, and
the difference between a SMILES record and a SMILES string. You will need a chemistry toolkit for this
and most of the examples in this chapter.

The chemfp toolkit I/O API is the same across the different toolkits, and examples with one will gener-
ally work with the other, except for essential differences like the specific formats available, the chemistry
differences in how to interpret a record, the error messages, and reader and writer arguments.

For most examples I'll use T as the toolkit module name, rather than specify a specific toolkit. My examples
will be based on RDKit, but you can use any of the following, if available on your system:

Choose one of these

from chemfp import openeye_toolkit as T
from chemfp import openbabel_toolkit as T
from chemfp import rdkit_toolkit as T

T'll parse the SMILES string for phenol as a toolkit molecule, then convert the toolkit molecule into its
canonical isomeric SMILES string using chemfp. toolkit.create_string():

>>> mol = T.parse_molecule("clcccccl0", "smistring")
>>> mol

<rdkit.Chem.rdchem.Mol object at 0x103559980>

>>> T.create_string(mol, "smistring")

'Oclcccccel!

The “smistring” format name means that the input is a SMILES string. Chemfp follows the rule from the
original SMILES paper that the SMILES string ends at the first whitespace. The following is valid across
the chemfp toolkits API even if the underlying toolkit doesn’t accept the “junk” as part of a SMILES:

>>> mol = T.parse_molecule("clccccclO junk", "smistring")

On the other hand, if you have a SMILES record, which is a SMILES string followed by an id and possibly
other fields, then use the “smi” format name. That will parse the first characters as a SMILES string and
parse the rest of the input, up to the end of the line, as the record id:

6.2. Parse and create SMILES 165

chemfp Documentation, Release 3.5

>>> mol = T.parse_molecule("clccccclO junk", "smistring")
>>> T.get_id(mol) is None

True

>>> mol = T.parse_molecule("clccccclO junk", "smi')
>>> T.get_id(mol)

' junk'

>>> mol = T.parse_molecule("clccccclO flotsam and jetsam\nand more\n", "smi'")
>>> T.get_id(mol)
'flotsam and jetsam'

I used the chemfp.toolkit.get_id() helper function. While chemfp doesn’t have a common molecule
object, I found I do need a few standard functions to manipulate toolkit molecules. Also, toolkit.
parse_molecule() will only read the first record and ignore trailing data, which is why the “and more”
didn’t affect anything.

Now that the molecule has an id, it’s easy to see the difference between the “smistring” and “smi” in the
output string:

>>> T.create_string(mol, "smistring")
'Oclcccccel!

>>> T.create_string(mol, "smi")
'Oclcccecl flotsam and jetsam\n'

Finally, you can pass an alternate id to the toolkit.create_string() function. One example of when this
is useful is when your identifier comes from one field of a database and the SMILES string from another,
and you want to combine the results to get an SDF record:

>>> T.create_string(mol, "smi", id="nothing to see here")
'Oclccccecl nothing to see here\n'

WARNING: Chemfp’s toolkit wrapper implementation may temporarily change then restore the toolkit
molecule’s own identifier in order to get the correct output. This is not thread-safe.

6.3 Canonical, non-isomeric, and arbitrary SMILES

In this section you'll learn the difference between the “smistring”, “canstring”, and “usmstring” SMILES
string formats and the “smi”; “can”, and “usm” SMILES record formats. As with all examples which use
the generic T toolkit name, you’ll need one of the supported chemistry toolkits, and I'll use RDKit as my
underlying toolkit.

The SMILES format supports many different ways to represent the same molecule. “CO”, “OC”,
“[OH][CH3]”, and “C3.03” are four different SMILES strings for methanol. A canonicalization algorithm
uses additional rules to create a unique SMILES representation for a given molecular graph. The different
chemistry toolkit have different canonicalization algorithms, so each toolkit will likely generate a different
canonical SMILES string for the same molecular graph.

There are multiple classes of canonical SMILES strings even in the same toolkit. The original SMILES
format did not handle isotopes, chirality, or stereochemistry. The later extension to support these was called
“isomeric SMILES”, to distinguish it from the original SMILES.

Because of the history, when people asked a toolkit for “SMILES” output they got non-isomeric non-canonical
SMILES, while “canonical SMILES” gave them “non-isomeric canonical”. This caused subtle usability errors.
Many people, including people like me who should have the experience to know better, expect canonical

166 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

isomeric SMILES by default. But for over 20 years nearly all of the toolkits followed Daylight’s lead in how
they did things.

I learned about the problem when OEChem 2.0 broke with tradition and fixed the mistake. It defined the
default SMILES as canonical isomeric SMILES. If you make the effort to ask for a canonical SMILES you
get canonical non-isomeric SMILES, and if you really want non-canonical, non-isomeric SMILES you can
ask for the “usm” format.

Year later I learned that that Open Babel did the right thing well before OpenEye. Open Babel’s “canonical”
is isomeric SMILES, you must specify the “i” option to not include isotopic or chiral markings, and they
don’t even refer to “isomeric SMILES”.

Chemfp follows OpenEye’s naming convention. The “smistring” format generates a canonical isomeric
SMILES string, the “canstring” format generates a canonical non-isomeric SMILES string, and the “usm-
string” format generates a non-canonical non-isomeric SMILES string;:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>

>>> mol = T.parse_molecule("[235P].[238U]", "smistring")

>>> T.create_string(mol, "smistring")

' [235P] . [238U] '

>>> T.create_string(mol, "canstring")

"[P].[U]"

>>> T.create_string(mol, "usmstring")

"[p].[U]"

Here’s evidence that the “usmstring” format is non-canonical:

>>> mol = T.parse_molecule("[238U].[235P]", "smistring")
>>> T.create_string(mol, "usmstring")

"[ul. [P]"

>>> T.create_string(mol, "smistring")

' [235P] . [238U] '

MW

These conventions also apply when creating “smi”, “can”, and “usm” strings:

>>> T.set_id(mol, "radioactive")
>>> T.create_string(mol, "smi")
' [235P] . [238U] radioactive\n'
>>> T.create_string(mol, "can"
'"[P].[U] radioactive\n'

>>> T.create_string(mol, "usm")
'[U].[P] radioactive\n'

By the way, chemfp.toolkit.parse_molecule() doesn’t distinguish between “smi”, “can” and “usm” as
input SMILES records, nor between “smistring”, “canstring” and “usmstring”. The format only makes a
difference for output. Later on you’ll see how to specify writer args to have more fine-grained control over
the output SMILES format. (See RDKit-specific SMILES reader _args and writer _args, OpenEye-specific
SMILES reader__args and writer _args, Open Babel-specific SMILES reader _args and writer _args, and CDK-
specific SMILES reader _args and writer _args for toolkit-specific examples.)

6.4 Use format to create a record in SDF format

In this section you’ll learn how to convert a toolkit molecule into an SDF record. This example will use
the RDKit toolkit but the results will be substantially the same for any of the three supported chemistry

6.4. Use format to create a record in SDF format 167

chemfp Documentation, Release 3.5

toolkits.

To create an SDF record as a Unicode string, pass “sdf” as the format to chemfp. toolkit.create_string():

>>> from __future__ import print_function # Only needed in Python 2
>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("CO", "smistring")

>>> print(T.create_string(mol, "sdf"))

RDKit

21 0 0 0 0 0 O 0 0999 V2000

0.0000 0.0000 0.0000¢C 0 0 O O O O O O O O O O
0.0000 0.0000 0.00000 O O O O O O O O O O O O
1 2 1 0
M END
3333

Starting with chemfp 3.0, the create_string() function returns a Unicode string, under both Python 2.7
and Python 3.5+:

>>> T.create_string(mol, "sdf")[:13]
"\n RDKit '

In earlier versions of chemfp, create_string() returned a byte string. This was the usual practice under
Python 2.5 to 2.7. It was fine for ASCII data, but caused problems with other characters, like Greek letters
in a compound name or a data item listing prices in with the GBP or EUR symbol.

Python 3 makes a strong distinction between a byte string and a Unicode string. Chemfp 3.x follows that
lead by having create_string() return a Unicode string, and added the new function chemfp.toolkzt.
create_bytes () to return a byte string:

>>> T.create_bytes(mol, "sdf")[:13]
b'\n RDKit '

Here I'll set the molecule’s name to the lower-case Greek letter ‘alpha’, and show you the interactive output
from Python 2.7:

>>> T.set_id(mol, u"\N{GREEK SMALL LETTER ALPHA}")
>>> T.create_string(mol, "sdf")[:13]

u'\u03bi\n RDKit '
>>> T.create_bytes(mol, "sdf")[:13]
"\xce\xbi\n RDKit'

>>> print(T.create_string(mol, "sdf")[:13])
o
RDKit

Here’s the same output under Python 3.8:

>>> T.set_id(mol, u"\N{GREEK SMALL LETTER ALPHA}")
>>> T.create_string(mol, "sdf")[:13]

"a\n RDKit '
>>> T.create_bytes(mol, "sdf")[:13]
b'\xce\xbi\n RDKit'

>>> print(T.create_string(mol, "sdf")[:13])

(continues on next page)

168 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

(continued from previous page)

RDKit

6.5 Use zlib record compression

In this section you’ll learn about the “zlib” compression option for single record parsers and byte string
creation.

A record in SDF format can be large, but most of the content is repetetive. Often it’s better to store a
zlib compressed record in a database instead of the full record. When I use zlib to compress each record of
Compound_ 099000001 099500000.sdf.gz 1 get a 4.5-fold compression. That is, the uncompressed records
take 73,024,092 bytes, the individually compressed records take 16,262,567 bytes, and the gzip compressed
file takes 6,847,342 bytes. (Gzip is twice as good as individually compressed records because it can collect
compression statistics across multiple records and build a better prediction model.)

Chemfp supports a zlib compression option for the record-oriented functions, though not the file-oriented
functions. To enable it, add “zlib” to the format string for chemfp.toolkit.create_bytes(). Here you
can see how adding that suffix reduces the record size:

>>> from __future__ import print_function # Only needed in Python 2
>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("C0", "smistring")

>>> print("uncompressed:", len(T.create_bytes(mol, "sdf")))
uncompressed: 228

>>> print("compressed:", len(T.create_bytes(mol, "sdf.zlib")))
compressed: 77

T’ll complete a round-trip conversion by parsing the compressed SD record to a molecule then converting it
to a SMILES string:

>>> compressed = T.create_bytes(mol, "sdf.zlib")

>>> new_mol = T.parse_molecule(compressed, "sdf.zlib")
>>> T.create_string(new_mol, "smistring")

ICOI

The zlib option only works with create_bytes; it does not work with create_string because the latter
only returns Unicode strings, and it’s possible for zlib to return something which isn’t valid Unicode. Here’s
what happens if you try to use it anyway:

>>> T.create_string(mol, "sdf.zlib")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/rdkit_toolkit.py", line 419, in create_string
return _toolkit.create_string(mol, format, id, writer_args, errors)
File "chemfp/base_toolkit.py", line 1382, in create_string
raise ValueError("create_string() does not support compression. Use create_bytes()")
ValueError: create_string() does not support compression. Use create_bytes()

On the other hand, chemfp.toolkit.parse_molecule() takes both Unicode strings and byte strings as
input. It treats byte strings as being UTF-8 encoded.

6.5. Use zlib record compression 169

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.5

6.6 Use zst record compression

In this section you’ll learn about the “zst” compression option for single record parsers and byte string
creation.

Chemfp 3.4 added support for ZStandard compression in most places, including in the record-oriented func-
tions, via the suffix “zst” in the format name or filename. The following compares zlib and zst compression
to the uncompressed size:

import chemfp
for toolkit_name in ("text", "rdkit", "openbabel", "openeye"):
T = chemfp.get_toolkit(toolkit_name)
with T.read_molecules("Compound_099000001_099500000.sdf.gz",
reader_args={"rdkit.sdf.removeHs": False}) as reader:
uncompressed_size = zlib_size = zst_size = 0
for mol in reader:
uncompressed_size += len(T.create_bytes(mol, "sdf"))
z1lib_size += len(T.create_bytes(mol, "sdf.zlib"))
zst_size += len(T.create_bytes(mol, "sdf.zst"))
print("/r toolkit: uncompressed: zlib: () zstd: ("%«
toolkit_name, uncompressed_size, zlib_size, uncompressed_size/zlib_size,
zst_size, uncompressed_size/zst_size))

The output of the above is:

'text' toolkit: uncompressed: 73024092 zlib: 16262567 (4.49) zstd: 16976598 (4.30)
'rdkit' toolkit: uncompressed: 68180103 zlib: 15843096 (4.30) zstd: 16714426 (4.08)
'openbabel' toolkit: uncompressed: 73392094 zlib: 16295123 (4.50) zstd: 16985140 (4.32)
'openeye' toolkit: uncompressed: 73024092 zlib: 16269883 (4.49) zstd: 16977089 (4.30)

By default OEChem and Open Babel will keep hydrogens while RDKit removes them, which makes the
output SD files considerably smaller. The reader_args specifies rdkit.sdf .removeHs so RDKit will keep
the hydrogens, which makes the size comparisons more direct. The total RDKit size is still smaller than the
other toolkits because RDKit only writes 4 columns for each bond, while the others use 7 columns.

Remember, compression effectiveness is a balance between compression time, compressed size, and decom-
pression time. The zlib, gzip, and zst compression methods all support different compression levels. For zlib
and gzip, 1 results in faster compression time but generally larger compressed sizes, and 9 gives the best
compression at the cost of decreased performance. Zstandard also uses 1 for faster compression but uses 19
to get the maximum compression.

The compression level can be specified using the 1evel argument of the chemfp functions which support com-
pressed output, like chemfp.toolkit.create_bytes(), chemfp.toolkit.open_molecule_writer(), and
save(). It can be the numeric compression level, or the words “min” for minimum compression, “default”
for default (for zlib and gzip, 3 for zstd), and “max” for maximum compression at the expense of time.

6.7 Get a list of available formats and distinguish between input and
output formats

In this section you’ll learn how to get the list of available formats for each object, and determine if a format
can be used to get a toolkit molecule from a string record, or convert a toolkit molecule into a string record.

The toolkit’s chemfp.toolkit.get_formats() function returns a list of the available formats. On my

170 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

computer RDKit supports 20 formats, OEChem 31, and Open Babel (showing off its heritage) supports a
whopping 196:

>>> from chemfp import rdkit_toolkit
>>> len(rdkit_toolkit.get_formats())
20
>>> rdkit_toolkit.get_formats()
[Format ('rdkit/smi'), Format('rdkit/can'), Format('rdkit/usm'),
Format ('rdkit/sdf'), Format('rdkit/smistring'),
Format ('rdkit/canstring'), Format('rdkit/usmstring'),
Format ('rdkit/molfile'), Format('rdkit/rdbinmol'),
Format ('rdkit/fasta'), Format('rdkit/sequence'), Format('rdkit/helm'),
Format ('rdkit/mol2'), Format('rdkit/pdb'), Format('rdkit/xyz'),
Format ('rdkit/mae'), Format('rdkit/inchi'), Format('rdkit/inchikey'),
Format ('rdkit/inchistring'), Format('rdkit/inchikeystring')]
>>>
>>> from chemfp import openeye_toolkit
>>> len(openeye_toolkit.get_formats())
31
>>> openeye_toolkit.get_formats()
[Format ('openeye/smi'), Format('openeye/usm'),
Format ('openeye/can'), Format('openeye/sdf'),
Format ('openeye/molfile'), Format('openeye/skc'),
Format ('openeye/mol2'), Format('openeye/mol2h'),
Format ('openeye/sln'), Format('openeye/mmod'),
Format ('openeye/pdb'), Format('openeye/xyz'), Format('openeye/cdx'),
Format ('openeye/mopac'), Format('openeye/mf'),
Format ('openeye/oeb'), Format('openeye/inchi'),
Format ('openeye/inchikey'), Format('openeye/oez'),
Format ('openeye/cif'), Format('openeye/mmcif'),
Format ('openeye/fasta'), Format('openeye/sequence'),
Format ('openeye/csv'), Format('openeye/json'),
Format ('openeye/smistring'), Format('openeye/canstring'),
Format ('openeye/usmstring'), Format('openeye/slnstring'),
Format ('openeye/inchistring'), Format('openeye/inchikeystring')]
>>>
>>> from chemfp import openbabel_toolkit
>>> len(openbabel_toolkit.get_formats())
196
>>> openbabel_toolkit.get_formats()
[Format ('openbabel/smi'), Format('openbabel/can'),
Format ('openbabel/usm'), Format('openbabel/smistring'),
Format ('openbabel/canstring'), Format('openbabel/usmstring'),
Format ('openbabel/sdf'), Format('openbabel/inchi'),
Format (' openbabel/inchikey'), Format('openbabel/inchistring'),
Format ('openbabel/inchikeystring'), Format('openbabel/ins'),
Format ('openbabel/moo'), Format('openbabel/cmlr'),
. many formats omitted ...
Format (' openbabel/pdb')]
>>>

T’ll use chemfp.toolkit.get_format (), which returns a chemfp.base_toolkit.Format, to get the “sdf”
format for OpenEye (if you don’t have access to OEChem, use one of the other toolkits instead):

6.7. Get a list of available formats and distinguish between input and output formats 171

chemfp Documentation, Release 3.5

>>> sdf_format = openeye_toolkit.get_format("sdf")
>>> sdf_format.name

'sdf'

>>> sdf_format.toolkit_name

'openeye'

The “sdf” format can be used for both input and output in all toolkits:

>>> sdf _format.is_input_format, sdf_format.is_output_format
(True, True)

However, some formats are output only, like the InChIKey format (assuming it’s available for your toolkit):

>>> inchi_fmt = openeye_toolkit.get_format("inchikey")
>>> inchi_fmt.is_input_format, inchi_fmt.is_output_format
(False, True)

On the other hand, some formats are input only, like Open Babel’s support for MOPAC’s output format:

>>> mopout_fmt = openbabel_toolkit.get_format ("mopout")
>>> mopout_fmt.is_input_format, mopout_fmt.is_output_format
(True, False)

Instead of asking for all available formats, you can ask for only the input formats, or only the output formats,
using chemfp.toolkit.get_input_formats or chemfp.toolkit.get_output_formats:

>>> from __future__ import print_function # Only needed in Python 2

>>> import chemfp

>>> for toolkit_name in ("openbabel", "openeye", "rdkit"):
T = chemfp.get_toolkit(toolkit_name)
print(toolkit_name, "has", len(T.get_input_formats()), "input formats")
print(toolkit_name, "has", len(T.get_output_formats()), "output formats")

openbabel has 153 input formats
openbabel has 142 output formats
openeye has 25 input formats
openeye has 30 output formats
rdkit has 17 input formats

rdkit has 18 output formats

6.8 Determine the format for a given filename

It’s sometimes useful to know what format will be used for a given filename. A filename can be used as a
source for a reader or destination for a writer, and a toolkit might understand a given format when used as
input but not as ouput, or vice-versa.

The function chemfp.toolkit.get_input_format_from_source() returns a chemfp.base_toolkit.
Format for the given filename:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> T.get_input_format_from_source("abc.smi.gz")
Format ('rdkit/smi.gz')

172 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

This is the same Format object you saw in the previous section. I didn’t mention the compression attribute
in that discussion. It’s “gz” for gzip-ed files, “zst” for zstandard compressed files, and the empty string “”
for uncompressed files.

>>> fmt = T.get_input_format_from_source("abc.smi.gz")
>>> fmt.name
'smi'

>>> fmt.compression

lgzl

>>>

>>> fmt = T.get_input_format_from_source("abc.smi")
>>> fmt.name

smi
>>> fmt.compression

Asking for a supported format which isn’t an input format raises a ValueError exception:

>>> from chemfp import openbabel_toolkit
>>> openbabel_toolkit.get_input_format_from_source("example.inchikey")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/openbabel_toolkit.py", line 168, in get_input_format_from_source
return _format_registry.get_input_format_from_source(source, format)
File "chemfp/base_toolkit.py", line 875, in get_input_format_from_source
format_config = self.get_input_format_config(register_name)
File "chemfp/base_toolkit.py", line 798, in get_input_format_config
raise ValueError(" does not support as an input format"
ValueError: Open Babel does not support 'inchikey' as an input format

even though “inchikey” is supported as an output format:

>>> openbabel_toolkit.get_output_format_from_destination("example.inchikey")
Format ('openbabel/inchikey')

Yes, there’s a different function to get the format name for a source filename than for a destination filename.
Maybe in the future I'll support a generic get_format_from_filename(); let me know if that would be
useful.

If you ask for a format which doesn’t exist then the functions raise a different ValueError exception:

>>> openbabel_toolkit.get_input_format_from_source("example.does-not-exist")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/base_toolkit.py", line 788, in get_format_config
raise ValueError(" does not support the format"
ValueError: Open Babel does not support the 'does-not-exist' format

T’ve found it useful to have a way to override the default guess. It’s amazing how many people use “.dat” for
SMILES or SDF files, and “txt” files for SMILES. The format lookup functions support a second, optional
parameter, which is the format name to use.

>>> openbabel_toolkit.get_input_format_from_source("example.does-not-exist", "smi.gz")
Format ('openbabel/smi.gz"')

6.8. Determine the format for a given filename 173

chemfp Documentation, Release 3.5

This exists so that code like:

if format is not None:
fmt = T.get_format(format)
else:
fmt

T.get_format_from_source(filename)

can be replaced with:

fmt = T.get_format_from_source(filename, format)

Working with a format object is useful when combined with format’s reader__args and writer__arg functions
discussed in Specify a SMILES delimiter through reader _args

>>> fmt = openbabel_toolkit.get_input_format_from_source("input.smi")
>>> fmt.get_default_writer_args()

{'options': None, 'isomeric': True, 'canonicalization': 'default',
'explicit_hydrogens': False, 'delimiter': None}

>>> fmt.get_writer_args_from_text_settings({

"explicit_hydrogens": "true",
"isomeric": "false",
"delimiter": "tab"})
{'isomeric': False, 'explicit_hydrogens': True, 'delimiter': 'tab'}

6.9 Parse the id and the molecule at the same time

In this section you’ll learn how to parse a structure record, as a string, to extract both the identifier and the
native molecule object.

Usually you want both the molecule and its id. You could parse the molecule then use T.get_id(mol) to
get the id, but that’s extra work, it leads to awkward looking code, and is slower than having chemfp do the
work for you when it parses the molecule.

Instead, use chemfp.toolkit.parse_id_and_molecule():

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice

>>>

>>> T.parse_id_and_molecule("C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a", "smi'")
('vitamin a', <rdkit.Chem.rdchem.Mol object at 0x1035f14b0>)

Note that the identifier is a Unicode string. This was changed in chemfp 3.0. Earlier versions returned byte
string instead.

If there is no id/title field then the id will either be None or the empty string, depending on the toolkit and
format:

>>> T.parse_id_and_molecule("C", "smi"
(None, <rdkit.Chem.rdchem.Mol object at 0x1035f14b0>)

Instead of testing for the empty string or None, your code you should use “if not id:” to test for a missing
id:

174 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

>>> id, mol = T.parse_id_and_molecule("C", "smi")
>>> if not id:
print("Missing id!")

Missing id!

6.10 Specify alternate error behavior

In this section you’ll learn how to use the errors parameter to have chemfp.toolkit.parse_molecule()
return None rather than raise an exception, and to have it print a report about the failing molecule.

The string “Q” is not a valid SMILES string. All of the toolkits will fail to parse it, and the chemfp toolkit
I/0 adapter by default raises an exception when that happens:

>>> from chemfp import openbabel_toolkit
>>> openbabel_toolkit.parse_molecule("Q", "smistring")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)
File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot parse the SMILES 'Q'
>>>
>>> rdkit_toolkit.parse_molecule("Q", "smistring")
[16:02:55] SMILES Parse Error: syntax error while parsing: Q
[16:02:55] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)
File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot parse the SMILES string 'Q'
>>>
>>> from chemfp import openeye_toolkit
>>> openeye_toolkit.parse_molecule("Q", "smistring")
Warning: Problem parsing SMILES:
Warning: Q
Warning:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)
File "<string>", line 1, in raise_tb
chemfp.ParseError: OEChem cannot parse the smistring record: 'Q'

On the other hand, “[NHS8]” is a valid SMILES, but RDKit by default will reject it as chemically unreasonable,
while OEChem and Open Babel are less strict and treat it as a molecular graph rather than a chemical
molecule.

6.10. Specify alternate error behavior 175

chemfp Documentation, Release 3.5

I'll write a program which checks which toolkits will parse “[NHS]”

I call this "check_NHS8.py"
from __future__ import print_function # Only needed in Python 2
import chemfp
allowed = []; rejected = []
for name in chemfp.get_toolkit_names():
T = chemfp.get_toolkit(name)
try:
T.parse_molecule("[NH8]", "smistring")
except ValueError:
rejected.append(name)
else:
allowed.append(name)
print("Allowed:", allowed, "Rejected:", rejected)

% python check_NHS8.py
[16:04:39] Explicit valence for atom # O N, 8, is greater than permitted
Allowed: ['openeye', 'openbabel'] Rejected: ['rdkit']

I think the try/except/else is sometimes harder to understand than returning an error value, because it’s
harder to see the control flow. I can ask chemfp. toolkit.parse_molecule() to ignore errors, which causes
it to return a None object rather than raise an exception. turns the above loop into the following:

for name in chemfp.get_toolkit_names():
T = chemfp.get_toolkit(name)
mol = T.parse_molecule("[NH8]", "smistring", errors="ignore")
if mol is None:
rejected. append(name)
else:
allowed.append (name)

The errors option is more useful in later sections, when parsing multiple records.

The errors parameter can also take the value report. Like ignore, this will return a None when there is
an error rather than raise an exception. It will also write a consistent, cross-toolkit error message to stderr,
including the SMILES string that failed if the input is a SMILES:

>>> for name in chemfp.get_toolkit_names():
print("Using toolkit", repr(name))
T = chemfp.get_toolkit(name)
mol = T.parse_molecule("Q", "smistring", errors='"report")
mol = T.parse_molecule("[NH8]", "smistring", errors="report")

The chemfp.toolkit.parse_id_and_molecule() function also takes the errors parameter. If the structure
could not be parsed then the second component of the tuple (the molecule) will be None. The first component
(the id) may or or may not be None, depending on the underlying implementation:

>>> from chemfp import rdkit_toolkit

>>> rdkit_toolkit.parse_id_and_molecule("Q g-ane", "smi", errors="ignore")
[13:03:10] SMILES Parse Error: syntax error while parsing: Q

[13:03:10] SMILES Parse Error: Failed parsing SMILES 'Q' for input: 'Q'
(None, None)

(continues on next page)

176 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

(continued from previous page)

>>>

>>> from chemfp import openeye_toolkit

>>> openeye_toolkit.parse_id_and_molecule("Q g-ane", "smi", errors="ignore'")
Warning: Problem parsing SMILES:

Warning: Q g-ane

Warning: =

(None, None)

>>>

>>> from chemfp import openbabel_toolkit

>>> openbabel_toolkit.parse_id_and_molecule("Q g-ane", "smi", errors="ignore")

% (Open Babel Error in ParseSimple
SMILES string contains a character 'Q' which is invalid
('g-ane', None)

Future versions of chemfp may work to normalize this behavior, or let the caller choose a specific behavior.

6.11 Specify a SMILES delimiter through reader__args

In this section you’ll learn how to parse a SMILES record as a set of delimited fields instead of the default
of a SMILES string followed by a title, and some of the limitations of chemfp’s attempt at a consistent
cross-toolkit SMILES record parser.

You might think that the SMILES file format is well defined, but it sadly isn’t. Different toolkits have
slightly different interpretations for a SMILES record format. Consider the SMILES record:

C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a

The original Daylight definition is that a SMILES record is single line, which starts with the SMILES string.
The SMILES string ends with the first whitespace character or the end of the line, and if there was a
whitespace character than the rest of the line is the title. OpenEye follows this definition, as does chemfp.
That’s why the previous example extracted “vitamin A” as the record id.

However, RDKit treats a SMILES file record as a space or tab separated set of fields, where the first field
is the SMILES, the second field is the id/title and additional columns may store other properties. RDKit
would use “vitamin” as the record id for this record. (RDKit can also be configured to interpret the first line
as column names. Chemfp does not currently support this option, though I plan to have a cross-platform
implementation in a future release.)

Chemfp normalizes the SMILES record parser API so that all toolkits by default expect the Daylight format.

Warning: Future versions of chemfp may change the default to “tab” instead of “to-eol” because
CXSMILES is becoming more common.

Use the optional reader _args dictionary to specify an alternate interpretation:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>

>>> smiles = "C1C(C)=C(C=CC(C)=CC=CC(C)=CCO0)C(C)(C)C1 vitamin a"

(continues on next page)

6.11. Specify a SMILES delimiter through reader__args 177

chemfp Documentation, Release 3.5

(continued from previous page)

>>> T.parse_id_and_molecule(smiles, "smi", reader_args={"delimiter": "whitespace"})

('vitamin', <rdkit.Chem.rdchem.Mol object at 0x10f5ccfal>)

In this case I asked it to parse the record as a set of whitespace delimited fields. If you have tab-separated
fields, where a space inside of a field is not part of the delimiter, then use the “tab” delimiter:

>>> T.parse_id_and_molecule("0=0\tmolecular oxygen\t31.9988\n", "smi",
. reader_args={"delimiter": "tab"})
('molecular oxygen', <rdkit.Chem.rdchem.Mol object at 0x10fbe9590>)

The supported delimiters are:
o to-eol - (default) everything past the first whitespace is interpreted as the id/title;
o tab or “\t” - the fields are tab-separated; the first field is the SMILES and the second the id;

”

e space or - the fields are space-separated;

e whitespace - the fields are whitespace-separated;
e native - use the native interpretation for the given toolkit;

While chemfp strives for cross-toolkit portability, it is not perfect. Leading and trailing whitespace might
not be supported, so the first character of the SMILES record must also be the first character of the SMILES
string. Also, the toolkit is free to interpret the first whitespace as the delimiter despite the reader_args
setting. In practice, as of early 2020, Open Babel, RDKit, and OEChem will stop at the first whitespace,
though I suspect they will increasingly support the CXSMILES extensions.

Neither the SMILES parser nor the other parsers validate the full contents of the reader args dictionary.
Extra items are ignored. This is deliberate because it lets you combine, say, SMILES and SDF parameters
in the same dictionary without needing to check the specific format first.

To a lesser extent, it also makes it easier to specify parameters which work across multiple toolkit versions.
For example, the most recent version of OEChem’s SMILES parsers added a quiet option, which chemfp will
support in the future. Your code can have a {“quiet”: True} without first checking to see if this version of
chemfp is new enough to support the parameter.

WARNING: As a result, it’s very easy to specify a key with a typo, which is ignored, and not notice that it
nothing happens.

WARNING #2: Really, I've been bitten by this a few times. Be extra cautious to check that you are using
the right keys.

6.12 Specify an output SMILES delimiter through writer__args

In this section you'll learn how to create a SMILES record with a tab character separating the SMILES from
the title using the writer__args parameter of chemfp.toolkit.create_string().

By default create_string uses a space character to separate the SMILES from the rest of the id:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>>

>>> mol = T.parse_molecule("0=0 molecular oxygen\n", "smi"

>>> T.create_string(mol, "smi"

'0=0 molecular oxygen\n'

To use a tab character instead, pass in a writer__args dictionary with a “delimiter” of “tab”:

178 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

>>> T.create_string(mol, "smi", writer_args={"delimiter": "tab"})
'0=0\tmolecular oxygen\n'

The writer__args delimiter also accepts “whitespace”, “space”, “to-eol” and the other values from reader__args.
Only “tab” and “\t” will use a tab character as the delimiter; all of the the others will use a space character.

Warning: Future versions of chemfp may change the default to “tab” to better support the use of
CXSMILES extensions.

Neither the SMILES writer nor the other writers validate the full contents of the writer _args dictionary.
Extra items are ignored. This is deliberate because it lets you combine, say, SMILES and SDF parameters
in the same dictionary without needing to check the specific format first. It also makes it easier to specify
parameters which work across multiple toolkit versions.

WARNING: As a result, it’s very easy to specify a key with a typo, which is ignored, and not notice that it
nothing happens.

WARNING #2: Really, I've been bitten by this a few times. Be extra cautious to check that you are using
the right keys.

6.13 RDKit-specific SMILES reader_args and writer_args

In this section you’ll learn how to pass toolkit-specific parameters to the RDKit toolkit functions to parse
and create a SMILES string. You will need the RDKit toolkit.

Earlier I showed that RDKit by default does a sanitization check to verify that the input is correct.

>>> from chemfp import rdkit_toolkit

>>> mol = rdkit_toolkit.parse_molecule("[NH8]", "smistring", errors="ignore")
[16:31:55] Explicit valence for atom # O N, 8, is greater than permitted

>>> mol is None

True

The underlying RDKit code to parse a SMILES string, MolFromSmiles, takes a sanitize parameter. The
default, True, tells it to do the sanitization step, while False disables it.

Use the reader__args dictionary to pass the sanitize parameter to the underlying toolkit function:

>>> mol = rdkit_toolkit.parse_molecule("[NH8]", "smistring", reader_args={"sanitize":
—False})

>>> mol

<rdkit.Chem.rdchem.Mol object at 0x107590a60>

>>> from rdkit import Chem

>>> Chem.MolToSmiles (mol)

' [NH8] '

Use the writer__args dictionary to pass toolkit-specific parameters to RDKit’s MolToSmiles:

>>> mol = rdkit_toolkit.parse_molecule("clcccccl[160H]", "smistring")
>>> rdkit_toolkit.create_string(mol, "smistring")

'[160H] clcccecel!

>>> rdkit_toolkit.create_string(mol, "smistring",

(continues on next page)

6.13. RDKit-specific SMILES reader_args and writer__args 179

http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolfiles-module.html#MolFromSmiles

chemfp Documentation, Release 3.5

(continued from previous page)

. writer_args={"isomericSmiles": False})
'Oclcccccel!
>>> rdkit_toolkit.create_string(mol, "smistring",

R writer_args={"kekuleSmiles": True, "allBondsExplicit": Truel})
'[160H]-C1:C:C:C:C:C:1"

See Get the default reader args or writer _args for a format for a description of how to get the de-
fault reader and writer arguments for a given format, and use help(rdkit_toolkit.read_molecules) and
help(rdkit_toolkit.open_molecule_writer) to get a more human-readable description.

6.14 OpenEye-specific SMILES reader_args and writer__args

In this section you’ll learn how to pass toolkit-specific parameters to the OEChem toolkit functions to parse
and create a SMILES string. You will need the OEChem toolkit. See the next section for specific details
about aromaticity.

By default the OEChem SMILES parser is tolerant of bad SMILES. I believe it’s too tolerant, because will
gladly parse what I think are invalid SMILES, like “C-=C”:

>>> from chemfp import openeye_toolkit

>>> mol = openeye_toolkit.parse_molecule("C-=C", "smistring")
>>> openeye_toolkit.create_string(mol, "smistring")

c=C'

The developers at OpenEye recognize that pedantic folk like me exist. The OEChem SMILES parser has a
“strict” mode, which I can enable in chemfp through the “flavor” parameter of the reader args dictionary:

>>> mol = openeye_toolkit.parse_molecule("C-=C", "smistring",
cee reader_args={"flavor": "Strict"})
Warning: Problem parsing SMILES:

Warning: Bond without end atom.

Warning: C-=C

Warning: -

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
. lines omitted
File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)
File "<string>", line 1, in raise_tb
chemfp.ParseError: OEChem cannot parse the smistring record: 'C-=C'

The underlying OEParseSmiles() function takes the optional strict and canon parameters. Why does chemfp
use the term “flavor”? Why the capitalization for “Strict”?

Historically the low-level OEChem functions took individual parameters, like the positional arguments canon
and strict:

>>> mol = OEGraphMol()

>>> QEParseSmiles(mol, "C-=C", False, True)
Warning: Problem parsing SMILES:

Warning: Bond without end atom.

(continues on next page)

180 Chapter 6. Toolkit APl examples

http://docs.eyesopen.com/toolkits/python/oechemtk/OEChemFunctions.html#OEChem::OEParseSmiles

chemfp Documentation, Release 3.5

(continued from previous page)

Warning: C-=C
Warning: -

False

(I wrote “historically” because more recent versions have format-specific options classes, like OEParseSmile-
sOptions for SMILES. These collect all of the configuration options into a single parameter, which is easier
to pass around.)

On the other hand, the high-level molecule parsers take a single “flavor” integer value to specify the options
for a given format. This flavor is usually expressed as the union of a set of bitmasks. I'll show how OEChem’s
Python API uses the flavor parameter.

The following OEChem code reads a SMILES file in the default non-strict mode (with no specified flavor):

% cat example.smi
C=-C bad
CCC good
% python

>>> from __future__ import print_function # Only needed in Python 2
>>> from openeye.oechem import *
>>> ifs = oemolistream("example.smi")
>>> for mol in ifs.GetOEGraphMols():
print(mol.GetTitle(), mol.NumAtoms())
bad 2
good 3

while the following sets the SMILES flavor to use “strict” mode:

>>> ifs = oemolistream("example.smi")
>>> ifs.SetFlavor (OEFormat_SMI, OEIFlavor_SMI_Strict)
True
>>> for mol in ifs.GetOEGraphMols():
print (mol.GetTitle(), mol.NumAtoms())

Warning: Problem parsing SMILES:
Warning: Bond without end atom.
Warning: C=-C bad

Warning: -

Warning: Error reading molecule "" in Canonical stereo SMILES format.
good 3

(You can see some terminology differences between me and OpenEye in the warning message. The “Canoni-
cal” and “stereo” are only meaningful as a description of the output format, not the input format, and I use
the traditional term “isomeric” while they highlight the more important stereochemistry aspect. I also got
confused because I thought at first the “Canonical” had something to do with OEIFlavor SMI_Canon.)

I decided to base the chemfp openeye_toolkit API on the high-level “flavor” API of OEChem, which is
better documented and requires less work on my part to implement than low-level functions. But I also
decided to extend it to support a string value, and not just an integer.

To explain how that works, I'll switch from describing reader__args to writer__args, because raising an excep-

6.14. OpenEye-specific SMILES reader_args and writer_args 181

http://docs.eyesopen.com/toolkits/python/oechemtk/OEChemClasses/OEParseSmilesOptions.html
http://docs.eyesopen.com/toolkits/python/oechemtk/OEChemClasses/OEParseSmilesOptions.html
http://docs.eyesopen.com/toolkits/python/oechemtk/molreadwrite.html#flavored-input-and-output

chemfp Documentation, Release 3.5

tion with the “Strict” option gets boring, fast.

The OEChem SMILES output flavors are: O0EOFlavor_SMI_AtomMaps, OEOFlavor_SMI_AtomStereo, ...
and you know what? The OEOFlavor_SMI_ prefix is part of what makes the flavors hard to use
in Python, so T'll omit the prefix in chemfp. The OEChem SMILES output flavors are: AllBonds,
AtomMaps, AtomStero, BondStereo, Canonical, ExtBonds, Hydrogens, ImpHCount, Isotopes, Kekule,
RGroups, SmiMask, and SuperAtoms. There are also Default and DEFAULT which are the bitwise union
RGroups|Isotopes|AtomStereo|BondStereo|AtomMaps |Canonical.

W

In chemfp you can specify the fields as a “|” or “,” separated list of flavor flags, without the prefix. Here are
several different ways to specify the default settings for isomeric canonical SMILES string output:

>>> mol = openeye_toolkit.parse_molecule("[160] [*:1]", "smistring")
>>> openeye_toolkit.create_string(mol, "smistring")

' [R1] [160]"

>>> openeye_toolkit.create_string(mol, "smistring",
.. writer_args={"flavor": ""})

' [R1] [160]"

>>> openeye_toolkit.create_string(mol, "smistring",
ce writer_args={"flavor": "Default"})

'[R1]1 [160]"

>>> openeye_toolkit.create_string(mol, "smistring",
R writer_args={"flavor": "RGroups|Isotopes|AtomStereo|BondStereo|AtomMaps|Canonical
)

' [R1] [160]"

These settings override any options which might be implied by the format name. Thus, even though
“smistring” is supposed to generate an isomeric canonical SMILES, I can use the writer args to remove
the isomeric component from the flavor:

>>> openeye_toolkit.create_string(mol, "smistring",

. writer_args={"flavor": "RGroups|AtomStereo|BondStereo|AtomMaps|Canonical"})
"[R1][0]"
While T used “|” as the separator, I can equally use “,”; as in:

>>> openeye_toolkit.create_string(mol, "smistring",
.. writer_args={"flavor": "Isotopes,Canonical})
'x[160]"

OEChem uses the bar as a bitwise-or operator which merges the different flags. I added the comma as an
alternative to the vertical bar because chemfp has additional syntax for removing options. The following
removes the “RGroups” option from the isomeric and non-isomerical formats defaults, but otherwise leaves
the defaults alone:

>>> openeye_toolkit.create_string(mol, "smistring",

ce writer_args={"flavor": "Default,-RGroups"})
"[*:1][160]"
>>>

>>> openeye_toolkit.create_string(mol, "canstring",
writer_args={"flavor": "Default,-RGroups"})

"[x:11[0]"

(The terms are evaluated from left to right, so you can delete a term then add it back if you want.)

I added a comma because writing this as Default | -RGroups caused the C programmer mind in me to gasp

182 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

in bewilderment. (“The bitwise-or with the negative of the RGroups bitflags?!!”)

You don’t need to specify the OEChem flavor using a flavor string. You can also specify it as an integer:

>>> from openeye.oechem import *

>>> (0EOFlavor_SMI_Isotopes|0EOFlavor_SMI_AtomStereo|OEOFlavor_SMI_BondStereo|
.. OEOFlavor_SMI_AtomMaps |OEQFlavor_SMI_Canonical)

121
>>> openeye_toolkit.create_string(mol, "smistring",
cee writer_args={"flavor": 121})
"[*:1]1[160]"
>>> openeye_toolkit.create_string(mol, "smistring",
. writer_args={"flavor": 0})

l[O]*l

or (and this might be a bit excessive) as a string-encoded integer:

>>> openeye_toolkit.create_string(mol, "smistring",

cee writer_args={"flavor": "121"})
"[*:1][160]"

>>> openeye_toolkit.create_string(mol, "smistring",
R writer_args={"flavor": "0"})

1 [D] * 1

Chemfp tries to be helpful. It will include the list of available flavor names in the exception if it doesn’t
understand what you gave it:

>>> openeye_toolkit.create_string(mol, "smistring",
cee writer_args={"flavor": "chocolate"})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "chemfp/openeye_toolkit.py", line 446, in create_string
return _toolkit.create_string(mol, format, id, writer_args, errors)
lines removed ...,
File "chemfp/_openeye_toolkit.py", line 1174, in parse_flavor
raise err
ValueError: OEChem smi format does not support the 'chocolate'
flavor option. Available flavors are: AllBonds, AtomMaps,
AtomStereo, BondStereo, Canonical, ExtBonds, Hydrogens,
ImpHCount, Isotopes, Kekule, RGroups, SuperAtoms

See Get the default reader _args or writer_args for a format for a description of how to get the default
reader and writer arguments for a given format, and use help(openeye_toolkit.read_molecules) and
help(openeye_toolkit.open_molecule_writer) to get a more human-readable description.

6.15 OpenEye-specific aromaticity

In this section you’ll learn how chemfp handles OpenEye’s aromaticity parameter. You will need the OEChem
toolkit, and you should read the previous section to understand some of the terminology.

Note: the OEGraphSim fingerprints are not affected by the aromaticity of the reader because the fingerprint
generators ensure that the molecules are always perceived using “openeye” aromaticity before generating the
fingerprint.

6.15. OpenEye-specific aromaticity 183

chemfp Documentation, Release 3.5

7w

The OpenEye toolkit supports the “openeye”; “daylight”, “tripos”, “mdl”, and “mmfl” aromaticity models.
In the high-level API, which is meant for reading and writing files or file-like objects, the aromaticity is an
aspect of the flavor integer. If unspecified, OEChem uses the appropriate default aromaticity model for that
format. As a result, aromaticity perception is required for both reading and writing files.

The low-level API handles file processing and aromaticity perception as distinct steps. This API can also
process a single record directly, while the high-level API requires wrapping the record in a file-like object
and then reading the first molecule from it.

The chemfp toolkit API is a high-level API for both files and records, which means I had to implement
record conversion routines on top of OEChem’s low-level API. Consequently, some of the details are different
between the file I/O and record I/O APIs; the most significant being that the record I/O routines also
support a “none” aromaticity.

The following shows the default aromaticity proceessing in action:

>>> from chemfp import openeye_toolkit

>>> mol = openeye_toolkit.parse_molecule("C1=CC=CC=C1", "smistring")
>>> [bond.IsAromatic() for bond in mol.GetBonds()]

[True, True, True, True, True, True]

Automatic aromaticity perception is normally the right thing to do, because different toolkits and even
different versions of the same toolkit may have different ideas of what is aromatic, and it’s best to ensure
that they are consistently interpreted.

Aromaticity perception isn’t needed when you know that the input aromaticity is correct and unambiguous.
My timings show that aromaticity perception takes about half of the time needed to parse a SMILES string.
If the string comes from a good data source, like a database record where OEChem created the SMILES,
then you can nearly double the performance by omitting the perception step.

What does “ambiguous” mean? Consider azulene, which can be described by the SMILES “clccc2cccc2ecl”
The fusion bond is not aromatic, while the peripheral bonds form a 10 pi electron system. In SMILES, an
unspecified bond means “single or aromatic”. If one of the terminal atoms is aliphatic then the bond must be
a single bond. But as the fusion bond in azulene shows, it’s possible for an unspecified bond with terminal
aromatic atoms to still be non-aromatic. The above SMILES is ambiguous, and OEChem needs to do a full
aromaticity analysis to determine that the fusion bond is not aromatic.

An unambiguous SMILES for azulene is “clccc-2ccec2ceel”, where the fusion bond is marked explicitly as a
single bond. The SMILES parser can use the simpler rule that an unspecified ring bond is aromatic whenever
both terminal atoms are aromatic, and not require the lengthy aromatic perception step to determine that.
OEChem generates unambiguous SMILES, so if you know OEChem generated the SMILES then you can
recover the original aromaticity directly.

(As a side note, Daylight first introduced this in 4.71, and used fluorene (“Clc2cccec2-c3cceccl3d”) as the
prototypical case. Daylight’s rule is to include the “-” for a single bond between two aromatic atoms, while
OEChem’s rule is to include the “-” for a single bond between two aromatic atoms and which is in a ring.
Ring identification is much easier than aromaticity perception.)

So where was I ... ah, right, specifing the aromaticity model. I decided to separate aromaticity from the rest
of the flavor flags, and specify it with its own reader args and writer _args field. It’s easiest to see using
beneze in Kekule form:

>>> mol = openeye_toolkit.parse_molecule("C1=CC=CC=C1", "smistring",
. reader_args={"aromaticity": "none"})

>>>
>>> [bond.IsAromatic() for bond in mol.GetBonds()]
[False, False, False, False, False, False]

(continues on next page)

184 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

(continued from previous page)

>>> openeye_toolkit.create_string(mol, "smistring",
. writer_args={"aromaticity": "none"})
'C1=CC=CC=C1"

NOTE: the aromaticity flags are volatile. If you don’t specify the “none” aromaticity model then chemfp.
toolkit.create_string () will reperceive aromaticity using the “openeye” aromaticity model and possibly
reassign the aromaticity flags.

>>> openeye_toolkit.create_string(mol, "smistring")

'clcccccel!

>>> openeye_toolkit.create_string(mol, "smistring",
. writer_args={"aromaticity": "none"})
'clccccecl!

This is consistent with how OEChem’s high-level operations also modify the input molecule when creating
output. I'm not fully happy with it. OEChem also has a “ConstMolecule” version, so this detail may change
in the future.

6.16 Open Babel-specific SMILES reader__args and writer_args

In this section you’ll learn how to pass toolkit-specific parameters to the Open Babel toolkit functions to
create a SMILES string. You will need the Open Babel toolkit.

As far as I can tell, Open Babel does not have configuration options to change the default SMILES parser,
so chemfp has no toolkit-specific reader__args for that toolkit. Open Babel does have configuration options
to change the default SMILES output routines. These can be set in chemfp with the writer _args dictionary.

Open Babel uses an options string to change the configuration. The string “i U smilesonly” generates non-
isomeric SMILES output, where the atom ordering is determined by the InChI’s canonicalization algorithm
(“Universal SMILES”), and where the identifier is excluded from the SMILES output.

Did you know all of that? I didn’t. Some of these options are only documented in the code. It’s also difficult
for chemfp to handle since some of the options conflict with how chemfp thinks of things. For example,
chemfp is in charge of including the identifier, so it will always enable “smilesonly”, and it’s difficult for
the “cansmiles” output, which is non-isomeric, to know if an options string wants to override the default”i”
option that it requires.

I ended up making my own writer_args API to have more explicit control over the individual parameters:
e explicit_ hydrogens - boolean
e isomeric - boolean

e canonicalization - a string like “default”, “none”, “universal”, “anticanonical”, or “inchified”

 options - the Open Babel options string (if you must use it; using it may break things if you are not
very careful.)

Here’s an example of how to disable isomeric support for the “smistring” output, which would normally
generate an isomeric SMILES:

>>> from chemfp import openbabel_toolkit

>>> mol = openbabel_toolkit.parse_molecule("[160]=0", "smistring")
>>> openbabel_toolkit.create_string(mol, "smistring")

'[160]=0"

(continues on next page)

6.16. Open Babel-specific SMILES reader_args and writer_args 185

chemfp Documentation, Release 3.5

(continued from previous page)

>>> openbabel_toolkit.create_string(mol, "smistring",
. writer_args={"isomeric": False})
'0=0"

I can also enable isomeric SMILES for the “canstring” format, which is normally non-isomeric:

>>> openbabel_toolkit.create_string(mol, "canstring")
lO:DI

>>> openbabel_toolkit.create_string(mol, "canstring",
. writer_args={"isomeric": Truel})

'[160]1=0"

Open Babel supports several different canonicalization algorithms. Perhaps the most unusual one is “anti-
canonical”, which uses random numbers for the atom ordering algorithm. The same molecule can generate
different SMILES strings across multiple calls, so it’s the antithesis of “canonical”:

>>> for i in range(5):
print (openbabel_toolkit.create_string(mol, "smistring",
writer_args={"canonicalization": "anticanonical}))

[160]=0
[160]1=0
0=[160]
[160]1=0
[160]1=0

See Get the default reader args or writer args for a format for a description of how to get the default
reader and writer arguments for a given format, and use help(openbabel_toolkit.read_molecules) and
help(openbabel_toolkit.open_molecule_writer) to get a more human-readable description.

6.17 CDK-specific SMILES reader_args and writer__args

In this section you’ll learn how to pass toolkit-specific parameters to the CDK toolkit functions to parse and
create a SMILES string. You will need the CDK JAR file on your CLASSPATH and the JPype Java/Python
adapter installed. (See the [installation guide for help]).

By default CDK will find a Kekule assignment of the input SMILES:

>>> from chemfp import cdk_toolkit
>>> cdk_toolkit.parse_molecule("oC", "smistring")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<string>", line 1, in raise_tb
chemfp.ParseError: CDK cannot parse the SMILES 'oC': a valid kekulé structure could not,
—be assigned

This can be disabled with the kekulise=False reader argument:

>>> mol = cdk_toolkit.parse_molecule("oC", "smistring", reader_args={"kekulise": False})
>>> [a.isAromatic() for a in mol.atoms()]
[True, False]

186 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

I’'m not sure why you would need it, but it’s there.

The CDK writer__args are more interesting. The default SMILES writer generates the SMILES in Kekule
form:

>>> mol = cdk_toolkit.parse_molecule("clcccccl[160H]", "smistring")
>>> cdk_toolkit.create_string(mol, "smistring")
'C1=CC=C(C=C1) [160H] "'

CDK uses a flavor parameter similar to how OpenEye’s flavor system works. I'll use first specify the
“Default” flavor, then use “?77” to cause the flavor parser to fail and show a list of possible options:

>>> cdk_toolkit.create_string(mol, "smistring", writer_args={"flavor": "Default"})
'C1=CC=C(C=C1) [160H] "'
>>> cdk_toolkit.create_string(mol, "smistring", writer_args={"flavor": "777"})

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: CDK smistring format does not support the '777' flavor
option. Available flavors are: Absolute, AtomAtomMap,
AtomAtomMapRenumber, AtomicMass, AtomicMassStrict, Canonical,
Cx2dCoordinates, Cx3dCoordinates, CxAtomLabel, CxAtomValue,
CxCoordinates, CxFragmentGroup, CxMulticenter, CxPolymer, CxRadical,
CxSmiles, CxSmilesWithCoords, Default, InChILabelling, Isomeric,
Stereo, StereoCisTrans, StereoExCisTrans, StereoExTetrahedral,
StereoTetrahedral, Unique, UniversalSmiles, UseAromaticSymbols

CDK has an a lot of options! Let’s try a few. First, use aromatic symbols instead of Kekule form:

>>> cdk_toolkit.create_string(mol, "smistring", writer_args={"flavor": "Default,
—UseAromaticSymbols"})
'clccc(ccl) [160H] !

Now, also disable isomeric SMILES:

>>> cdk_toolkit.create_string(mol, "smistring",
writer_args={"flavor": "Default,UseAromaticSymbols,-Isomeric"})
'Oclcccccl!

If you know the CDK toolkit then you should be able to figure out how to use these flavor flags.

6.18 Get the default reader_args or writer_args for a format

In this section you’ll learn how to get the default reader args and writer _args for a given format.

As you've seen, each toolkit format can have its own reader__args and writer__args parameters, and chemfp
layers its own format types (like “smistring”) on top of the native formats. It’s easy to forget the specific
parameters for a given format, much less the default values.

The get_default_reader_args() and get_default_writer_args() methods of the Format object return
the respective default arguments:

>>> from chemfp import rdkit_toolkit
>>> fmt = rdkit_toolkit.get_format("smi")

(continues on next page)

6.18. Get the default reader_args or writer_args for a format 187

chemfp Documentation, Release 3.5

(continued from previous page)

>>> fmt.get_default_reader_args()

{'sanitize': True, 'has_header': False, 'delimiter': None}

>>> fmt.get_default_writer_args()

{'isomericSmiles': True, 'kekuleSmiles': False, 'canonical': True,
'allBondsExplicit': False, 'allHsExplicit': False, 'cxsmiles': False,
'delimiter': None}

You can sometimes use this information to see how chemfp maps its format types to the toolkit parameters.
In RDKit, the difference between chemfp’s “smi” and “can” formats is that isomericSmiles is True for the
first and False for the second:

>>> rdkit_toolkit.get_format("can").get_default_writer_args()
{'isomericSmiles': False, 'kekuleSmiles': False, 'canonical': True,
'allBondsExplicit': False, 'allHsExplicit': False, 'cxsmiles': False,
'delimiter': None}

While writing this documentation I realized that the OEChem toolkit shows neither the default flavor nor
the default aromaticity for a given format type. I will likely improve that in a future version of chemfp.

6.19 Convert text settings into reader and writer arguments

In this section you'll learn how to convert text-based configuration settings into the appropriate reader args
or writer__args dictionary.

The reader _args and writer _args take mnative Python values, including integers and booleans.
In practice these will often be defined in a configuration file, through command-line op-
tions, or as CGI parameters. The Format methods get_reader args_from text_settings() and
get_writer_args_from_text_settings () convert a text-based settings dictionary into the appropriate ar-
guments dictionary with native Python objects as values. (These are methods of the Format object, because
the parameter details are format-specific.)

The following shows an example using the RDKit toolkit’s “sdf” format to get reader__args from a dictionary
of text settings:

>>> from chemfp import rdkit_toolkit

>>>

>>> sdf_format = rdkit_toolkit.get_format("sdf")

>>> sdf_format.get_default_reader_args()

{'sanitize': True, 'removeHs': True, 'strictParsing': True, 'includeTags': True}
>>>

>>> sdf_format.get_reader_args_from_text_settings({

"strictParsing": "true",
"removeHs": "False",
"sanitize": "0"})

{'sanitize': False, 'removeHs': False, 'strictParsing': True}

The boolean setting parser converts “true”, “True”, and “1” to Python’s True, and “false”, “False”, and “0”
to Python’s False. Otherwise it raises a ValueError.

The following shows an equivalent example for RDKit’s SDF writer _args:

188 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

>>> sdf_format.get_default_writer_args()

{'includeStereo': False, 'kekulize': True, 'v3k': False}

>>> sdf_format.get_writer_args_from_text_settings({
"kekulize": "false", "v3k": "true",

.. "includeStereo": "True"})

{'includeStereo': True, 'kekulize': False, 'v3k': True}

WARNING: these functions will ignore unknown keys. This was done to allow the text settings dictionary
to contain settings for other toolkits and formats. As a result, typos are harder to detect, because they will
be ignored.

See argparse text settings to reader and writer args for an example of converting text settings from the
command-line into reader and writer arguments.

6.20 Multi-toolkit reader_args and writer_args

In this section you’ll learn how to configure reader args and writer _args so the same dictionary can be used
to configure multiple toolkits and formats.

Sometimes you don’t know which toolkit will be used for parsing, but you do know that you want Open
Babel, OEChem, and RDKit to act in non-standard ways. For example, the choice of toolkit may depend
on the user-defined fingerprint type, or simply (as in the following example) depend on user input.

The reader _args and writer _args will ignore unknown parameters, which lets you combine arguments for
different toolkits into a single dictionary. As the toolkits use completely different parameter names (except a
couple, like “delimiter”, which are supposed to act the same for all toolkits), there’s no conflict in the names
for a given format.

The following defines a reader _args dictionary and a writer _args dictionary with parameters for each sup-
ported toolkit, then enters a loop. The loop asks the user for a SMILES string, or the name of the toolkit

to use, or “q” to quit the loop. It will parse each SMILES into a molecule, then generate a SMILES output,
although with decidedly strange parameters:

from __future__ import print_function # Only needed in Python 2
import chemfp

from chemfp import rdkit_toolkit as T # use your default toolkit of choice
#from chemfp import openeye_toolkit as T

#from chemfp import openbabel_toolkit as T

#from chemfp import cdk_toolkit as T

try:

raw_input # Python 2 name
except NameError:

raw_input = input # Python 3

reader_args = {
"sanitize": False, # RDKit,
"openeye.*.flavor": "Default,Strict", # OEChem
"aromaticity": "none", # OEChem

writer_args = {

(continues on next page)

6.20. Multi-toolkit reader_args and writer_args 189

chemfp Documentation, Release 3.5

(continued from previous page)

"kekuleSmiles": True, # RDKit

"canonicalization": "anticanonical", # Open Babel

"aromaticity": "daylight", # OEChem

"cdk.*.flavor": "Default,UseAromaticSymbols", # CDK
3

print ("Using", T.name, "toolkit")
while 1:
query = raw_input("SMILES, toolkit name, or 'q' to quit? ")
if not query or query == "q":
break

if query in ("rdkit", "openeye" ,"openbabel", "cdk"):
try:
T = chemfp.get_toolkit (query)
except ValueError:
print ("Toolkit not available" % (query,))
print ("Using", T.name, "toolkit")
continue
mol = T.parse_molecule(query, "smistring", reader_args=reader_args, errors='"ignore'")
if mol is None:
print ("Toolkit", T.name, "could not parse query as SMILES")
continue

smiles = T.create_string(mol, "smistring", writer_args=writer_args, errors="ignore")
if not smiles:

print("Toolkit", T.name, "could not convert the molecule to SMILES")

continue
print (" -->", smiles)

I saved the above to a script and then ran it. It starts using RDKit, where I've set the reader’s “sanitize”
to False so RDKit won’t perceive aromaticity on input, and set the writer’s “kekuleSmiles” to show explicit
aromatic bond types:

Using rdkit toolkit

SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C10
--> 0C1=CC=CC=C1

SMILES, toolkit name, or 'q' to quit? clccccclO
--> 0C1:C:C:C:C:C:1

I then switch to the OpenEye toolkit, show that it is operating with “strict” added to the default reader flavor,
and convert a couple of SMILES to canonical SMILES to show the output uses the Daylight aromaticity
model instead of the default:

SMILES, toolkit name, or 'q' to quit? openeye
SMILES, toolkit name, or 'q' to quit? C==C
Warning: Problem parsing SMILES:

Warning: Bond without end atom.

Warning: C==C

Warning: -

(continues on next page)

190 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

(continued from previous page)

Toolkit openeye could not parse query as SMILES

Using openeye toolkit

SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C10
-=> clccc(cel)0

SMILES, toolkit name, or 'q' to quit? clccccclD
-=> clccc(cecl)0

I then switch to the Open Babel toolkit and show that it generates “anti-canonical” SMILES, where the
spanning tree priority order for SMILES output is randomly assigned:

SMILES, toolkit name, or 'q' to quit? openbabel

Using openbabel toolkit

SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C10
--> Oclcccccl

SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C10
-=> Oclcccccl

SMILES, toolkit mname, or 'q' to quit? C1=CC=CC=C10
-=> clccc(cel)0

SMILES, toolkit name, or 'q' to quit? clccccclD
--> Oclcccccl

SMILES, toolkit name, or 'q' to quit? clccccclO
-=> clc(0)ccecl

SMILES, toolkit name, or 'q' to quit? g

Finally I switch to CDK and show that it generate aromatic SMILES instead of Kekule:

SMILES, toolkit name, or 'q' to quit? cdk

Using cdk toolkit

SMILES, toolkit name, or 'q' to quit? C1=CC=CC=C10
--> C1=CC=C(C=C1)0

SMILES, toolkit mname, or 'q' to quit? clcccccll
-=> clccc(cecl)0

See argparse text settings to reader and writer args for an example of using multi-toolkit reader_args and
writer__args.

6.21 Qualified reader and writer parameters names

In this section you’ll learn how to use qualified parameter names. These give fine-grained control over the
configuration options for each toolkit and format.

The previous section pointed out that the three toolkits use different parameter names, so for a given format
you can combine the toolkit-specific reader args into one unified dictionary and writer args into another
unified dictionary. However, within a toolkit the same parameter name can be reused for different formats,
with different meanings.

This best example is for the chemfp.openeye_toolkit, where the reader args and writer args for all
formats support the “flavor” and “aromaticity” parameters. The following shows examples where I might use
a different flavor for the SMILES and InChlI outputs, to get something other than the default representation:

>>> from chemfp import openeye_toolkit
>>> mol = openeye_toolkit.parse_molecule("CC([0-])=0", "smistring")

(continues on next page)

6.21. Qualified reader and writer parameters names 191

chemfp Documentation, Release 3.5

(continued from previous page)

>>>
>>> openeye_toolkit.create_string(mol, "smistring")
'cc(=0) [0-]1"

>>> openeye_toolkit.create_string(mol, "smistring",
writer_args={"flavor": "Default|ImpHCount"})

'[CHB]C(0) [0-]1"

>>>

>>> openeye_toolkit.create_string(mol, "inchistring")

'InChI=1S/C2H402/c1-2(3)4/h1H3, (H,3,4) /p-1'

>>> openeye_toolkit.create_string(mol, "inchistring",
writer_args={"flavor": "Default|FixedHLayer"})

'InChI 1/C2H402/c1-2(3)4/h1H3, (H,3,4) /p-1/£C2H302/q-1"

Chemfp uses “qualified” parameter names to handle this situation. For example, the qualified name
“smistring.flavor” is the flavor parameter for the smistring format:

>>> writer_args = {

"smistring.flavor": "Default|ImpHCount",

"inchistring.flavor": "Default|FixedHLayer",

¥

>>> mol = openeye_toolkit.parse_molecule("CC([0-])=0", "smistring")
>>> openeye_toolkit.create_string(mol, "smistring", writer_args=writer_args)
' [CH3]C(=0) [0-]"
>>> openeye_toolkit.create_string(mol, "inchistring", writer_args=writer_args)
'InChI=1/C2H402/c1-2(3)4/h1H3, (H,3,4)/p-1/£C2H302/q-1"'

WARNING: there are six SMILES-related formats (“smi”, “can”, “usm”, “smistring”, “canstring”, and

“usmstring”) so to be complete you’ll need to specify values for all of them. There are also two InChl-related
formats (“inchi” and “inchistring”).

A “fully qualified” name looks like “openeye.smistring.flavor”. The first term is the toolkit, the second the
format name, and the last the parameter name. At present there little need for fully qualified names because
most parameter names are either unique to a toolkit and format type, or (like ‘delimiter’) supposed to be
identical across all toolkits. The major exception is ‘flavor’, used by all of the OpenEye formats as well as
the RDKit “fasta”, “sequence”, and “pdb” formats.

The following demonstration, which is more a parlor trick than something useful, shows how to have each
toolkit use a different SMILES delimiter:

>>> from __future__ import print_function # Only needed in Python 2
>>> import chemfp

>>>

>>> reader_args = {
"rdkit.smi.delimiter": "tab",
"openbabel.smi.delimiter": "whitespace",
"openeye.smi.delimiter": "to-eol",
"cdk.smi.delimiter": "space",

R

>>>

>>> for toolkit_name in ("rdkit", "openbabel", "openeye", "cdk"):
T = chemfp.get_toolkit(toolkit_name)

id, mol = T.parse_id_and_molecule("C\tabc def\tghi", "smi",

reader_args=reader_args)

(continues on next page)

192 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

(continued from previous page)

print(toolkit_name, "sees the id", repr(id))

rdkit sees the id 'abc def'
openbabel sees the id 'abc'
openeye sees the id 'abc def\tghi'
cdk sees the id 'def\tghi'

(As a reminder, the ‘delimiter’ implementation is not perfect. A toolkit may accept the first whitespace
after the SMILES term as a valid delimiter even if it doesn’t match the actual parameter, and a toolkit may
decide to stop parsing the SMILES term at the first whitespace.)

The final type of qualified parameter looks like “openeye.*.aromaticity”, where the first term is the toolkit
name, the second term is “*”, and the third term is the parameter name. This is most useful if you want
OEChem to enforce the same aromaticity across all formats, or have the RDKit parsers ignore sanitization,
with configuration entries like:

{"openeye.*.aromaticity": "daylight",
"rdkit.*.sanitize": False}

However, as only OEChem supports “aromaticity” and only RDKit supports “sanitize”, you could also write
this as simply:

{"aromaticity": "daylight",
"sanitize": False}

6.22 Qualified parameter priorities

In this section you’ll learn the priority order when multiple terms try to specify the same parameter.

In the previous section you learned how “delimiter”, “smi.delimiter”, “rdkit.*.delimiter” and “rd-
kit.smi.delimiter” can all be used to set the delimiter style for RDKit’s “smi” format. If more then one
term is specified, which one wins?

Chemfp checks for the parameters in the following order:
1. rdkit.smi.delimiter
2. rdkit.*.delimiter
3. smi.delimiter
4. delimiter

The parameter with the highest ranking determines the setting, as the following shows:

>>> from chemfp import rdkit_toolkit as T

>>> id, mol = T.parse_id_and_molecule("C methane 16.04246", "smi",
reader_args={”delimiter”: "to-eol",

c "smi.delimiter": "whitespace"})

>>> id

'methane’

>>> id, mol = T.parse_id_and_molecule("C methane 16.04246", "smi",
reader_args={"rdkit.*.delimiter": "to-eol",

"smi.delimiter": "whitespace"})

(continues on next page)

6.22. Qualified parameter priorities 193

chemfp Documentation, Release 3.5

(continued from previous page)

>>> id

'methane 16.04246'

>>> id, mol = T.parse_id_and_molecule("C methane 16.04246", "smi",
reader_args={"rdkit.*.delimiter": "to-eol",

c "rdkit.smi.delimiter": "whitespace"})

>>> id

'methane’

One way to remember it is the longest name has priority.

It can be confusing to have a large dictionary with multiple format and toolkit qualifiers. The
get_unqualified_reader_args() and get_unqualified_writer_args() methods of Format object will
return the fully unqualified reader args and writer _args for that format:

>>> fmt = T.get_format("smi")
>>> fmt.get_unqualified_reader_args ({
"delimiter": "to-eol",
"smi.delimiter": "whitespace",
b
{'sanitize': True, 'has_header': False, 'delimiter': 'whitespace'}
>>> fmt.get_unqualified_writer_args({
"delimiter": "space",
"smi.delimiter": "tab",
b
{'isomericSmiles': True, 'kekuleSmiles': False, 'canonical': True,
'allBondsExplicit': False, 'allHsExplicit': False,
'cxsmiles': False, 'delimiter': 'tab'}

This can also be helpful if you think you made a typo; get the unqualified reader args and see if the result
has the arguments you think it should have.

6.23 Qualified names and text settings

In this section you’ll learn how the qualified names also apply to text settings.

Earlier you learned that text settings are string-based keys and values, which might come from the command-
line, a configuration file, or some other text-based source. These need to be converted into Python values
before they can be used as reader_ args or writer_args.

A Format object can convert a dictionary of text settings into the correct argument dictionary. To get a
Format object, ask the toolkit for the format of the given name:

>>> from chemfp import rdkit_toolkit as T

>>> fmt = T.get_format("sdf")

>>> fmt.get_default_reader_args()

{'sanitize': True, 'removeHs': True, 'strictParsing': True, 'includeTags': True}

The section Convert text settings into reader and writer arguments showed how to convert the text settings
with unqualified names into a reader__args dictionary:

>>> fmt.get_reader_args_from_text_settings({
"strictParsing": "false",

(continues on next page)

194 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

(continued from previous page)

"removeHs": "false",

b

{'removeHs': False, 'strictParsing': False}

The text settings dictionary also supports qualified parameter names, including handling the priority reso-
lution described in Qualified parameter priorities:

>>> fmt.get_reader_args_from_text_settings({

"strictParsing": "false",

"sdf .strictParsing": "true",
"removeHs": "false",
"rdkit.*.removeHs": "true",
"rdkit.sdf.sanitize": "false",
b

{'sanitize': False, 'removeHs': True, 'strictParsing': True}

If you stare at it for a bit you’ll see that “sdf.strictParsing” has a higher priority than “strictParsing” and
“rdkit.*.removeHs” is higher than “removeHs”, which is how it’s supposed to work.

6.24 Read molecules from an SD file or stdin

In this section you’ll learn how to read an SD file and iterate through its records as toolkit molecules. You
will need Compound 099000001 099500000.sdf.gz from PubChem.

Time to get back to molecules! The chemfp.toolkit.read_molecules() function reads molecules from a
structure file:

from __future__ import print_function # Only needed in Python 2

from chemfp import rdkit_toolkit as T # use your toolkit of choice

for mol in T.read_molecules("Compound_099000001_099500000.sdf.gz"):
print(T.create_string(mol, "smistring"))

By default it uses the filename extension to figure out the format and compression type. You can specify it
yourself, if you wish, using the format option:

from __future__ import print_function # Only needed in Python 2
from chemfp import rdkit_toolkit as T # use your toolkit of choice
for mol in T.read_molecules("Compound_099000001_099500000.sdf.gz",
format="sdf.gz"):
print(T.create_string(mol, "smistring"))

17 W@

Examples of valid format values are “smi”, “can”, and “usm” (but not the *string variants like “smistring”,
because those aren’t record-based formats), and “sdf”, as well as gzip-compressed versions like “smi.gz” and
“sdf.gz”.

(For Open Babel the “gz” extension does nothing as Open Babel will auto-detect and handle gzip compressed
input. Chemfp’s RDKit interface also support zstandard-compressed files with the extension “zst” if the
Python package “zstandard” is installed.)

If the first parameter (the source parameter) is the Python None value then the toolkit will read from stdin.
As there’s no filename, chemfp can’t look at the extension to figure out the format, so it assumes the input
is in “smi” format, that is, an uncompressed SMILES file.

6.24. Read molecules from an SD file or stdin 195

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.5

Therefore, to read an SD file from stdin you must specify the format. The following program reads a gzip
compressed SD file from stdin, convert it to SMILES, and find the 10 most common characters used in the
SMILES strings:

This file is named 'count_smiles_characters.py'

from __future__ import print_function # Only needed in Python 2
from collections import Counter

from chemfp import rdkit_toolkit as T # use your toolkit of choice

symbol_counts = Counter()

for mol in T.read_molecules(None, "sdf.gz"):
smiles = T.create_string(mol, "smistring")
symbol_counts.update(smiles)

for symbol, count in symbol_counts.most_common(10):
print("/7d: Jr" % (count, symbol))

Now to try it on a data set:

% python count_smiles_characters.py < Compound_099000001_099500000.sdf.gz
114190: 'c'

96119: 'C!
50541: ' (!
50541: ')
33054: '1!
29000: 'O
22227: '=!
19716: '2'
19276: 'Q'
18420: 'N'

6.25 Read ids and molecules from an SD file at the same time

In this section you’ll learn how to read an SD file and iterate through its records as the two-element tuple of
(id, molecule). You will need the Compound 099000001 099500000.sdf.gz from PubChem, which was used
in the previous section.

In an earlier section, Parse the id and the molecule at the same time, you learned how to parse a structure
record to get both the identifier and the molecule at the same time. The toolkit function chemfp.toolkit.
read_ids_and_molecules () is the equivalent for reading from a structure file.

In the following example I'll use the RDKit toolkit to create a tab-separated file with the id in the first
column, the number of carbon atoms in the second, and the SMILES in the third. For brevity, I'll display
only the first 10 records, which also gives a nice example of when to use itertools.islice:

from __future__ import print_function # Only needed in Python 2
from itertools import islice

from chemfp import rdkit_toolkit

filename = "Compound_099000001_099500000.sdf.gz"

with rdkit_toolkit.read_ids_and_molecules(filename) as reader:
for id, mol in islice(reader, 0, 10):
num_carbons = sum(l for atom in mol.GetAtoms() if atom.GetAtomicNum() == 6)

(continues on next page)

196 Chapter 6. Toolkit APl examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
https://docs.python.org/2/library/itertools.html#itertools.islice

chemfp Documentation, Release 3.5

(continued from previous page)

smiles = rdkit_toolkit.create_string(mol, "smistring")
print(id, num_carbons, smiles, sep="\t")

(See the next section for a description of how the line with the sum() works.)

Here’s the output, and a spot check shows the carbon counts are correct:

99000039 21 0=C(CC[C@H] 1INC(=0) c2ccccc2NC1=0)Ncicccec2neccccl2

99000230 21 COclccc(S(=0) (=0)N2CCC(C(=0)N[CeH] (C)C(=0)NCc3ccco3)CC2)ccl
99002251 19 Cclccc(N/C=C(/C#N)C(=0)NC(=0)Cc2ccccc2)c(0)cl

99003537 23 CC(C)C[CeH] (NC(=0)Cclcn(C)c2cccccl2)clnc2ccccc2[nH] 1
99003538 23 CC(C)C[C@eH] (NC(=0)Cclcn(C)c2ccccci2)cinc2ccccc2[nH] 1
99005028 19 C[C@eH] (0C(=0)/C=C/clcccccl)C(=0)N[CeGH] 1CCCC[CeEH] 1C
99005031 19 C[CeH] (0C(=0)/C=C/clcccccl)C(=0)N[C@H] 1CCCC[C@®H] 1C
99006292 20 Cclccc(C)c(8(=0) (=0)N2CCC[CeH] (C(=0)NC3CCCCC3)C2)cl
99006293 20 Cclcecc(C)c(S(=0) (=0)N2CCC[CeeH] (C(=0)NC3CCCCC3)C2)cl
99006597 25 CS/C(N=CN(C)C)=C(\C#N) [P+] (clcccccl) (cicccccl)clcccecl

What’s fun is that RDKit and OEChem both implement mol.GetAtoms() and atom.GetAtomicNum() so
it’s trivial to port the above from RDKit to OEChem; replace rdkit_toolkit with openeye_toolkit!

The Open Babel port isn’t quite as easy because Open Babel has a different way to get the atoms in a
molecule. To make it easy to copy and paste, here’s the equivalent code for Open Babel:

from __future__ import print_function # Only needed in Python 2
from itertools import islice

from chemfp import openbabel_toolkit

filename = "Compound_099000001_099500000.sdf.gz"

with openbabel_toolkit.read_ids_and_molecules(filename) as reader:
for id, mol in islice(reader, 0, 10):
num_carbons = sum(l for atom_idx in range(mol.NumAtoms())
if mol.GetAtom(atom_idx+1) .GetAtomicNum() == 6)
smiles = openbabel_toolkit.create_string(mol, "smistring")
print(id, num_carbons, smiles, sep="\t")

Finally, here’s the implementation for CDK. (This only works with Python 3 because the jpype Java/Python
adapater doesn’t support Python 2):

from itertools import islice
from chemfp import cdk_toolkit
filename = "Compound_099000001_099500000.sdf.gz"

with cdk_toolkit.read_ids_and_molecules(filename) as reader:
for id, mol in islice(reader, 0, 10):
num_carbons = sum(a.getAtomicNumber() == 6 for a in mol.atoms())
smiles = cdk_toolkit.create_string(mol, "smistring")
print(id, num_carbons, smiles, sep="\t")

(If you run this you’ll notice that CDK’s SDF reader keeps the hydrogens as explicit atoms because the
above generates SMILES strings like C1 ([H])=C([H])C2=C(C([H])=C1.....)

6.25. Read ids and molecules from an SD file at the same time 197

chemfp Documentation, Release 3.5

6.26 Read ids and molecules using an SD tag for the id

In this section you’ll learn how to use the id_tag to get the id from one of the SD tags, rather than from the
record’s title. You will need the Compound 099000001 099500000.sdf.gz from PubChem, which was used
in the previous section. I'll also explain an idiom for how to count the number of records in an iterator.

Sometimes you would rather use a tag value as the id rather than the title line of the SDF record. This is
critical for ChEBI data set and older ChEMBL data sets, which leave the title line (mostly) blank. In this
case, use the id_tag to specify the tag to use.

The following example modifies the RDKit code from previous code to wuse PUB-
CHEM_IUPAC_ SYSTEMATIC NAME as the id, rather than the title line:

from __future__ import print_function # Only needed in Python 2

from itertools import islice

from chemfp import rdkit_toolkit

filename = "Compound_099000001_099500000.sdf.gz"

reader = rdkit_toolkit.read_ids_and_molecules(filename, id_tag="PUBCHEM_IUPAC_SYSTEMATIC_
—NAME")

for id, mol in islice(reader, 0, 10):
num_carbons = sum(1l for atom in mol.GetAtoms() if atom.GetAtomicNum() == 6)
smiles = rdkit_toolkit.create_string(mol, "smistring")
print(id, num_carbons, smiles, sep="\t'")

The output is:

3-[(3R)-2,5-bis(oxidanylidene)-3,4-dihydro-1H-1,4-benzodiazepin-3-yl]-N-quinolin-5-yl-

propanamide 21 O=C(CC[C@H]INC(=0)c2ccccc2NC1=0)Nclccee2neeccl2 N-[(2R)-1-
(furan-2-ylmethylamino)-1-oxidanylidene-propan-2-yl]-1-(4-methoxyphenyl)sulfonyl-piperidine-
4-carboxamide 21 COclcee(S(=0)(=0)N2CCC(C(=0)N[C@H](C)C(=0)NCc3ccco3)CC2)ccl
(Z)-2-cyano-3-[(4-methyl-2-oxidanyl-phenyl)amino]-N-(2-phenylethanoyl) prop-2-enamide 19
Celeee(N/C=C(/C#N)C(=0)NC(=0)Cc2ccccc2)c(0)cl N-[(1S)-1-(1H-benzimidazol-2-y1)-3-methyl-
butyl]-2-(1-methylindol-3-yl)ethanamide 23 CC(C)C[C@QH](NC(=0)Cclen(C)c2cececl2)clne2eceec2[nH]1
N-[(1R)-1-(1H-benzimidazol-2-yl)-3-methyl-butyl]-2-(1-methylindol-3-yl)ethanamide

23 CC(C)C[Ca@H](NC(=0)Cclen(C)c2cccecl2)clnc2eccec2[nH]1 [(29)-1-[[(1R,2S)-
2-methylcyclohexyllaminol-1-oxidanylidene-propan-2-yl] (E)-3-phenylprop-2-enoate
19 C[C@H](OC(=0)/C=C/clcccecl)C(=0)N[C@Q@H]1CCCC[CQ@H]1C [(2S)-1-
[[(1S,2S)-2-methylcyclohexyl]amino]-1-oxidanylidene-propan-2-yl] (E)-3-phenylprop-
2-enoate 19 C[C@H](OC(=0)/C=C/clcceecl)C(=0)N[C@H]1CCCC[C@@H]1C
(35S)-N-cyclohexyl-1-(2,5-dimethylphenyl)sulfonyl-piperidine-3-carboxamide 20
Ccleee(C)e(S(=0)(=0)N2CCC[C@H](C(=0)NC3CCCCC3)C2)cl (3R)-N-cyclohexyl-1-(2,5-

dimethylphenyl)sulfonyl-piperidine-3-carboxamide 20 Cclcee(C)c(S(=0)(=0)N2CCC[CQQH](C(=0)NC3CCCCC3)C2)cl
[(E)-1-cyano-2-(dimethylaminomethylideneamino)-2-methylsulfanyl-ethenyl]-triphenyl-phosphanium 25
CS/C(N=CN(C)C)=C(C#N)[P+](clccccel)(cleceeel)eleececl

You might have found the “sum(1 for atom in)” a bit odd. I agree with you. It is, however, the
standard way in Python to count the number of elements in the iterator which match a given condition. I’ll
break it down so you can understand how it works.

A list comprehension iterates through each element in an iterator (in the following it iterates over the
characters in a string) and returns a list:

198 Chapter 6. Toolkit APl examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.5

>>> [c for ¢ in "Hello"]
[IHI, lel, lll’ |1|’ IO']

Add an “if” to it to operate on only a subset of the characters:

>>> [c for c in "Hello" if c != "1"]
[IHI Iel Iol]

I could use len() of this to get the number of non-“1” characters, but that would require making a list only
to throw it away. There’s another route to the same answer. To get there, use the value 1 for each character
rather than the character itself:

>>> [1 for c¢ in "Hello" if c != "1"]
[1, 1, 1]

Then use sum() to sum the values, which in this case is also the number of elements in the list:

>>> sum([1 for ¢ in "Hello" if c !'= "1"])
3

Unlike len(), sum() only needs an iterator, not a list. I can replace the list comprehension with a generator
comprehension, to get:

>>> sum(1 for ¢ in "Hello" if c != "1")
3

Going back to the RDKit/OEChem expression:

num_carbons = sum(l for atom in mol.GetAtoms() if atom.GetAtomicNum() == 6)

I hope you can see how this counts the number of atoms in the molecule whose atomic number is 6. Or, if
you want another way to think of it, the expression is the same as:

num_carbons = 0O
for atom in mol.GetAtoms():
if atom.GetAtomicNum() ==
num_carbons += 1

6.27 Read from a string instead of a file

In this section you’ll learn how to read molecules from a string containing multiple SMILES records.

In the section Read molecules from an SD file or stdin you learned how to read molecules from a structure
file or stdin. Sometimes the input structures come from a string. For example, if a web page has a form
with a text box, where users can paste in a set of SMILES or SDF records and submit the form, then the
web application on the server will likely receive those records as a single string.

When the records are in a string instead of a file, use chemfp. toolkit.read_molecules_from_string().
It’s very similar to chemfp.toolkit.read_molecules(), except that the first parameter, content, is the
string instead of the source filename, and the second parameter, format, is required. (chemfp doesn’t try to
auto-detect the format from the content.)

6.27. Read from a string instead of a file 199

chemfp Documentation, Release 3.5

The following reads the records from a string containing two simple SMILES records and prints the number
of non-implicit atoms for each one. I’ve included implementations for all three toolkits; use the one(s) that
are available to you:

from __future__ import print_function # Only needed in Python 2
content = ("C methane 16.04246\n"
"0=0 water 31.9988\n")

from chemfp import rdkit_toolkit
for mol in rdkit_toolkit.read_molecules_from_string(content, "smi"):
print ("RDKit:", mol.GetNumAtoms())

from chemfp import openeye_toolkit
for mol in openeye_toolkit.read _molecules_from_string(content, "smi"):
print ("OEChem:", mol.NumAtoms())

from chemfp import openbabel_toolkit
for mol in openbabel_toolkit.read_molecules_from_string(content, "smi"):
print ("Open Babel:", mol.NumAtoms())

from chemfp import cdk_toolkit
for mol in cdk_toolkit.read_molecules_from_string(content, "smi"):
print ("CDK:", mol.getAtomCount())

When I run the above (on a computer where all four supported toolkits are installed), the above reports:

RDKit: 1
RDKit: 2
OEChem: 1
OEChem: 2
Open Babel: 1
Open Babel: 2

CDK: 1
CDK: 2
I would like to improve the output a bit to also include the record id in the output. The

toolkit function chemfp. toolkit.read_ids_and_molecules_from_string() issimilar to chemfp. toolkit.
read_molecules_from_string () except that it iterates through the (id, toolkit molecule) tuple rather than
just the molecule:

>>> from __future__ import print_function # Only needed in Python 2

>>> from chemfp import rdkit_toolkit

>>> content = ("C methane 16.04246\n"

o "0=0 water 31.9988\n")

>>> for (id, mol) in rdkit_toolkit.read_ids_and_molecules_from_string(content, "smi"):
print ("RDKit:", repr(id), mol.GetNumAtoms())

RDKit: 'methane 16.04246' 1
RDKit: 'water 31.9988' 2

You can see that the default SMILES reader assumes the rest of the line is the id. The file and string record
readers take a reader _args parameter just like chemfp. toolkit.parse_id_and_molecule (). I'll specify the
“whitespace” delimiter so the parser uses only the second word as the id:

200 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

>>> for (id, mol) in rdkit_toolkit.read_ids_and_molecules_from_string(content, "smi",
reader_args={"delimiter": "whitespace"}):
print ("RDKit:", repr(id), mol.GetNumAtoms())

RDKit: 'methane' 1
RDKit: 'water' 2

See Specify a SMILES delimiter through reader args for more details about setting the “delimiter”
reader__args.

The string readers, like the file readers, also support the id_tag option to get the id from an SD tag instead
of the title line. See Read ids and molecules using an SD tag for the id for more details about using the
id__tag.

6.28 The reader may reuse molecule objects!

In this section you’ll learn that the OEChem and Open Babel toolkits reuse the same molecule object, which
means you can’t save a molecule for later.

Suppose you want to read all of the molecules from a file into a list. It’s very tempting to write it as:

>>> import chemfp
>>> from chemfp import openeye_toolkit as T
>>> mols = list(T.read_molecules_from_string("C methane\n0 water\n", "smi"))

This does not work for the openeye_ toolkit or the openbabel toolkit:

>>> mols

[<openeye.oechem.0EGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at
—0x10326ba40> >,

<openeye.oechem.0EGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' aty
—0x10326ba40> >]

>>> T.create_string(mols[0], "smistring")

>>> [T.create_string(mol, "smistring") for mol in mols]

[II,’I]

This is because the underlying reader for those two toolkits reuse the same molecule object. You can see
that in the above, which returns the same OEGraphMol object (with id 0x10326ba40) for each record. The
reason why OpenEye decided to reuse the object is to get better performance. Clearing the molecule object
is faster than deleting it and reallocating a new one.

In addition, the OEChem reader code does a “clear molecule” followed by “read next record or stop”. At
the end of the file there is no record, so the reader ends with a clear molecule. That explains why the
OEGraphMol produces an empty SMILES string for the last couple of lines in the above code.

The only portable way to load a list of molecules is to use chemfp. toolkit.copy _molecule(), as in:

>>> from chemfp import openeye_toolkit as T

>>> mols = [T.copy_molecule(mol) for mol in T.read_molecules_from_string("C methane\n0y
—water\n", "smi")]

>>> mols

[<openeye.oechem.0EGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at,
—0x10328a810> >,

(continues on next page)

6.28. The reader may reuse molecule objects! 201

chemfp Documentation, Release 3.5

(continued from previous page)

<openeye.oechem.0EGraphMol; proxy of <Swig Object of type 'OEGraphMolWrapper *' at,
—0x100c78320> >]

>>> T.create_string(mols[0], "smistring")

ICI

>>> T.create_string(mols[1], "smistring")

IOI

I don’t really like this solution because the RDKit reader doesn’t need a copy, so the extra copy is pure
overhead.

Future versions of chemfp will likely have a reader _arg to specify if it’s okay to reuse a molecule object or
if a new one must be used each time.

6.29 Write molecules to a SMILES file

In this section you will learn how to write toolkit molecules into a structure file. You will need Com-
pound__099000001_099500000.sdf.gz from PubChem.

Chemfp can write toolkit molecules to a file in a given format. T’ll start by making an RDKit molecule,
though the same API works with Open Babel and OEChem:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice
>>> mol = T.parse_molecule("clccccclO phenol", "smi"

Use chemfp.toolkit.open_molecule_writer() to create a writer object. By default it will look at the
output filename extension to figure out the format and compression type, and if that doesn’t work it defaults
to SMILES output:

>>> yriter = T.open_molecule_writer("example.smi'")

The fingerprint writer has several methods to write a molecule to the file. If you write a molecule by itself
it will use the molecule’s own id (in this case, “phenol”):

>>> writer.write_molecule(mol)

Or, use write_id_and_molecule() if you want to specify an alternate id:

>>> yriter.write_id_and_molecule("something else", mol)

WARNING: The toolkit implementation may temporarily change the toolkit molecule’s own identifier in
order to get the correct output. You should not alter the molecule’s id in another thread while calling this
function.

Let’s see if it worked, by closing the writer (otherwise some of the output may be in an internal buffer) and
reading the file:

>>> writer.close()

>>> print (open("example.smi") .read())
Oclcccccl phenol

Oclcccccl something else

The write_molecules() method is optimized for passing in a list or iterator of molecule objects, and
write_ids_and_molecules () is the equivalent if you have (id, molecule) pairs. For example, the following
converts an SD file into a compressed SMILES file:

202 Chapter 6. Toolkit APl examples

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz

chemfp Documentation, Release 3.5

from chemfp import rdkit_toolkit as T # use your toolkit of choice
reader = T.read_molecules("Compound_099000001_099500000.sdf.gz")
writer = T.open_molecule_writer("example.smi.gz")
writer.write_molecules(reader)

These are optional, but recommended. Even better would be
to use the context manager described in the next section.
writer.close()
reader.close()

If you have a list (or iterator) of molecules, then use the write_molecules() method.

The open function also supports the format parameter, so you can specify “smi” or “sdf.gz” some other
combination of structure format and compression type:

writer = T.open_molecule("wrong extension.smi", format="sdf.gz")

If the zstandard package is available then use the .zst suffiz for ZStandard compression.

6.30 Reader and writer context managers

In this section you’ll learn how to use chemfp’s readers and writers to close the file, rather than depend
on Python’s garbage collector or manual “close()”. You will need Compound__099000001__099500000.sdf.gz
from PubChem.

In the previous section, Write molecules to a SMILES file, you learned how to convert an SD file into
a SMILES file. At the end was a small program with optional “close()” statements. These are optional
because Python’s garbage collector and chemfp work together. When a chemfp reader or writer is no longer
needed, the garbage collector asks chemfp to clean up, and chemfp closes the native toolkit’s file object.

This is fine for a simple script or function, but sometimes you want more control over when the file is closed.
You can call the writer’s close () method yourself, but it’s really easy to forget to do that.

Python supports “context managers”, which carry out certain actions when a block of code finishes. See
PEP 343 if you want the full details. For chemfp you only need to know that the reader and writer context
managers will always close the file at the end of the block.

A normal Python file context manager works like this:

>>> with open("example.txt", "w") as outfile:
outfile.write("I am here.\n")

>>> print(repr(open("example.txt").read()))
'T am here.\n'

If instead I use one file object to write the data and another to read the file, without a flush() or close() by
the writer, then there’s a syncronization problem:

n n

>>> outfile = open("example.txt", "w")
>>> outfile.write("I am here.\n")
>>> print (repr(open("example.txt") .read()))

Why does this print the empty string? The output text is still in an internal buffer, which isn’t written to
the disk until the close call:

6.30. Reader and writer context managers 203

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_099000001_099500000.sdf.gz
https://www.python.org/dev/peps/pep-0343

chemfp Documentation, Release 3.5

>>> outfile.close()
>>> print (repr(open("example.txt").read())
'T am here.\n'

The same problem occurs with molecule output:

>>> from chemfp import rdkit_toolkit as T # can also use openbabel_toolkit
>>> mol = T.parse_molecule("C=0 carbon monoxide", "smi"

>>> writer = T.open_molecule_writer("example.smi")

>>> wyriter.write_molecule(mol)

>>> open("example.smi") .read()

LI}

>>> writer.close()

>>> open("example.smi") .read()

'C=0 carbon monoxide\n'

Note: this problem does not occur with the openeye toolkit. Most likely that toolkit always flushes its
output buffers after each molecule.

The chemfp readers and writers support a context manager, so you can use the same solution you would for
regular files:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice

>>> mol = T.parse_molecule("C=0 carbon monoxide", "smi"

>>> with T.open_molecule_writer("example.smi") as writer:
writer.write_molecule(mol)

>>> open("example.smi") .read()
'C=0 carbon monoxide\n'

With the context manager concept firmly in mind, the following is the way I prefer to write the conversion
script from the previous section:

from chemfp import rdkit_toolkit as T # use your toolkit of choice

with T.read_molecules("Compound_099000001_099500000.sdf.gz") as reader:
with T.open_molecule_writer("example.smi.gz") as writer:
writer.write_molecules(reader)

That said, if you really want to depend on the garbage collector, you can also write it with one (or two)
fewer lines:

from chemfp import rdkit_toolkit as T # use your toolkit of choice
T.open_molecule_writer("example.smi.gz") .write_molecules(
T.read_molecules("Compound_099000001_099500000.sdf.gz"))

6.31 Write molecules to stdout in a specified format

In this section you’ll learn how to specify the structure writer’s output format, and to write to stdout instead
of to a file.

The function chemfp.toolkit.open_molecule_writer() supports a format parameter, in case you don’t
want chemfp to determine the output format and compression based on the filename extension.

204 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

For example, if the destination is None (instead of a filename) then chemfp will write the output to stdout.
Since Python’s None object doesn’t have an extension, it will write the molecules as uncompressed SMILES.
If you want to write to stdout in SDF format you will have to specify the output format, like the following;:

>>> from chemfp import rdkit_toolkit as T # use your toolkit of choice

>>> mol = T.parse_molecule("0=0 molecular oxygen", "smi'")

>>> with T.open_molecule_writer(None, "sdf") as writer:
writer.write_molecule(mol)

molecular oxygen
RDKit

21 0 0 0 0 0 O 0 0999 V2000

0.0000 0.0000 0.00000 O O O O 0 0O O O O O O O
0.0000 0.0000 0.00000 O 0 O O O O O O O O O O
1 2 2 0
M END
3333

>>> with T.open_molecule_writer(None, "inchikey") as writer:
writer.write_molecule(mol)

MYMOFIZGZYHOMD-UHFFFAQOYSA-N molecular oxygen

6.32 Write molecules to a string (and a bit of InChl)

In this section you’ll learn how to write toolkit molecules into memory, and when finished to get the result
as a string.

The previous sections showed examples of writing molecules to a file or to stdout. Sometimes you want
to save the records as a string; perhaps to send a response for a web request or display the contents
in a text pane of a GUI. The function chemfp.toolkit.open_molecule writer_ to_string() creates a
MoleculeStringWriter which stores the output records into memory. Once the writer is closed, the mem-
ory contents can be retrieved as a string with MoleculeStringiriter. getvalue().

For a bit of variation, the following example uses the “inchi” output format, and the openbabel_toolkit:

>>> from chemfp import openbabel_toolkit as T # use your toolkit of choice
>>> alanine = T.parse_molecule("0=C(0) [CeGH] (N)C alanine", "smi"

>>> glycine = T.parse_molecule("C(C(=0)0)N glycine", "smi"

>>> writer = T.open_molecule_writer_to_string("inchi")

>>> writer.write_molecules([alanine, glycine])

>>> writer.close()

>>> print(writer.getvalue())

InChI=1S/C3H7N02/c1-2(4)3(5)6/h2H,4H2,1H3, (H,5,6)/t2-/m0/s1 alanine
InChI=1S/C2H5N02/c3-1-2(4)5/h1,3H2, (H,4,5) glycine

You should know that there’s no well-defined “inchi” file format, only an InChl string. I decided to follow
Open Babel’s lead and say that the “inchi” format has one record per line, where each line contains the
InChI string followed by a delimiter, followed by the id (if available) on the rest of the line.

The InChl output writer args supports an “include_id” parameter. The default, True, includes the id,
while the following example sets it to False to have only the InChl string on the line:

6.32. Write molecules to a string (and a bit of InChl) 205

chemfp Documentation, Release 3.5

>>> with T.open_molecule_writer_to_string("inchi",
writer_args={"include_id": Falsel}) as writer:
writer.write_molecule(alanine)
writer.write_molecule(glycine)

>>> print(writer.getvalue())
InChI=1S/C3H7N02/c1-2(4)3(5)6/h2H,4H2,1H3, (H,5,6) /t2-/m0/s1
InChI=1S/C2H5N02/c3-1-2(4)5/h1,3H2, (H,4,5)

I also used the context manager so the code would be a bit shorter and, I think, clearer. It’s up to you to
decide if write_molecules() with a 2-element list is clear than two write_molecule() lines.

6.33 Handling errors when reading molecules from a string

In this section you’ll learn how to ignore errors and improve error reporting when reading from a string,
rather then accept the default of raising an exception and stopping. The examples will use a string containing
SMILES records, but the same principles apply to any format.

If you’ve used the chemfp readers on real-world data sets you might have noticed that the RDKit and Open
Babel ones sometimes raise an exception, saying that a given record could not be parsed. I'll demonstrate
with a string containing four SMILES records:

>>> content = ("C methane\n" +

"CN(C) (C) (C)C pentavalent nitrogen\n" +
"Q Q-ane\n" +

- "[U] uranium\n")

>>>

RDKit doesn’t like the pentavalent nitrogen, and chemfp’s rdkit_ toolkit stops processing at that record:

>>> from chemfp import rdkit_toolkit
>>> with rdkit_toolkit.read_ids_and_molecules_from_string(content, "smi") as reader:
for id, mol in reader:
print (id)
methane
[16:11:12] Explicit valence for atom # 1 N, 5, is greater than permitted
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "chemfp/_rdkit_toolkit.py", line 342, in _iter_read_smiles_ids_and_molecules
error_handler.error("RDKit cannot parse the SMILES J/s" 7, (_compat.myrepr(smiles),),
—location)
File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)
File "<string>", line 1, in raise_tb
chemfp.ParseError: RDKit cannot parse the SMILES 'CN(C)(C)(C)C',
file '<string>', line 2, record #2: first line is 'CN(C)(C)(C)C pentavalent nitrogen'

Open Babel doesn’t care about the too-high valence on the nitrogen, but doesn’t like the non-SMILES in
the third record:

206 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

>>> from chemfp import openbabel_toolkit
>>> with openbabel_toolkit.read_ids_and_molecules_from_string(content, "smi") as reader:
for id, mol in reader:
print(id)
methane
pentavalent nitrogen

% Open Babel Error in ParseSimple
SMILES string contains a character 'Q' which is invalid
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "chemfp/_openbabel_toolkit.py", line 927, in _iter_column_records
error_handler.error("Open Babel cannot parse the /s /s"
File "chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)
File "<string>", line 1, in raise_tb
chemfp.ParseError: Open Babel cannot parse the SMILES 'Q',
file '<string>', line 3, record #3: first line is 'Q Q-ane'

Neither does CDK:

>>> from chemfp import cdk_toolkit
>>> with cdk_toolkit.read_ids_and_molecules_from_string(content, "smi") as reader:
for id, mol in reader:
print(id)

methane
pentavalent nitrogen
org.openscience.cdk.io.iterator.IteratingSMILESReader ERROR: Error while reading the,
—SMILES from: Q Q-ane, org.openscience.cdk.exception.InvalidSmilesException: could not
—parse 'Q Q-ane', unexpected character:
org.openscience.cdk.io.iterator.IteratingSMILESReader ERROR: Q Q-ane
org.openscience.cdk.io.iterator.IteratingSMILESReader ERROR: ~
Traceback (most recent call last):

File "<stdin>", line 2, in <module>

File "/Users/dalke/cvses/cfp-3x/docs/chemfp/_cdk_toolkit.py", line 498, in _iter_read_
—smiles_ids_and_molecules_cdk

error_handler.error("CDK cannot parse a SMILES record", location)
File "/Users/dalke/cvses/cfp-3x/docs/chemfp/io.py", line 112, in error
_compat.raise_tb(ParseError(msg, location), None)

File "<string>", line 1, in raise_tb
chemfp.ParseError: CDK cannot parse a SMILES record, file '<string>', line 3, record #3:,
—first line is 'Q Q-ane'

To round things out, OEChem accepts pentavalent nitrogen and skips the bad SMILES at a lower level than
what chemfp uses, so there’s no exception:

>>> from chemfp import openeye_toolkit
>>> with openeye_toolkit.read_ids_and_molecules_from_string(content, "smi") as reader:
for id, mol in reader:
print(id)

(continues on next page)

6.33. Handling errors when reading molecules from a string 207

chemfp Documentation, Release 3.5

(continued from previous page)

methane

pentavalent nitrogen

Warning: Problem parsing SMILES:
Warning: Q Q-ane

Warning: ~

Warning: Error reading molecule in Canonical stereo SMILES format.

uranium

I’ll emphasize that point. The openeye__toolkit uses OEChem’s high-level reader, which provides no informa-
tion about if OEChem skipped a record with a failure. Chemfp therefore cannot provide more information
about the failures, whether as an exception or an improved error message.

I'm certain that nearly everyone wants the reader to ignore the few records that can’t be parsed by the
underlying toolkit. The readers and writers support the errors option. The default value of “strict” tells
chemfp to raise an exception when it detects a parse failure, and “ignore” tells it to ignore the error and go
on to the next record:

>>> with rdkit_toolkit.read_ids_and_molecules_from_string(
content, "smi", errors="ignore'") as reader:
for id, mol in reader:
print(id)
methane
[16:13:45] Explicit valence for atom # 1 N, 5, is greater than permitted
[16:13:45] SMILES Parse Error: syntax error for input: 'Q'
uranium
>>> with openbabel_toolkit.read_ids_and_molecules_from_string(

content, "smi", errors="ignore") as reader:
for id, mol in reader:

print (id)
methane
pentavalent nitrogen
uranium

>>> with cdk_toolkit.read_ids_and_molecules_from_string
content, "smi", errors="ignore'") as reader:
for id, mol in reader:
print(id)
methane
pentavalent nitrogen
org.openscience.cdk.io.iterator.IteratingSMILESReader ERROR: Error
while reading the SMILES from: Q Q-ane, org.openscience.cdk.exception.
—InvalidSmilesException:
could not parse 'Q Q-ane', unexpected character:
org.openscience.cdk.io.iterator.IteratingSMILESReader ERROR: Q Q-ane
org.openscience.cdk.io.iterator.IteratingSMILESReader ERROR: ~
uranium

The “strict” default comes from my long-held belief that it’s better to be strict first, and detect problems
early, than to let them intrude. My resolve is weakening, because it’s been rare to find that I can make use
of that information. The biggest counter-example is when I specify one format but the file is actually in

208 Chapter 6. Toolkit APl examples

chemfp Documentation, Release 3.5

another format, in which case the reader skips a lot of garbage. For example, a SMILES reader, pointed to
a SD file or a compressed SMILES file, will try hard to make sense of the data and end up ignoring almost
everything. I haven’t decided if I will change the default policy.

I've also found that the toolkits aren’t that helpful at identifying which record failed. Take a look at the
RDKit warning:

[16:13:45] Explicit valence for atom # 1 N, 5, is greater than permitted

It says that I did this in the late afternoon, and the reason for the failure, but says very little about the
record with the problem.

To help improve this, and to send still more garbage, err, I mean helpful messages to stderr, chemfp supports
a “report” errors value. It’s the same as “ignore” except that it also displays more details about the failure
location:

>>> with rdkit_toolkit.read_ids_and_molecules_from_string(
content, "smi", errors="report") as reader:
for id, mol in reader:
print(id)
methane
[16:14:52] Explicit valence for atom # 1 N, 5, is greater than permitted
ERROR: RDKit cannot parse the SMILES 'CN(C)(C)(C)C', file '<string>', line 2, record #2:
—first line is 'CN(C) (C) (C)C pentavalent nitrogen'. Skipping.
[16:14:52] SMILES Parse Error: syntax error for input: 'Q'
ERROR: RDKit cannot parse the SMILES 'Q', file '<string>', line 3, record #3: first line
—~is 'Q Q-ane'. Skipping.
uranium
>>> with openbabel_toolkit.read_ids_and_molecules_from_string(
content, "smi", errors="report") as reader:
for id, mol in reader:
print (id)

methane
pentavalent nitrogen
ERROR: Open Babel cannot parse the SMILES 'Q', file '<string>', line 3, record #3: first
—line is 'Q Q-ane'. Skipping.
uranium
>>> with cdk_toolkit.read_ids_and_molecules_from_string(

content, "smi", errors="report") as reader:
for id, mol in reader:
print(id)

methane

pentavalent nitrogen

org.openscience.cdk.io.iterator.IteratingSMILESReader ERROR:

Error while reading the SMILES from: Q Q-ane, org.openscience.cdk.exception.
—InvalidSmilesException:

could not parse 'Q Q-ane', unexpected character:
org.openscience.cdk.io.iterator.IteratingSMILESReader ERROR: Q Q-ane
org.openscience.cdk.io.iterator.IteratingSMILESReader ERROR: ~

ERROR: CDK cannot parse a SMILES record, file '<string>', line 3, record #3: first line
—~is 'Q Q-ane'. Skipping.

uranium

6.33. Handling errors when reading molecules from a string 209

chemfp Documentation, Release 3.5

The quality of the error message depends on the toolkit and the format. The best messages are for the
Open Babel and RDKit SMILES readers and InChI readers, because I decided to have chemfp identify the
records for those formats itself, instead of using the underlying toolkits to read the file. Chemfp still uses
the underlying toolkit to convert the individual record into a native toolkit molecule.

I did this because I found the the SMILES and InChl reader performance was the same, and by writing my
own parsers I had the ability to report line numbers and improve the error messages.

The examples so far used the read_ids_and_molecules_from_string function. The
read_molecules_from_string function also supports the errors option, with the same meaning.

>>> gizes = []
>>> with openbabel_toolkit.read_molecules_from_string(
content, "smi", errors="report") as reader:
for mol in reader:
sizes.append (mol.NumAtoms())

ERROR: Open Babel cannot parse the SMILES 'Q', file '<string>', line 3, record #3: first,
—line is 'Q Q-ane'. Skipping.

>>> sizes

[1, 6, 1]

6.34 Handling errors when reading molecules from a file

In this section you’ll learn how to how to ignore errors and improve error reporting when reading from SD
file, rather then accept the default of raising an exception and stopping. The examples will use an SD file,
but the same principles apply to any format.

In the previous section you learned that when the readers encounter a error, the default behavior is to raise
a Python exception and how to use the error parameter to ignore those errors or to provide a more detailed
error report.

The file-based readers, chemfp.toolkit.read_molecules () and chemfp.toolkit.
read_ids_and_molecules (), can be configured the same way, that is:

When there is an error, raise an exception and stop (this is the default)
.re